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Abstract: Fruit ripening is usually accompanied by anthocyanin accumulation. Ethylene is key in
ripening-induced anthocyanin production in many fruits. However, the effects of fruit ripening
and ethylene on anthocyanin biosynthesis in purple tomato fruits are unclear. This study shows
that bagged fruits of the purple tomato cultivar ‘Indigo Rose’ failed to produce anthocyanins at
the red ripening stage after bag removal. In contrast, the bagged immature fruits accumulated a
significant amount of anthocyanins after removing the bags. The transcriptomic analyses between
immature and red ripening fruit before and after bag removal revealed that anthocyanin-related
genes, including the key positive R2R3-MYB regulator SlAN2-like, were repressed in the red ripening
fruit. The 86 identified transcription factors, including 13 AP2/ERF, 7 bZIP, 8 bHLH and 6 MYB,
showed significantly different expressions between immature and red ripening fruits. Moreover,
subjecting bagged immature fruits to exogenous ethylene treatment significantly inhibited antho-
cyanin accumulation and the expression of anthocyanin-related genes, including the anthocyanin
structure genes and SlAN2-like. Thus, ethylene inhibits anthocyanin biosynthesis by repressing the
transcription of SlAN2-like and other anthocyanin-related genes. These findings provide new insights
into anthocyanin regulation in purple tomato fruit.

Keywords: tomato; anthocyanins; ethylene; SlAN2-like; transcriptome

1. Introduction

Anthocyanins are a class of flavonoids widely distributed in plant leaves, flowers, and
fruits [1]. Anthocyanins confer different plant pigments, including orange, brown, red, blue
and purple, and protect plants against various biotic and abiotic stresses, including those
caused by insects, phytopathogens, drought, UV irradiation and low temperatures [2–5].
Notably, several studies of human subjects and animal systems have demonstrated that
anthocyanins benefit humans through their antioxidant activity and ability to induce
protective enzymes [6–8].

The genes encoding anthocyanin biosynthesis enzymes are characterized into two classes,
early biosynthetic genes (EBGs) and late biosynthetic genes (LBGs) [9–11]. EBGs, including
phenylalanine ammonia lyase (PAL), 4-coumaryl:CoA ligase (4CL), chalcone synthase (CHS),
chalcone isomerase (CHI) and flavanone 3-hydroxylase (F3H), produce common flavonoid
precursors. In contrast, LBGs, including flavonoid 3′5′-hydroxylase (F3′5′H), dihydroflavonol 4-
reductase (DFR), anthocyanidin synthase (ANS), flavonol-3-glucosyltransferase (3GT), rhamnosyl
transferase (RT), and anthocyanin acyltransferase (AAC), specifically regulate anthocyanin and
proanthocyanin accumulation. Anthocyanins are synthesized in the cytosol and finally
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transported into cell vacuoles by the putative anthocyanin transporter (PAT) or glutathione-
S-transferase (GST) [12]. A conserved MBW ternary complex comprising a WD-repeat
protein and R2R3-MYB and bHLH transcription factors (TFs), regulates the transcriptional
biosynthesis of anthocyanins [13,14]. However, R2R3-MYB TFs are the key regulators that
spatiotemporally control the expression of anthocyanin structural genes [15,16]. R2R3-MYB
TFs also play a critical role in ethylene-induced anthocyanin production [17].

Ethylene is an important gaseous phytohormone involved in plant development [18].
Additionally, many studies have revealed that ethylene induces anthocyanin biosynthesis.
For example, exogenous ethylene increases anthocyanin accumulation in grape berries
by up-regulating the expression of anthocyanin structural genes [19]. Similar results are
reported in plum [20,21], apple [22], and strawberry [23]. In apple, two ethylene response
factors, MdERF1B and MdERF3, are key positive regulators of anthocyanin biosynthesis in
response to ethylene signals [24].

