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Abstract

The effects of dipole modifiers and their structural analogs on the single channel activity of amphotericin B in sterol-
containing planar phosphocholine membranes are studied. It is shown that the addition of phloretin in solutions bathing
membranes containing cholesterol or ergosterol decreases the conductance of single amphotericin B channels. Quercetin
decreases the channel conductance in cholesterol-containing bilayers while it does not affect the channel conductance in
ergosterol-containing membranes. It is demonstrated that the insertion of styryl dyes, such as RH 421, RH 237 or RH 160, in
bilayers with either cholesterol or ergosterol leads to the increase of the current amplitude of amphotericin B pores.
Introduction of 5a-androstan-3b-ol into a membrane-forming solution increases the amphotericin B channel conductance in
a concentration-dependent manner. All the effects are likely to be attributed to the influence of the membrane dipole
potential on the conductance of single amphotericin B channels. However, specific interactions of some dipole modifiers
with polyene-sterol complexes might also contribute to the activity of single amphotericin B pores. It has been shown that
the channel dwell time increases with increasing sterol concentration, and it is higher for cholesterol-containing membranes
than for bilayers including ergosterol, 6-ketocholestanol, 7-ketocholestanol or 5a-androstan-3b-ol. These findings suggest
that the processes of association/dissociation of channel forming molecules depend on the membrane fluidity.
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Introduction

The structure of polyene antibiotic amphotericin B (AmB)

comprises two rigid fragments, a macrolide ring and a

mycosamine sugar moiety, which are linked by a b-glycosidic

bond. The so-called ‘‘polar head’’ of the molecule contains

carboxyl and amino groups. For over forty years, the AmB has

been one of the most important agents used to combat systemic

fungal infections. In spite of side effects such as nephrotoxicity,

anemia, and cardiac arrhythmia [1–2], AmB remains the drug of

choice for treatment of immunosuppressed patients, such as

cancer patients in intensive chemotherapy, solid organ transplant

recipients, and AIDS patients. Pharmaceutical technologies

provide innovative formulations, which aim to reduce the

concentration of the free AmB in the patient serum without

harming its therapeutic efficacy.

Sensitive target organisms lose their cellular integrity due to

AmB-induced pore formation in their membranes. The exact

molecular architecture of the AmB channel is under debate;

different models for the formation and structure of the AmB

channel have been proposed. The most popular is the sterol-

dependent double-pore model: the two-sided effect of polyene

antibiotic results from the association of AmB with sterol

molecules and the formation of anion-selective symmetric barrel

stave pores made from two ‘‘half-pores’’ in opposite monolayers

[3–6].

Sterol-dependent membrane activity of AmB suggests that the

observed therapeutic efficacy of AmB might be related to a

differential preference between sterols found in cell membranes. In

mammalian cells, cholesterol (Chol) is the major membrane sterol,

whereas in fungi it is ergosterol (Erg) [7]. It is not still clear whether

the therapeutic effect of AmB is caused by the preferential

formation and stability of a complex of polyene and ergosterol

over cholesterol [8–11] or the observed effects result from the

different influences of both sterols on structural and dynamical

properties of the membrane [12–14].

Sterols are responsible for the membrane fluidity. The main

feature of the phosphatidylcholine:cholesterol membrane phase

diagram is the presence of an ordered phase at bilayer

concentrations of more than 25 mol% cholesterol [15]. Biological

membranes contain substantial amounts of cholesterol or equiv-

alent sterols and the phase segregation is expected for many

biological membranes. AmB molecules exhibit higher affinity

toward the sterol-containing lipid-ordered phase (rafts) and,

therefore, might be cumulated in rafts [14]. AmB causes an

increase in the internal order of membranes formed with saturated

lipids and Chol, while AmB brings about fluidization in the centre

of the bilayers with the same amount of Erg [14,16,17].

Czub and Baginski [14] showed that in a membrane, the

negatively charged carboxyl group (COO2) of AmB is shifted

slightly toward the aqueous phase as compared to the protonated

amino group (NH3
+). The authors suggested that the AmB head
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dipoles may influence on the membrane dipole potential (Qd) drop.

The dipole potential of the membrane originates from the specific

orientation of dipole moments of the lipid molecules and the

adjacent water dipoles in the interfacial region. Depending on the

structure of lipids, its magnitude can vary from 100 to 400 mV,

with positive values in the membrane interior [18–20]. It is known

that sterols modulate the properties of a bilayer not only in its

fluidity but also in the membrane dipole potential [21]. Thus, if

the membrane dipole potential can ensure a significant contribu-

tion to the regulation of AmB channel activity, membrane dipole

modifiers might be useful for chemotherapeutical investigations to

design less toxic preparations with enhanced therapeutic effec-

tiveness.

