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Abstract

Alzheimer’s disease (AD) is characterized by progressive dysfunction of memory and higher cognitive functions with
abnormal accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles throughout cortical
and limbic brain regions. At present no curative treatment is available, and research focuses on drugs for slowing
disease progression or providing prophylaxis. Withania somnifera (WS) also known as ‘ashwagandha’ is used widely
in Ayurvedic medicine as a nerve tonic and memory enhancer. However, there is a paucity of data on the potential
neuroprotective effects of W.somnifera against β-Amyloid (1–42)-induced neuropathogenesis. In the present study,
we have tested the neuroprotective effects of methanol:Chloroform (3:1) extract of ashwagandha against β-amyloid
induced toxicity and HIV-1Ba-L (clade B) infection using a human neuronal SK-N-MC cell line. Our results showed that
β-amyloid induced cytotoxic effects in SK-N-MC cells as shown by decreased cell growth when tested individually.
Also, confocal microscopic analysis showed decreased spine density, loss of spines and decreased dendrite
diameter, total dendrite and spine area in clade B infected SK-N-MC cells compared to uninfected cells. However,
when ashwagandha was added to β-amyloid treated and HIV-1 infected samples, the toxic effects were neutralized.
Further, the MTT cell viability assays and the peroxisome proliferator-activated receptor-γ (PPARγ) levels supported
these observations indicating the neuroprotective effect of WS root extract against β-amyloid and HIV-1Ba-L (clade B)
induced neuro-pathogenesis.

Citation: Kurapati KRV, Atluri VSR, Samikkannu T, Nair MPN (2013) Ashwagandha (Withania somnifera) Reverses β-Amyloid1-42 Induced Toxicity in
Human Neuronal Cells: Implications in HIV-Associated Neurocognitive Disorders (HAND). PLoS ONE 8(10): e77624. doi:10.1371/journal.pone.0077624

Editor: Madepalli K. Lakshmana, Torrey Pines Institute for Molecular Studies, United States of America

Received May 23, 2013; Accepted September 4, 2013; Published October 16, 2013

Copyright: © 2013 KURAPATI et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by grants from the National Institutes Health: 1R01MH085259, 1R37DA025576, 5RO1DA021537, and
1RO1DA027049 to Prof. Madhavan Nair. No additional external funding was received for this study. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

* E-mail: nairm@fiu.edu

Introduction

Alzheimer’s disease (AD), is the most common form of senile
dementia, affecting more than 15 million people worldwide [1].
With increased life expectancy this number will certainly rise
rapidly in the future. AD is characterized by progressive
dysfunction of memory and higher cognitive functions
associated with memory loss and language deficit which are
often accompanied by behavioral and psychological symptoms
such as depression, stress, anxiety and mood disturbances
[2,3]. The pathological hallmarks are complex and include
neuronal degeneration (cholinergic neurons in particular),
abnormal neurofibrillary tangles, toxic β-amyloid (AB) plaques,
decline of neurochemicals which are essential for neuronal
transmission and neuro-inflammation [4-6]. The β-amyloid

cytotoxicity to neuronal cells has been identified as one of the
major features in AD pathology, but the exact mechanisms
involved leading to neurotoxicity still remain an enigma [7]. The
transmembrane protein CD33 is a sialic acid-binding
immunoglobulin-like lectin that regulates innate immunity but
has no known functions in the brain, is considered as a risk
factor for Alzheimer’s disease (AD). Very recently an increased
expression of CD33 in microglial cells in AD brain was
observed [8]. However, the minor allele of the CD33 SNP
rs3865444 confers protection against AD and was associated
with reductions in both CD33 expression and insoluble amyloid
beta 42 (Aβ42) levels in AD brain [8]. Also, free radical
formation and oxidative stress appears to be one of the
possible mechanisms involved in AB-induced cytotoxicity [9].
The majority of AD cases are sporadic in nature. However, few
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familial cases are caused primarily by mutations in three genes
namely, amyloid precursor protein (APP), presenilin1 (PS1),
and presenilin 2 (PS2) [10]. Neuronal degeneration is also a
major feature in HIV infection. A significant increase in brain
APP in AIDS, specifically in the axons present in the
subcortical white matter tracts have been described by several
investigators [11-13]. It has been reported that HIV persists in
the brain during HAART therapy and that the local
inflammatory responses to HIV in the brain could lead to
increased APP production and susceptibility to amyloid
deposition [14]. All these observations clearly indicate that β-
amyloid accumulation may be a good indicator of early
neuronal (axonal) degeneration not only during the
development of Alzheimer’s disease but also during HIV
induced neuronal degeneration. Recently, good progress has
been made in developing the in vitro models for studying the
toxic effects of β-amyloid and related peptides in cell cultures,
using central nervous system (CNS) neurons or a variety of cell
lines of neural origin [15].