Recently, MdEIL1, a critical component of the ethylene signaling pathway, was charac-
terized to form a regulatory module with MdMYB17 and MdMYB1 for the fine modulation
of ethylene-regulated anthocyanin production in apple fruits [17]. However, ethylene can
negatively control anthocyanin accumulation in some plants. For example, exogenous
ethylene inhibits anthocyanin biosynthesis in sorghum [25], Arabidopsis [26], and pear [27].
In Arabidopsis, ethylene inhibits sugar-induced anthocyanin accumulation by suppressing
the transcription of positive regulators, such as GL3, TT8, and PAP1. However, it increases
the transcription of negative regulators, such as MYBL2 [26,28]. Recently, with the co-
expression network and Mfuzz analyses, an ethylene response factor (ERF), PpERF105 was
identified [27]. PpERF105, induced by ethylene, activates the expression of the R2R3-MYB
repressor PpMYB140 to inhibit anthocyanin production in pear [29].

Cultivated tomatoes, one of the most consumed vegetables globally, produce antho-
cyanins in vegetative tissues but not fruits [30]. The high anthocyanin levels in tomato
fruit improve the nutrients of tomatoes, doubling the shelf life of tomato fruit by delaying
overripening and reducing susceptibility to grey mold [31–34]. For ten years now, efforts
have focused on increasing the anthocyanin content of tomato fruits [35–39]. Myers first
bred a purple tomato cultivar ‘Indigo Rose’ by introgressing the Anthocyanin fruit (Aft)
and atroviolacea (atv) loci into domesticated tomatoes from different wild tomatoes [40].
The total anthocyanin content in the ‘Indigo Rose’ peel reached 200 mg/100 g of fresh
weight [41,42]. The main anthocyanin in the peel of ‘Indigo Rose’ is petunidin-3-(trans-p-
coumaroyl)-rutinoside-5-glucoside [43].

Aft encodes an R2R3-MYB TF, SlAN2-like, that positively regulates anthocyanin biosyn-
thesis in tomato fruits [39,42,44]. A protein interaction analysis indicated that SlAN2-like
interacts with the bHLH factor SlJAF13 and the WD-repeat protein SlAN11 to form an MBW
(SlAN2-like-SlJAF13-SlAN11) complex [42,45]. This complex regulates SlAN1 expression
and anthocyanin biosynthesis genes (EBGs and LBGs), resulting in fully purple-skinned
tomatoes [42]. SlAN1 is a bHLH factor crucial for anthocyanin biosynthesis in tomatoes [3].
ATV encodes an R3-MYB factor, SlMYBATV, which negatively controls anthocyanin accu-
mulation in tomato fruits [39,41,42,46]. In purple-spotted tomato plants, the SlAN2-like-
SlJAF13-SlAN11 MBW complex activates SlMYBATV, which competes with SlAN2-like for
SlJAF13, inhibiting the transcription of SlAN1 and anthocyanin biosynthesis genes [42].

Tomato is a classical climacteric fruit, exhibiting a rapid rise in respiration and a burst
of ethylene production during ripening initiation [47]. However, the effects of the ripening
stage and ethylene on anthocyanin biosynthesis in anthocyanin-rich tomato fruits are still
poorly understood. In this study, the bagged fruit of red ripened ‘Indigo Rose’ fruits fail to
accumulate anthocyanins after exposure to light. Combining RNA-seq analysis, exogenous
ethylene treatment, and relative expression analysis, we confirm that ethylene inhibits
anthocyanin biosynthesis by repressing SlAN2-like expression in tomatoes. These results
provide new insights into the regulatory effects of ethylene on anthocyanin biosynthesis
in fruits.
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2. Results
2.1. Evaluating the Color and Anthocyanin Content of Bagged Fruits after Removing Bags