The present study is an attempt to examine the effects of dipole

modifiers and their structural analogs including various sterols,

flavonoids, and styryl dyes on the single AmB channel properties.

The roles of the membrane dipole potential, membrane fluidity

and specific interactions between dipole modifiers and polyene-

sterol complexes in the single channel activity of AmB are

discussed.

Materials and Methods

All chemicals were of reagent grade. Synthetic 1,2-diphytanoyl-sn-

glycero-3-phosphocholine (PC), cholesterol (Chol), ergosterol (Erg),

and 5a-androstan-3b-ol were obtained from Avanti Polar Lipids, Inc.

(Pelham, AL). Phloretin (3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxy-

phenyl)-1-propanone), phloridzin (1-[2-(b-D-Glucopyranosyloxy)-

4,6-dihydroxyphenyl]-3-(4-hydroxyphenyl)-1-propanone), genistein

(5,7-Dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one), gen-

istin (Genistein-7-O-b-D-glucopyranoside), 29,49,69-trihydroxy-ace-

tophenone monohydrate, quercetin (2-(3,4-Dihydroxyphenyl)-3,5,7-

trihydroxy-4H-1-benzopyran-4-one), 6-ketocholestanol, 7-ketocho-

lestanol (5-cholesten-3b-ol-7-one) were purchased from Sigma

Chemical (St. Louis, MO), RH 421 (N-(4-sulfobutyl)-4-(4-(4-(dipen-

tylamino)phenyl)butadienyl) pyridinium, inner salt), RH 237 (N-(4-

sulfobutyl)-4-(6-(4-(dibutylamino)phenyl)hexatrienyl)pyridinium, in-

ner salt), and RH 160 (N-(4-sulfobutyl)-4-(4-(4-(dibutylamino)phe-

nyl)butadienyl)pyridinium, inner salt) from Molecular Probes (Eu-

gene, OR). Water was distilled twice and deionized. 2 M KCl

solutions were buffered with 5 mM Hepes, pH 7.0. Amphotericin B

from Streptomyces sp. (AmB) was purchased from Sigma Chemical (St.

Louis, MO).

Virtually solvent-free planar lipid bilayers were prepared

according to a monolayer-opposition technique [22] on a 50-

mm-diameter aperture in the 10-mm thick Teflon film separating

two (cis and trans) compartments of the Teflon chamber. The

aperture was pretreated with hexadecane. Lipid bilayers were

made from PC and sterol (Chol, Erg, 5a-androstan-3b-ol, 6-

ketocholestanol, or 7-ketocholestanol) in different molar ratios.

After the membrane was completely formed, AmB from a stock

solution (0.1 mg/ml DMSO) was added to both compartments to

obtain a final concentration that ranged from 1028 to 1026 M.

Ag/AgCl electrodes with agarose/2 M KCl bridges were used to

apply the transmembrane voltage (V) and measure the transmem-

brane current. ‘‘Positive voltage’’ refers to the case in which the cis-

side compartment is positive with respect to the trans-side. All

experiments were performed at room temperature. Final concen-

tration of DMSO in the chamber did not exceed 1024 mg/ml.

The two-side addition of phloretin, phloridzin, genistein,

genistin, 29,49,69-trihydroxy-acetophenone, quercetin, RH 421,

RH 237, or RH 160 from stock mM solutions in ethanol or

DMSO to the membrane-bathing solution yielding final concen-

trations of 20 mM for different flavonoids and 5 mM for various

RH dyes was used to modulate AmB activity. Noticed concentra-

tions of ethanol and DMSO in the bilayer bathing solutions did

not affect membrane properties (resistance, capacity and stability).

Current measurements were carried out using an Axopatch

200B amplifier (Axon Instruments) in the voltage clamp mode.

Data were digitized by Digidata 1440A and analyzed using

pClamp 10 (Axon Instruments) and Origin 7.0 (Origin Lab).

Current tracks were filtered by 8-pole Bessel 100 kHz. The total

number of events, N, used for the plotting the histograms of

transmembrane current fluctuations at a fixed value of transmem-

brane voltage ranged from 300 to 8000. The histograms were

approximated by the functions of normal distribution. The

channel conductance, G(V), was determined as the ratio of central

value of the current, I, to transmembrane voltage, V. The lifetime

of channels was determined only in the cases of one current level

i.e. functioning of one single channel. The total number of

measurements used for histogram construction ranged from 150 to

7000. The value of mean channel lifetime, t, was defined as a

parameter of the exponential function approximating the obtained

distribution. The distribution hypothesis was verified using x2

(P,0.05).