Withania somnifera (L.) Dunal, also known as ‘ashwagandha’
(ASH) in Sanskrit and as ‘Indian ginseng’ is a multipurpose
medicinal plant with remarkable increase in recent years in the
pharmacological studies, as it has been shown to possess wide
spectrum of therapeutic properties such as nerve tonic,
memory enhancer, antistress, immunomodulatory and
antioxidant properties [16,17]. Withanolide A and withanoside
IV from roots help to promote neurite outgrowth in cultured
neurons and in rodents injected with Aβ 25–35 [18]. Root
extracts from this species have also been shown to significantly
reduce the number of hippocampal degenerating cells in the
brains of stressed rodents [19] and were neuro-protective in
animal models of Parkinson’s disease [20]. A recent study of
oral administration of a semi-purified extract of the root of
Withania somnifera consisting predominantly of withanolides
and withanosides reversed behavioral deficits, plaque
pathology, accumulation of β-amyloid peptides (Aβ) and
oligomers in the brains of middle-aged and old APP/PS1
Alzheimer’s disease transgenic mice [21]. However, there is a
paucity of data on the molecular mechanisms associated with
the potential protective effects of W.somnifera root, as used
traditionally, against β-amyloid (1–42)-induced cytotoxicity and
HIV-1Ba-L (clade B) infection. Accordingly, we hypothesized that
ashwagandha may reverse the neuronal toxicity induced by β-
Amyloid and HIV-1Ba-L (clade B) infection which may serve as
potential therapeutic agent for use in AD and possibly in other
HIV related disorders involving memory deficiency. We now
report that β-amyloid induced cytotoxic effects in SK-N-MC
cells as shown by decreased cell growth when tested
individually. Also, confocal microscopic analysis showed
decreased spine density, loss of spines and decreased
dendrite diameter, total dendrite and spine area in clade B
infected SK-N-MC cells compared to uninfected cells.
However, when ashwagandha was added to β-amyloid treated
and HIV-1 infected samples, the toxic effects were neutralized.
Further, the MTT cell viability assays and the peroxisome
proliferator-activated receptor-γ (PPARγ) levels supported
these observations indicating the neuroprotective effect of WS

root extract against β-amyloid and HIV-1Ba-L (clade B) induced
neuro-pathogenesis.

Materials and Methods

Cell Culture
The effects of β-amyloid and Ashwagandha were tested on

the human neuronal cell line, SK-N-MC, obtained from
American Type Culture Collection (ATCC) (catalog # HTB-10;
Manassas,VA). The cells were grown in T-75 flasks containing
Eagle’s minimum essential medium (MEM) (GIBCO) with fetal
bovine serum to a final concentration of 10% and 1%
antibiotic / antimycotic solution. The cells were maintained in a
humidified, 95 % air and 5 % CO2 atmosphere incubator at 37°
C.

Fibrillar β-Amyloid1-42 (Aβ1-42) or “seed” preparation
Fibrillar Aβ1-42 was prepared as described by Wogulis et al

[22]. One mg of Aβ1-42 lyophilized powder (catalog # A9810,
SIGMA) was dissolved in 200 µl of water in glass vial and aged
for 3 days at 37°C and was diluted with tissue culture medium
to the required concentration, before adding to neuronal
cultures.

Extracts of Withania somnifera roots
The dried roots of Withania somnifera were purchased from

an authenticated source in Kerala, India. The ground powder
(15g) was suspended in 300 ml of solvents
(Methanol:Chloroform)(3:1), refluxed for 3 hr. and the
supernatant collected. The residue was again suspended in
300 ml of same solvent and refluxed for another 3 hr. and the
supernatant collected. Both the supernatants were combined,
filtered to remove insoluble material and concentrated to
dryness using a rotary vacuum evaporator. The dried extract
was solubilized in dimethylsulfoxide (DMSO), aliquoted, stored
at -20°C and utilized for all experiments.

Analysis and Identification of Methanol: Chloroform
(3:1) Fraction

A solution of the extract in dimethylsulfoxide (DMSO) (6
mg /100 µl) was diluted 1:50 in methanol and water (v/v, 1:1).
HPLC-MS/MS system consisted of pump (Suryeyor) and an ion
trap mass spectrometer equipped with an electrospray
ionization (ESI) source (LCQ DECA XP MAX Thermo Finnigan,
San Jose, CA, USA). Separations were done on a C18
reversed phase column (5 µm; 4.6 x 25 mm). The column was
eluted at a flow rate of 0.5 ml/min with a gradient of water (A)
with acetonitrile (B) using the following elution program: 0 min,
95% (A), 5% (B), 0-50 min, a linear gradient to 15% (A), 85%
(B). The mass spectrometer was run in the positive ion mode
and the operating conditions were as follows: Sheath gas flow:
35 units (Auxiliary gas); capillary temperature: 280° C; spray
voltage: 5 KV. For MS / MS experiments, monitored precursor
ion precursor isolation width 1µ, relative collision energy 30%.
Data processing was performed using Xcalibur software.
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Morphological Characteristics
Morphological assays were carried out as described earlier