Light is considered indispensable for anthocyanin induction [48]. Our previous studies
indicated that ‘Indigo Rose’ bears purple–black fruits with high anthocyanin content in their
peel at and after the mature green stage [41]. Here, we showed that bagged ‘Indigo Rose’
fruits from the immature or red ripening stages were white or red (Figure 1A). Moreover,
fruits from both stages had undetectable anthocyanin content in their peels (Figure 1B).
After removing bags, the immature fruits gradually turned purple, accompanying the
increasing anthocyanin content, while fruits from the red ripening stage remained red, with
a few expressing increased anthocyanin levels (Figure 1). These results confirmed that light
is necessary for anthocyanin biosynthesis in purple tomatoes. These things considered, we
speculate that some unknown underlying factors repress anthocyanin biosynthesis during
the red ripening stage.
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Figure 1. Fruit coloration and anthocyanin content analysis of immature and red ripening fruits of the
purple tomato cultivar ‘Indigo Rose’ before and after removing bags. (A) The coloration of immature
and red ripening fruits before (0D, 0 days) and after (2D, 5D, and 8D) removing bags. (B) Anthocyanin
content in the fruit peel. Dates are presented as the mean ± SD of three biological replicates. The
asterisks indicate significant differences, determined by the Student’s t-test (** p < 0.01); 0D, 2D, 5D,
and 8D represent zero days before bag removal and 2, 5, and 8 days after removing bags.

2.2. Transcriptome Analysis of the Fruit Peel before and after Bag Removal

RNA-seq analyses were performed on the peels of fruits from the immature (IM) or red
ripening (RR) stages before (0 days, 0D) and after (2D) bag removal to uncover the molecular
mechanism of anthocyanin biosynthesis. In total, 243.6 million of the obtained clean reads
were unique and mapped to the tomato genome (SL4.1, Table S2). The unique mapped
reads were used for FPKM calculation and for identifying differentially expressed genes
(DEGs). Principal component analysis (PCA) showed that the three biological replicates of
each sample were clustered together, indicating the high repeatability of the experiments
(Figure S1).
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At p < 0.01, the pairwise comparison of the four treatments identified 3302 DEGs
(Figure 2A and Table S3). The DEGs were clustered into 11 groups with distinct expression
patterns (Figures 2A and S3). The genes from cluster 6 were up-regulated at 0D and 2D,
with higher expression levels in the peels of immature fruits after bag removal than in
the red ripening stage (Figure 2B). This is consistent with the anthocyanin content in the
fruits (Figure 1B); thus, it was selected for further analyses. GO enrichment analysis of the
biological processes showed that the genes from cluster 6 enriched the ‘response to light’,
‘chloroplast organization’ and ‘chlorophyll biosynthetic process’ pathways. Coinciding with
the anthocyanin content, the genes from cluster 6 also enriched the ‘flavonoid metabolic
process’ (FDR = 0.000188, Figure 2C).
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Figure 2. Global gene expression patterns in the immature and red ripening fruits before and after
removing bags. (A) The expression profiles of 3302 differentially expressed genes (DEGs) in the immature
and red ripening fruits before and after removing bags. The DEGs were clustered into 11 groups,
indicated by the orange lines. (B) The expression profiles of genes in cluster 6. The y axis indicates the
normalized FPKM (Z score). (C) The top ten enriched GO terms (biological process) by genes from cluster
6. (D) The expression of differentially expressed flavonoid-related genes between the immature and red
ripening fruits. EBGs and LBGs mean early and late biosynthetic genes, respectively; IM—immature
stage; RR—red ripening stage.

Most anthocyanin structural genes, including EBGs (SlPAL, SlC4H, Sl4CL, SlCHI,
and SlF3H) and LBGs (SlDFR, SlANS, Sl3-GT, SlRT1, SlRT2, SlAAC, and SlGST), were in
cluster 6, showing significantly higher expression in the peels of immature fruits after bag
removal (IM-2D, Figure 2D). Previous studies revealed that the R2R3-MYB factor SlAN2
regulates anthocyanin biosynthesis in vegetative tissues [49]. In contrast, its paralogue,
SlAN2-like, only regulates anthocyanin accumulation in the peels of tomato fruits [42].
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SlAN2 and SlAN2-like were both highly expressed after bag removal but barely expressed
in bagged fruits (OD) at both immature (IM) and red ripening (RR) stages (Figure 2D).
Moreover, SlAN2 (38.75-fold) and SlAN2-like (4.60-fold) expressions were much higher
in immature fruit peels than in the red ripening stage, correlating with the anthocyanin
content (Figure 2D and Table S3). The FPKM of SlAN2-like (596.22) was higher than SlAN2
(FPKM = 35.11) in the IM-2D samples (Table S3). Two bHLH transcription factors, SlAN1
and SlJAF13, showed significantly higher expression levels in IM-2D than in RR-2D, except
for R2R3-MYB regulators (Figure 2D). In addition, the flavonol-related genes, SlF3′H and
SlMYB12, were highly expressed in IM-2D (Figure 2D).