Since a sterol concentration and a phase separation in the

membrane (the presence of lipid rafts, which are able to cumulate

sterols and AmB), may affect the parameters of AmB-channels, we

compared the conductance-voltage characteristics of single pores

at different concentrations of cholesterol or ergosterol in the

membrane forming solutions: 5 mol%, 33 mol% and 67 mol%. It

was found that the conductance-voltage characteristics are the

same for these cases. Therefore, for experiments with dipole

modifiers, a 33 mol% sterol concentration was chosen, because it

is close to the amount of sterols in biological membranes and thus

allows to simulate the cellular situation.

Changes in K+-nonactin steady-state conductance were mea-

sured to estimate the changes of the membrane dipole potential

after the addition of quercetin or methyl-b-cyclodextrin into a

bilayer bathing solution (0.1 M KCl, 5 mM Hepes, 7.4). The

corresponding calculations were performed assuming that the

membrane conductance is related to the bilayer dipole potential by

the Boltzmann distribution [23]:
Gm

G0
m

~exp({
qeDwd

kT
), where Gm

and Gm
0 are the steady-state membrane conductance induced by

K+-nonactin in the presence and in the absence of quercetin or

methyl-b-cyclodextrin, respectively, DQd are the changes of the

membrane dipole potential after the addition of quercetin or

methyl-b-cyclodextrin into a bilayer bathing solution; qe, k, T have

their usual meanings.

Results and Discussion

Figure 1 illustrates the effect of different membrane dipole

modifiers on single AmB-channels in lipid bilayers formed from

PC:Chol (67:33 mol. %) and bathed in a 2 M KCl pH 7.0

solution. Upper panel of Fig. 1 presents current fluctuations in the

presence of 20 mM phloretin (A), no dipole modifiers (B), and

5 mM RH 421 (C). The addition to the membrane bathing

solution of phloretin, which is known to decrease the membrane

dipole potential [23,24], produced a significant decrease of the

channel conductance (by factor of 3), while the pore conductance

increased by ,1.5 in the presence of RH 421, known to increase

Qd [25]. For preferentially anion-conductive AmB-channels [26]

one could expect that a decrease of Qd would produce a decrease of

the pore conductance [23,27]. We have previously observed

similar effects of these dipole modifiers on predominantly anion-

selective syringomycin E channels [28]. The opposite effect

(increase of the channel conductance with decreasing Qd) was
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observed for cation-selective channels produced by gramicidin A,

alamethicin, and surfactin [29–33].

We applied different analogs of phloretin, phloridzin, genistein,

genistin, 29,49,69-trihydroxy-acetophenone monohydrate, and

quercetin. It was observed that phloridzin does not affect the

AmB-channel conductance (data not shown). This finding is in

agreement with the fact that phloridzin is several orders of

magnitude less effective on the K+-nonactin conductance of

lecithin:cholesterol (20:80 mol%) membranes than phloretin [23].

Compounds which have the exiguous effect on the membrane

dipole potential, genistein, genistin, and 29,49,69-trihydroxy-

acetophenone [30,34], did not practically influence the AmB-

channel amplitude (data not shown). The addition of up to 20 mM

of quercetin to the membrane bathing solution led to a significant

reduction of AmB-pore current amplitude (Fig. 1D). One can

assume that the introduction of quercetin leads to some reduction

of Qd similar to phloretin. Indeed, we found that the addition of

quercetin in the solution bathing PC:Chol-membrane led to

significant increase of K+-nonactin steady-state conductance.

Increase in the cation conductance means a reduction of the

membrane dipole potential. Introduction of 20 mM quercetin

corresponds to Qd reduction on 100610 mV (DQd = 2100

610 mV) (see Materials and methods).

We also used analogs of RH 421, RH 237 and RH 160. Malkov

and Sokolov [35] have shown that among these dyes RH 421 has

the strongest effect on increasing dipole potential of PC-

membranes. RH 237 has an intermediate effect and RH 160

has the smallest. The observed increase of the AmB-pore

conductance correlates with the dipole potential changes induced

by these RH molecules (compare Fig. 1C, F, E).

Thus, the obtained results show that the membrane dipole

potential reduction is followed by decreasing AmB channel

conductance. It should be noted that Asandei and Luchian [36]

attributed the pH-induced changes of the single-molecule ionic

conductance of AmB-channels to variations of the dipole

membrane potential.