[23-25]. In brief, approximately 0.1 x 106 SK-N-MC cells
obtained from sub-confluent culture flasks were seeded per
T-25 flasks in 5 ml complete medium (five flasks per point) or 3
x 103 / 3 ml in 6-well plates (one six well plate per point).
Twenty four hours after seeding the cells, the culture medium
was removed and serum free medium was added at the same
volume. The controls received only solvent and β-amyloid and
β-amyloid plus ashwagandha cultures received β-amyloid at a
concentration of 5 µM. Different investigators have used
different dose levels of β-amyloid depending on the cell type
utilized. Michaelis et al [26] used 5 and 10 µM concentration on
cortical cell cultures whereas Yankner et al [27] used 20 µM on
hippocampal neurons. Kumar et al [28] utilized 0.007-2 µg/mL
concentration on PC12 cell line and London et al [29] 0.2, 2.0
and 20 µM on peripheral blood monocytes (PBM). We have
standardized the doses required for our studies and used the
selected dose for all our experiments. After forty eight hours,
ashwagandha was added at 0.15 µg/ml (at this concentration
ashwagandha showed growth stimulatory effects) to plain
ashwagandha control and β-amyloid plus ashwagandha
cultures and media doubled at 10% final serum concentration.
For ashwagandha additions, DMSO served as the vehicle to
dilute the compound at a final concentration of 0.4% volume
per volume and at this concentration has no effect on cell
survival. Control cultures received only solvent in the place of
test compound. The culture flasks/plates were returned to
incubator for up to 3 to 4 days and then washed with PBS
solution, fixed with methanol and stained with Giemsa /
Sulphorhodamine B (SRB) and pictures were taken. The
experiment was repeated three times and depicted for one.

MTT Cell Viability Assay
The MTT cell viability assay was carried out by the modified

assay as described by Rao et al. [30]. The basic protocol was
same as in morphological characteristics but after culture
period the 6-well plates were given media change with one ml
medium and 100 µl MTT (100 mg MTT / 20 ml PBS) was
added for each well and incubated at 37°C for 3 hours. After
that, one volume of stop mix solution was added and rocked for
about 2 hours, centrifuged and the optical density of the
solubilized formazan was determined spectrophotometrically
measuring the absorbance at 550 nm. The optical density of
formazan in each well is directly proportional to the cell viability
and utilized for calculations.

Lactate Dehydrogenase Activity (LDH) leakage assay
Cytotoxicity induced by β-amyloid was assessed by lactate

dehydrogenase (LDH) leakage into the culture medium.
Following exposure to the β-amyloid for 72 hours, the culture
medium was aspirated and centrifuged at 3000 rpm for 5 min in
order to obtain a cell free supernatant. The activity of LDH in
the medium was determined using a commercially available kit
from Sigma-Aldrich (Catalog# MAK066) according to the
manufacturer’s instructions.

Internalization of Aβ 1-42 by Congo red staining
SK-N-MC cells were grown onto 22 mm x 22 mm glass

coverslips at a concentration of 5.0 x 103/ 3 ml in 6-well plates
for 48 hours and after that changed to 1 ml of serum free
medium. Ashwagandha was added at 0.15 µg/ml to plain
ashwagandha control and β-amyloid plus ashwagandha
cultures. For ashwagandha additions, DMSO served as the
vehicle to dilute the compound at a final concentration of 0.4%
volume per volume and at this concentration has no effect on
cell survival. Control cultures received only solvent in the place
of test compound. Three hours after pre-incubation of cells with
WS root extract, β-amyloid and β-amyloid plus ashwagandha
cultures received β-amyloid at a concentration of 5 µM. After
16 hours, cells were washed with PBS, fixed in 4% formalin for
15 min at room temperature. Again cells were washed with
PBS and then stained with a fresh alkaline solution of 0.5%
filtered Congo red (SIGMA-ALDRICH) at room temperature for
5 min. After several washes with deionized water, slides were
mounted in glycerol / distilled water (1:1) plus 0.1% sodium
azide (SIGMA-ALDRICH) and then observed through a TCS
SP2 Confocal Laser Scanning Microscope (Leica
Microsystems, Germany)