2.3. Anthocyanin-Related Genes Showing Different Expression Patterns between Immature and
Red Ripening Fruits after Bag Removal

The qRT-PCR experiment was performed to analyze the expression pattern of anthocyanin-
related genes in immature and red ripening fruits before and eight days after bag removal.
The structural genes, including EBGs (4CL, CHI, and F3H) (Figure 3A) and LBGs (F3′5′H,
DFR, and ANS) (Figure 3B), rapidly increased in immature fruit peels after bag removal,
with most reaching their peak five days after bag removal. A similar pattern of structural
gene expression was detected in fruits in the red ripening stage after removing bags
(Figure 3A,B). However, the expression was significantly lower in fruits in the red ripening
stage than in immature fruits after exposure to light (Figure 3A,B).
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Figure 3. Transcriptional analysis of anthocyanin-related genes in immature and red ripening fruits
before and after removing bags. Transcriptional analysis of the EBGs (A), LBGs (B), and transcription
factors (C) using qRT-PCR. ACTIN was the reference gene. Data are presented as mean ± SD of three
biological replicates. Asterisks indicate significant differences between immature and red ripening
fruits, determined by the Student’s t-test (* p < 0.05, ** p < 0.01).

As with the structure genes, the key anthocyanin activators, SlAN2-like and SlAN1,
increased quickly in immature fruits after bag removal (Figure 3C), but differed from the
red ripening fruits. Similarly, SlAN2-like rapidly increased in red ripening fruits after bag
removal, but the expression was significantly lower than in the immature fruits (Figure 3C).
SlAN1 was barely expressed in the red ripening fruits, even after bag removal (Figure 3C).
SlHY5, a light-induced bZIP factor, activated anthocyanin biosynthesis [50]. SlHY5 was
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more highly expressed in red ripening than in immature fruits at 0D and 8D but was
insignificantly different at 2D and 5D (Figure 3C).