Figure 1. Current fluctuations corresponding opening and closing of the single AmB-channels in the planar lipid bilayers. The
membranes were made from the PC:Chol (67:33 mol%) and bathed in 2 M KCl 5 mM Hepes pH 7.0. V = 200 mV. Bilayer bathing solutions contain: (A)
– 20 mM phloretin, (B) – no dipole modifiers, (C) – 5 mM RH 421, (D) – 20 mM quercetin, (E) – 5 mkM RH 160, (F) – 5 mM RH 237.
doi:10.1371/journal.pone.0030261.g001

Figure 2. Conductance-voltage curves of the single AmB-channels. The membranes were made from PC:Chol (67:33 mol%) (A) and PC:Erg
(67:33 mol%) (B), and bathed in 2.0 M KCl 5 mM Hepes pH 7.0. Bilayer bathing solutions contain: (&) – no dipole modifiers, (#) – 20 mM phloretin,
(b) – 20 mM quercetin, (n) – 5 mM RH 421, (m) – 5 mM RH 237, (N) – 5 mM RH 160.
doi:10.1371/journal.pone.0030261.g002

Probing Single AmB Pores by Dipole Modifiers

PLoS ONE | www.plosone.org 3 January 2012 | Volume 7 | Issue 1 | e30261



The sterol-dependent membrane activity of AmB forced us to

investigate AmB-channels in bilayers containing different sterols,

especially ergosterol. Figure 2 shows conductance-voltage curves

in the absence and in the presence of phloretin, quercetin, and

various RH dyes in the solutions bathing PC:Chol (67:33 mol. %)

(A) and PC:Erg (67:33 mol%)-bilayers (B). The data show that the

AmB-pore conductance is the same for Erg- and Chol-containing

bilayers in the absence of any other agents (channel conductance

at zero transmembrane voltage, G0<7 pS). For Erg- and Chol-

containing bilayers the effect of phloretin is also the same

(G0<2.5 pS). RH 421 is more effective in Erg-containing bilayers

(in the presence of RH 421 G0<15 pS) than in Chol-containing

membranes (G0<10 pS), while the pore conductance in the

presence of RH 237 and RH 160 is practically the same for Erg-

and Chol-containing bilayers. It should be noted that, as well as in

Chol-containing membranes, genistein, genistin, and 29,49,69-

trihydroxy-acetophenone, do not affect the AmB-channel con-

ductance in Erg-containing bilayers (data not shown). In contrast

to Chol-containing bilayers, quercetin does not affect the AmB-

channel conductance in Erg-containing membranes. Different

effects of RH 421 and quercetin on the bilayers containing these

sterols are likely to be attributed to interactions between these

modifiers and amphotericin-sterol complexes. Recently, the

specific interaction of 5- and 49-hydroxylated flavonoids (for

example, phloretin and genestein) with the voltage sensor of alpha-

hemolysin pore was demonstrated [37].

Figure 3 presents the dependences of the conductance at zero

transmembrane voltage and mean dwell time of AmB-channels as

functions of the Chol- or Erg-concentration in the membrane-

forming solution. One can see that the pore conductance does not

depend on the sterol concentration. In both cases, channel dwell

time increased with increasing sterol concentration in the

membranes. As the cholesterol-induced change in the membrane

dipole potential is biphasic (cholesterol increases Qd in the

concentration range from 0 to 35 mol%, a maximum was

observed at 35–45 mol%, after which Qd starts to decrease) (see

Fig. 3 in [38]), the observed monotonic increase of the channel

dwell time with increasing sterol concentration can hardly be

discussed in terms of membrane dipole potential changes. This

fact may be rationalized in terms of membrane fluidity, assuming

that an increase in the sterol concentration leads to a

condensation effect in the bilayer [39,40], which in turn hinders

dissociation of two half-pores. It can also be noticed that the pore

life time is higher for Chol-containing membranes than for Erg-

containing bilayers. These data are also in agreement with the

fact that AmB increases the internal order of bilayers containing

Chol, while it has no effect on the order of the bilayer with Erg

[14].

Figure 3. The dependences of the conductance at zero transmembrane voltage, G0 (dash lines), and mean dwell time, t (solid lines),
of AmB-channels on the concentration of Chol (solid symbols) or Erg (open symbols) in the membrane forming PC-solution. The
membranes were bathed in 2.0 M KCl 5 mM Hepes pH 7.0.
doi:10.1371/journal.pone.0030261.g003

Table 1. Dependence of AmB single channels characteristics (conductance at zero transmembrane voltage, G0, and mean dwell
time, t) on sterol concentration in the membrane forming PC-solution.