DIL staining and Spine Density Analysis using
Confocal Microscopy

SK-N-MC cells were grown onto 22 mm x 50 mm glass
coverslips placed in a 100 mm petri-dish at a concentration of 1
x 106 in 8 ml complete medium for 48 hours and after that
changed to 8 ml of serum free medium. Ashwagandha was
added at 0.15 µg / ml to plain ashwagandha control and β-
amyloid plus ashwagandha cultures. For ashwagandha
additions, DMSO served as the vehicle to dilute the compound
at a final concentration of 0.4% volume per volume and at this
concentration has no effect on cell survival. Control cultures
received only solvent in the place of test compound. Three
hours after pre-incubation of cells with WS root extract, β-
amyloid and β-amyloid plus ashwagandha cultures received β-
amyloid at a concentration of 5 µM. After another 48 hours,
cells were washed with PBS, fixed with 4% formaldehyde in
PBS for 30 min at room temperature. DIL staining was
performed using a method described previously [31]. The
fluorescent membrane tracer, 1, 1’-Dioctadecyl-3, 3,3’,3’-
tetramethylindocarbocyanine perchlorate (DIL) at 7.5 mg/ml (in
PBS) concentration was directly added onto the fixed cultures
and allowed to incubate for 90 min at RT. These stained
coverslips were placed overnight at 4° C in petri dishes
containing PBS before proceeding for confocal microscopy.
Confocal images were obtained using TCS SP2 Confocal
Laser Scanning Microscope (Leica Microsystems, Germany) at
488 nm (100%) illusion of an argon-ion laser using 60X oil
immersion objectives with high numeric aperture and 2.5X
confocal electronic zoom settings to visualize individual cells.
Twenty Optical serial sections of 0.14 µm / section (~ 2.8 µm
total) through the cells were captured and reconstructed to
yield complete ‘‘two dimensional’’ images of individual cells in
focus.

Ashwagandha reverses β-Amyloid Neuronal Toxicity
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HIV-1 infection of SK-N-MC human neuronal cells
SK-N-MC human neuronal cells were infected with HIV-1

using the previously described protocol [31] with slight
modifications. Briefly, SK-N-MC (0.1×106 cells) cells were
cultured onto 22 mm x 50 mm glass coverslips placed in a 100
mm petri-dish overnight in 10 ml of medium. In the morning
polybrene (25 µg/ 5ml) was added for 6–7 hours and after that
cells were infected with 100 ng of HIV-1Ba-L (clade B) (NIH AIDS
Reagent Program, Cat. # 510) overnight in respective petri-
dishes. Next day morning, cells were washed with PBS to
remove unattached virus and replaced with fresh 10 ml
medium. Ashwagandha was added at 0.15 µg / ml to plain
ashwagandha control and HIV plus ashwagandha cultures and
cultured for 72 hours and utilized for confocal microscopy as
described above. The supernatant obtained from the used
medium was used for the p24 antigen estimation using ELISA
kit (ZeptoMetrix Corp. Cat # 0801200). Controls cells (without
clade B) were included in the set-up of all experiments.

Western Blot Analysis
SK-N-MC (1x106) cells were cultured in T-75 flasks in 8 ml

complete medium for 48 hours and after that changed to 8 ml
of serum free medium. Ashwagandha was added at 0.15 µg /
ml to plain ashwagandha control and β-amyloid plus
ashwagandha cultures. For ashwagandha additions, DMSO
served as the vehicle to dilute the compound at a final
concentration of 0.4% volume per volume and at this
concentration has no effect on cell survival. Control cultures
received only solvent in the place of test compound. Three
hours after pre-incubation of cells with WS root extract, β-
amyloid and β-amyloid plus ashwagandha cultures received β-
amyloid at a concentration of 5 µM. After another 48 hours,
cells were washed with PBS solution and were harvested using
Trypsin/EDTA solution (ScienceCell Laboratories), cell pellets
were collected and lysed using lysis buffer (Pierce, IL) with 1x
complete cocktail of protease inhibitors. Total cellular protein in
equal quantity was resolved by 4-15% polyacrylamide gel
electrophoresis, transferred to a nitrocellulose membrane. The
following primary antibodies were used: anti-PPARγ, H-100
and anti-GAPDH (Santa Cruz Biotechnology). Immunoreactive
bands were visualized using a chemiluminescence’s Western
blotting system according to the manufacturer’s instructions
(Amersham).

Statistical Analysis
The results were expressed as mean ± standard deviation

and the significance was evaluated using the Student’s t-test
(GraphPad Software, CA, USA). Results giving p ≤ 0.02 were
considered significant.

Results

Chemoprevention has been acknowledged as an important
and practical strategy for the management of several disorders
[32-34]. From this point of view, we have selected Withania
somnifera (WS) also known as Ashwagandha, which is in
common use in Indian traditional medicine to promote
cognition, including memory and extracted with a mixture of

methanol: chloroform (3:1) for testing the beneficial effects on
SK-N-MC, a neuronal cell line. This extract showed growth
stimulatory effects on SK-N-MC cell line and accordingly was
used for all studies.

LS-MS Analysis
Positive ion LS-MS analysis of the W.somnifera (WS) extract

revealed numerous components (Figure 1). The major
constituent Withanolide A was identified against a standard.

Morphological Characteristics
In both, Giemsa stained flasks (Figure 2) as well as

Sulphorhodamine B (SRB) stained cells (Figure 3), the β-
amyloid treated cells showed cytotoxic effects with decreased
cell growth compared to plain controls (Figure 2,2 and Figure
3B). However, when ashwagandha was added to β-amyloid
treated cultures, the cytotoxic effects of β-amyloid were
neutralized and the cells were comparable to plain and
ashwagandha treated controls, suggesting the
chemopreventive or protective effects of ashwagandha against
β-amyloid induced toxicity (Figures 2&3)

MTT Cell Viability Assay
Figure 4A shows the dose-response curve for Ashwagandha

on SK-N-MC cells. Ahhwagandha exhibited a significant
(p<0.0001) dose-dependent increase in cell viability as
reflected by MTT activity from 0.016 to 0.25 µg / ml and there
after showed a decline in activity curve. The results of MTT
assays also showed that β-amyloid exposure exhibited a
significant (p<0.0001) cytotoxicity from 0.825 to 6.6 µM (Figure
4B). Figure 4C shows the histograms of cell viability in control,
β-amyloid, ashwagandha and β-amyloid plus ashwagandha
treated cultures at different ashwagandha concentrations. The
results supported the earlier observations that β-amyloid exerts
cytotoxic effects in neuronal cells with decreased cell viability
when tested individually. However, when ashwagandha was
added to β-amyloid treated cultures, the cytotoxic effects of β-
amyloid were neutralized thus showing the beneficial effects.

Lactate Dehydrogenase Activity (LDH) leakage assay
The results demonstrated that exposure to β-amyloid to SK-

N-MC cells for 72 hours resulted in a significant (p<0.0008)
increase in LDH leakage into culture medium indicating
cytotoxicity. However, Ashwagandha treatment showed
protective effects against the cytotoxicity as the levels of LDH
leakage in Ashwagandha plus β-amyloid treated cultures were
comparable with controls. (Figure 4D)

Ashwagandha decreases the internalization of Aβ 1-42

In order to understand the effect of ashwagandha on the
internalization of β-amyloid1-42 in SK-N-MC cells, cells were pre-
incubated with extract for three hours and then exposed to β-
amyloid1-42 for 16 hours. After that cells were stained with
Congo red, a metachromatic anionic dye, specific for β-
amyloid. As Figure 5 shows, cultures treated with β-amyloid1-42

alone showed much more marked internalization of the toxic
peptide than occurred when cells were incubated with β-

Ashwagandha reverses β-Amyloid Neuronal Toxicity
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Figure 1.  Compounds observed by LC-MS analysis of Methanol:Chloroform (3:1) extract of W.somnifera root.  A. HPLC
profile showing the main components present. B. UV-Vis and mass spectra of the Withanolide A, identified as Withanolide A by
comparison with a reference standard. C. UV-Vis and mass spectra of few other peaks. The structures of these components cannot
be ascertained from these data alone and further studies are required.
doi: 10.1371/journal.pone.0077624.g001
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amyloid1-42 plus ashwagandha. Plain controls and only
ashwagandha treated cultures showed only back ground
staining.

Decreased Spine Density in β-amyloid treated using
Confocal Microscopy

Altered cellular morphology and architecture in β-amyloid
(Figure 6B) as well as β-amyloid plus ashwagandha (Figure
6D) and control (Figure 6A) and only ashwagandha (Figure 6C)
treated SK-N-MC cells were captured using confocal
microscopy and morphological changes were analyzed using
the established protocol [35]. Treatment of SK-N-MC cells with
β-amyloid resulted in significant decrease in spine density (p <
0.02), spine area, spine length and number of spines (B)
compared with untreated control cells. In ashwagandha and
ashwagandha plus β-amyloid treated cells no reduction in
spine density, spine area, spine length and number of spines
was observed compared to untreated control (B).

Decreased Spine Density in HIV-1 treated using
Confocal Microscopy

Changes in spine density and dendrite morphology in HIV-1
infected (Figure 7B) as well as HIV-1 plus ashwagandha
(Figure 7D) and control (Figure 7A) and only ashwagandha
(Figure 7C) treated SK-N-MC cells were captured using
confocal microscopy and morphological changes were
analyzed using the established protocol [35]. The infection of
SK-N-MC cells with HIV-1 resulted in significant decrease in
spine density (p < 0.05), spine area, spine length and number
of spines (B) compared with untreated control cells. In
ashwagandha plus HIV-1 treated cells no reduction in spine
density, spine area, spine length and number of spines was
observed compared to untreated control (B).