Sterol concentration Characteristic 6-ketocholestanol 7-ketocholestanol 5a-Androstan-3b-ol

33 mol% G0, pS 7.060.5 8.061.0 11.561.0

t, ms 2363 1562 1563

67 mol% G0, pS 7.061.0 4.060.8 18.061.0

t, ms 3865 3765 3763

The bilayers were bathed in 2.0 M KCl 5 mM Hepes pH 7.0.
doi:10.1371/journal.pone.0030261.t001
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We probed the AmB-channel activity with other sterols. Table 1

presents the effect of 6-ketocholestanol, 7-ketocholestanol and 5a-

androstan-3b-ol. 6-ketocholestanol and 7-ketocholestanol are

known to increase and decrease Qd, respectively (see Fig. 3 in

[38]). AmB-channel conductance G0 does not depend on the 6-

ketocholestanol concentration in the membrane forming solution

and is equal to approximately 7 pS. In case of 67 mol% of 7-

ketocholestanol G0 = 461 pS. Since 6-ketocholestanol increases

the Qd-value much more efficiently compared to the decrease

caused by 7-ketocholestanol (see Fig. 3 in [38]), the effects of keto-

derivates on AmB-channel conductance cannot be attributed to

the changes of the membrane dipole potential, but rather may

proceed from the interaction of these two sterols with amphoter-

icin B.

The 5a-androstan-3b-ol is a fully saturated sterol without a

hydrocarbon ‘‘tail’’. It’s effect on Qd is unknown. The absence of a

hydrophobic tail may determine a localization of 5a-androstan-

3b-ol molecules closer to the water-membrane interface, which

leads to a more significant contribution of 5a-androstan-3b-ol

dipoles to the Qd than other sterol molecules. As one can see from

the data presented in Table 1, 5a-androstan-3b-ol increased the

AmB-channel conductance in a concentration dependent manner:

G0<12 pS at 33 mol%, G0<16 pS at 40 mol%, and G0<18 pS at

67 mol%. Consequently, one can assume that 5a-androstan-3b-ol

increases the membrane dipole potential. Indeed, we found that

the addition of methyl-b-cyclodextrin up to 8.7 mM in the

membrane bathing solution, which is known to remove sterol

molecules from the membrane [38], led to an increase in K+-

nonactin steady-state conductance of the bilayer containing 67

mol% 5a-androstan-3b-ol. This means that the decrease in 5a-

androstan-3b-ol concentration in the membrane leads to a

reduction of the bilayer dipole potential. It should be noticed that

the specific interaction between this sterol and amphotericin may

also contribute to the channel conductance as in the cases of 6-

ketocholestanol and 7-ketocholestanol.

Figure 4 presents the voltage dependences of the ratios of AmB-

channel conductance to G0 for all investigated systems. It is seen

that the shape of the conductance-voltage curves does not

practically depend on a dipole modifier or sterol nature. The

observed independence most likely means that the AmB-pore

geometry is not influenced by Qd or interaction between a modifier

and AmB. At the same time, one can reasonably think that the

preferentially anionic character of the transport through AmB

channels is also reserved for all the modifiers studied. If there were

a significant change in the cation/anion selectivity the proper

change in the conductance-voltage curves would be observed, as it

took place in case of syringomycin E channels [41].

Along with the cases of Chol and Erg (Fig. 3) AmB-channel

dwell time increased with an increasing concentration of 6-

ketocholestanol, 7-ketocholestanol or 5a-androstan-3b-ol in the

membrane forming solution (Table 1). Furthermore, in bilayers

containing these sterols, the pore life time was smaller than in

Chol-containing membranes. The data are in agreement with the

findings of Smondyrev and Berkowitz [42] that the presence of the

keto-group decreases membrane order and condensation due to a

sterol shift towards the polar region closer to the interface. One

can predict the same mechanism for 5a-androstan-3b-ol taking

into account the absence of a hydrophobic tail in its molecule.

It has been shown that the interaction of certain drugs with cell

membranes may depend on Qd [43–45]. Because the therapeutic

and toxic effects of polyenes are due to their channel-forming

activity in cell membranes, identifying opportunities for its

regulation by the membrane dipole modifiers in the model

systems (artificial planar bilayers) might be important for further

inquiry on cell systems to achieve therapeutic effectiveness.
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