Decreased PPARγ levels in β-amyloid treated cultures
by Western Blot Analysis

The peroxisome proliferator-activated receptor-γ (PPARγ) is
implicated in numerous diseases including Alzheimer’s
disease, obesity, diabetes, atherosclerosis and cancer.
Accordingly, in order to understand the role of peroxisome

Figure 2.  Representative Giemsa stained flasks showing the effect of β-amyloid1-42, Ashwagandha and Ashwagandha plus
β-amyloid1-42 on SK-N-MC cell line.  1. Control, 2. β- Amyloid 1-42 treated, 3. Ashwagandha treated and 4. Ashwagandha plus β-
Amyloid1-42 treated.
doi: 10.1371/journal.pone.0077624.g002
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proliferator-activated receptors (PPARs) during the exposure of
β-amyloid as well as in the combination of β-amyloid plus
Ashwagandha, Western blotting analysis was carried out in cell
lysates. Treatment of SK-N-MC cells with β-amyloid resulted in
decreased PPARγ protein level (p < 0.01) (Figure 8) compared
with untreated control cells. In ashwagandha plus β-amyloid
treated cells no significant reduction (NS) in protein level was
observed compared to untreated control (Figure 8). However,
also a relatively slight decrease in PPARγ level was observed
in plain Ashwagandha treated cultures. Further studies are
required to understand the biological significance of this
observation.

Discussion

Considerable attention has been focused on the
accumulation of β-amyloid peptide (Aβ) within the brain as a
major etiologic factor in the pathogenesis of Alzheimer disease
(AD). The commonly used drugs for AD like memantine, is a N-
methyl-D-aspartic acid (NMDA) receptor antagonist, which may
restore the functions of damaged neurons through reducing
abnormal excitatory signals via the modulation of NMDA
receptor activity [36] and cholinesterase (AChE) inhibitors
suppress the enzymatic hydrolysis of neurotransmitter
acetylcholine, thus maintain a higher acetylcholine
concentration in the neuronal synapse [37], provide a
symptomatic relief but no cure for the disease. At present,
there is no curative treatment available for AD and the
approved medications are used only for slowing the disease

Figure 3.  Representative microscopic observations of Sulforhodamine B (SRB) stained cultures showing the effect of β-
amyloid1-42, Ashwagandha and Ashwagandha plus β-amyloid1-42 on SK-N-MC cell line (X80).  A. Control, B. β- Amyloid 1-42

treated, C. Ashwagandha treated and D. Ashwagandha plus β- Amyloid1-42 treated.
doi: 10.1371/journal.pone.0077624.g003
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progression or providing prophylaxis. Numerous studies over
the past two decades indicated that Withania somnifera (WS)
has anti-inflammatory, anti-tumor, anti-stress, anti-oxidant,
mind boosting and rejuvenating properties [38-40]. Studies also
showed that extracts of WS root promote dendrite formation in
human neuroblastoma cells in vitro in a dose-dependent
manner [41,42]. In the present study WS root extract showed
growth stimulatory effects at relatively lower concentrations on
SK-N-MC, a neuronal cell line (Figure 4A). Accordingly, this

extract was utilized for identification of the components present
as well as for other studies. HPLC and mass spectra analysis
showed the presence of withanolide A as the main withanolide
in the extract (Figure 1). Withanolides are known to be
responsible for the multiple medicinal properties of
Ashwagandha [43]. Structurally, withanolides consist of a
steroid backbone bound to a lactone and have resemblance in
their structure and action to ginsenosides, the active
constituents of Asian ginseng, Panax ginseng [44]. Besides

Figure 4.  Modulatory effects of Ashwagandha and β- Amyloid1-42 on human neuronal cells.  A. Dose-response curve of
Ashwagandha showing optimal concentrations and B. Dose-response cytotoxic effects of β-amyloid1-42 on SK-N-MC cells. Cells
were treated with different concentrations of Ashwagandha / β-amyloid1-42 and mitochondrial function was determined by the MTT
reduction assay as described in the Materials and Methods. C. MTT assay showing the inhibition of cell viability by β- Amyloid1-42

(βA) and its reversal by Ashwagandha (ASH) at different concentrations on SK-N-MC cell line D. Effect of β-amyloid1-42 on LDH
leakage in SK-N-MC cells and its reversal by Ashwagandha. The data are expressed as mean ± SD of four independent
experiments. (*) indicates a statistically significant difference compared to controls (p<0.05).
doi: 10.1371/journal.pone.0077624.g004
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withanolide A, the presence of different other components were
also observed in this extract. Further studies are required to
identify these components and their biological significance.

In both, Giemsa stained flasks (Figure 2) as well as
Sulphorhodamine B (SRB) stained cells (Figure 3), the β-
amyloid treated cells showed cytotoxic effects with decreased
cell growth compared to plain controls (Figure 2,2 and Figure

3B). However, when ashwagandha was added to β-amyloid
treated cultures, the cytotoxic effects of β-amyloid were
neutralized and the cells were comparable to plain and
ashwagandha treated controls, suggesting the
chemopreventive or protective effects of ashwagandha against
β-amyloid induced toxicity (Figures 2&3). The cell viability was
assessed by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-

Figure 5.  Congo red staining showing the increased internalization in β- Amyloid1-42 treated and its reversal by
Ashwagandha in SK-N-MC cell line.  A. Control, B. β- Amyloid 1-42 treated, C. Ashwagandha treated and D. Ashwagandha plus β-
Amyloid1-42 treated. β- Amyloid1-42 cell internalization was observed by confocal laser microscopy: excitation 488- 543 nm and
emission 560 nm; lens 20x / 0.5, 3 x. Images are from one representative experiment of two experiments performed.
doi: 10.1371/journal.pone.0077624.g005
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diphenyltetrazolium bromide (MTT) assay and same pattern
was observed (Figure 4C). Previous work showed that β-
amyloid is toxic to primary neurons [27,45,46]. Also, It has
been reported earlier that exposure of cultured neurons to β-
amyloid induces degeneration and cell death through an
apoptotic pathway and suggests that activation of an apoptotic
pathway may contribute to the neuronal loss associated with
AD [47,48]. It is possible that similar mechanisms may be
responsible for the cell degeneration observed in the present
study during the exposure of β-amyloid (Figure 4B). In the
present study, our data shows that ashwagandha prevented

this cellular degeneration. Some studies suggest that one
pathway of β-amyloid induced cytotoxicity could be mediated
by free radicals and oxidative stress [28,49-53]. It is known that
ashwagandha has antioxidant and free radical scavenger
activity and this could inhibit β-amyloid induced cellular
degeneration [54]. Also, ashwagandha inhibits
acetylcholinesterase activity and thus has potential to modulate
cholinergic function [55-57] or may be connected to clearing
effect associated with the degradation of β-amyloid by many
proteases, including neprilysin, endothelin-converting enzyme,

Figure 6.  Confocal Images of DIL stained SK-N-MC cells showing the effect of β-amyloid1-42, Ashwagandha and
Ashwagandha plus β-amyloid1-42.  1. A. Control, B. β- Amyloid 1-42 treated, C. Ashwagandha treated and D. Ashwagandha plus β-
Amyloid1-42 treated. 2. Quantitative analysis showing the decreased spine density in β- Amyloid1-42 treated SK-N-MC cell line and its
reversal by Ashwagandha (ASH). SK-N-MC cells were grown onto the glass coverslips, DIL stained and observed under confocal
microscope. Randomly selected pictures in each group of the cells were captured in confocal microscope. Image J software was
used to analyze the spine density, spine area, spine length and number of spines.
doi: 10.1371/journal.pone.0077624.g006
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angiotensin-converting enzyme, plasminogen activator and
matrix metalloproteinase-9 [58-62].

Accumulating evidence from different clinical studies,
transgenic models as well as in vitro studies suggests that
intraneuronal accumulation of β-amyloid is an early event and
plays an important role in the pathogenesis of AD [63,64].
Further, extracellular addition of β-amyloid to neuronal cells in
culture is known to induce the uptake of β-amyloid and its
localization to the nucleus [65-68]. In the present study,
cultures treated with β-amyloid1-42 alone showed much more
marked internalization of the toxic peptide compared to cultures
treated with β-amyloid1-42 plus ashwagandha (Figure 5).

Neuronal spines are tiny protrusions along cells, which
constitute major postsynaptic sites for excitatory synaptic
transmission. Alterations in spine density and the formation of
new synapses are activity dependent processes that provide a
basis for memory formation and function. A loss or alteration of
these structures has been described in patients with

neurodegenerative disorders such as Alzheimer’s disease [69].
In the present study of confocal microscopy, treatment of SK-
N-MC cells with β-amyloid and HIV-1 infection resulted in
decrease of spine density, spine area, spine length and
number of spines (Figures 6&7) compared with untreated
control cells which may negatively affect the synaptic plasticity
in neuronal cells. However, in β-amyloid plus ashwagandha as
well as HIV-1 plus ashwagandha treated cells no reduction in
spine density, spine area, spine length and number of spines
was observed compared to untreated control (Figures 6&7)
indicating the protective and reversal effect of ashwagandha on
spine density.

Alzheimer’s disease is characterized by disruption of β-
amyloid homeostasis, resulting in the accumulation β-amyloid
within the brain. The peroxisome proliferator-activated
receptor-γ (PPARγ) is a ligand-activated nuclear receptor and
its activation is associated with clearance of β-amyloid and
ameliorating the pathologic and behavioral deficits in AD [70].

Figure 7.  Confocal Images of DIL stained SK-N-MC cells showing the effect of HIV-1Ba-L (clade B), Ashwagandha and
Ashwagandha plus HIV-1Ba-L (clade B).  1. A. Control, B. HIV-1Ba-L (clade B) treated, C. Ashwagandha treated and D.
Ashwagandha plus HIV-1Ba-L (clade B) treated. 2. Quantitative analysis showing the decreased spine density in HIV-1Ba-L (clade B)
treated SK-N-MC cell line and its reversal by Ashwagandha (ASH). SK-N-MC cells were grown onto the glass coverslips, DIL
stained and observed under confocal microscope. Randomly selected pictures in each group of the cells were captured in confocal
microscope. Image J software was used to analyze the spine density, spine area, spine length and number of spines.
doi: 10.1371/journal.pone.0077624.g007
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In general, β-amyloid deposition elicits a vigorous “M1”
microglia-mediated inflammatory response contributing to
disease progression [71-73].. However, activation of PPARγ is
associated with the alteration of macrophages and microglia
into “M2” state linked with the suppression of inflammation and
promotion of β-amyloid phagocytosis and tissue repair [74,75].
In the present study treatment of SK-N-MC cells with β-amyloid
resulted in the decreased PPARγ protein levels (p < 0.01)
(Figure 8) compared with untreated control cells. However, in
ashwagandha plus β-amyloid treated cells no significant
reduction in protein levels was observed compared to
untreated control (Figure 8). It is possible that in cells treated
with only β-amyloid, decreased levels of PPARγ protein levels
may contribute to the cytotoxic properties of β-amyloid
observed. However, since there is no reduction of PPARγ
protein levels in Ashwagandha plus β-amyloid treated cells, the
cytotoxic properties of β-amyloid were neutralized probably due
to clearance of added β-amyloid and further studies are
required to understand the mechanisms. Further, this data
supports a possible mechanistic link between PPARγ and
amyloid clearance due to Ashwagandha and support the
therapeutic use of ashwagandha against AD.

Even though, the mechanisms of AD are still not completely
understood, it is believed that excessive accumulation of β-

amyloid through abnormal β-amyloid precursor protein (APP)
and β-amyloid metabolism are key events in the pathogenesis
of AD. Thus, strategies targeting β-amyloid metabolism and
APP processing are of immense help for the treatment and
prevention of AD. Here we have demonstrated that WS extract
reverses the β-amyloid and HIV-1 induced neuronal toxicity in
SK-N-MC cells and may serve as potential therapeutic agent
for use in AD and possibly in other HIV related disorders
involving memory deficiency. WS extract used in the present
study is known to contain several compounds besides
withanolide A. However, it is reasonable to expect that
appropriate combinations of multiple chemopreventive
components might provide greater efficacy than the
administration of individual component. It is unlikely that
chemoprevention of AD can be achieved by a single agent.
Accordingly, there is need to develop a mixed cocktail
approach with multiple herbal ingredients that act in a
concerted way and produce multiple cellular effects with further
enhancement of the efficacy in a positive manner for the
effective management of AD. Studies are in progress from this
point of view.

Figure 8.  Western blotting analysis showing the decreased PPARγ protein levels in β-amyloid treated and its reversal by
Ashwagandha in SK-N-MC neuronal cells.  (A) Cell lysates were separated in 4% to 15% linear gradient SDS-PAGE gels and
were probed against the respective antibodies. GAPDH was used as the loading control. (B) Quantitative analysis showing the
decreased PPARγ protein levels in β- Amyloid1-42 treated cultures. ASH - Ashwagandha; β-amy - β-amyloid. The gel shown is a
representative for three experiments.
doi: 10.1371/journal.pone.0077624.g008
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Conclusions

In summary, this study demonstrated that
Methanol:Chloroform (3:1) extract prepared from the dried
roots of W. somnifera and subjected to LC-MS analysis
showed the presence of alkaloids and steroidal lactones, the
prominent being Withanolide A and was neuroprotective
against β-amyloid-induced cytotoxicity and HIV-1 infection. The
MTT cell viability assays and confocal studies supported the
findings confirming the chemopreventive or protective effects of
ashwagandha against β-amyloid induced toxicity and HIV-1
infection. These results further established that neuroprotective

properties of the WS root extract observed in the present study
may provide some explanation for the ethnopharmacological
uses of WS in traditional medicine for cognitive and other HIV
associated neurodegenerative disorders.
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