2.4. Transcriptome Analysis of the DEGs between Immature and Red Ripening Fruits

We previously speculated that some factors in red ripening fruits repress anthocyanin
biosynthesis. Hence, the differentially expressed genes between immature and red ripening
fruits were analyzed to characterize the factors repressing anthocyanin biosynthesis. Finally,
five clusters (1, 4, 8, 9, and 11) that could be classified into two larger groups were used
for further analysis. Group 1 included clusters 4, 9, and 11, containing genes with lower
expression levels in immature than in red ripening fruits (Figure 4A). In contrast, group
2 included clusters 1 and 8, which contained genes with higher expression in immature
than in red ripening fruits (Figure 4B). GO enrichment analysis (biological process) showed
that group 1 genes enriched ‘chloroplast organization’, ‘response to light stimulus’, and
the ‘carotenoid biosynthetic process’ (Figure 4C). Group 2 genes enriched the ‘monocar-
boxylic acid biosynthetic process’, ‘cytoskeleton organization’, and ‘cuticle development’
(Figure 4D).
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Figure 4. Co-expression analysis of the differentially expressed genes between immature and red
ripening fruits. (A) The genes from clusters 4, 9, and 11 were more highly expressed in red ripening
than in immature fruits. (B) The genes from clusters 1 and 8 had lower expression in red ripening
than in immature fruits. (C) The top ten GO terms (biological processes) were enriched by genes
from clusters 4, 9, and 11. (D) The top ten GO terms (biological processes) were enriched by genes of
clusters 1 and 8.
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Group 1 genes contained 42 transcription factors, namely, 6 AP2/ERF (Solyc03g044300.3,
Solyc04g009450.1, Solyc11g010710.2, Solyc07g054220.1, Solyc10g076370.3, and Solyc04g071770.3),
4 bZIP (Solyc01g109880.3, Solyc09g009760.1, Solyc01g100460.3, and Solyc05g050220.3), 4 NAC
(Solyc07g063420.3, Solyc02g077610.3, Solyc05g055470.4, and Solyc11g008010.2), 2 bHLH
(Solyc01g109700.3 and Solyc08g076930.1), and 1 MYB (Solyc11g073120.2) and WRKY
(Solyc08g006320.5) (Table S4). However, group 2 had 44 transcription factors, including
3 AP2/ERF (Solyc02g064960.3, Solyc04g014530.1, and Solyc05g051200.1), 3 bZIP
(Solyc04g011670.3, Solyc04g072460.3, and Solyc12g010800.2), 6 bHLH (Solyc06g008030.3,
Solyc09g097870.4, Solyc10g079070.2, Solyc06g051260.4, Solyc07g043580.4, and Solyc08g081140.4),
5 MYB (Solyc02g088190.5, Solyc10g081320.1, Solyc01g096700.4, Solyc01g095030.3, and
Solyc12g044610.2) and 1 WRKY (Solyc12g014610.2) (Table S5).

2.5. Exogenous Ethylene Repressed Anthocyanin Accumulation and Anthocyanin-Related Genes

Ethylene regulates anthocyanin biosynthesis by moderating the activities of R2R3-MYB
in many plants [24,29]. Thus, four ethylene-related genes, ACS2, Solyc08g081535.1 (ACO-
family), Solyc02g036350.3 (ACO-family), and ACO3, annotated as ethylene metabolism
genes, were more highly expressed in the red ripening than the immature fruits (Figure 5A).
In addition, three genes of the ethylene signaling pathway, GRL2, NR/ETR3, and EIL3, were
more highly expressed in the red ripening compared to the immature fruits (Figure 5A).
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Figure 5. Effects of ethylene on anthocyanin accumulation and biosynthesis. (A) Expression profiles
(FPKM, Z score) of the ethylene-related genes. Student’s t-test, n = 3; ** p < 0.01 and * p < 0.05 indicate
statistically significant differences between immature and red ripening fruits. Fruit phenotype (B),
anthocyanin content (C) and the relative expression levels of EBGs (D), LBGs (E), and regulators
(F) in the ETH-treated and mock fruits before (OD) and after (2D and 5D) removing bags. Expression
analysis was performed by qRT-PCR with ACTIN as the reference gene. Data are presented as the
mean ± SD of three biological replicates. Asterisks indicate significant differences between immature
and red ripening fruits, as determined by Student’s t-test (** p < 0.01). ETH, ethephon.
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The bagged fruits (before maturation) were treated with ethephon (ETH) to evaluate
the effects of ethylene on the anthocyanin biosynthesis of the tomato fruit. As a result,
the mock-treated fruits had higher purple-pigment intensities than the ETH-treated fruits
(Figure 5B). Therefore, the mock-treated fruits had significantly higher anthocyanin contents
than the ETH-treated fruits (Figure 5C). These results indicate that ethylene repressed
anthocyanin biosynthesis in purple tomato fruits.

The qRT-PCR relative expression analysis of anthocyanin EBGs (4CL and CHI) showed
a non-significant difference between the ETH-treated and mock fruits, but F3H was more
highly expressed in mock than in ETH-treated fruits at 5D (Figure 5D). Unlike EBGs, all the
LBGs, including F3′5′H, DFR, and ANS, were more repressed in the ETH-treated compared
to the mock fruit (Figure 5E). Similarly, SlAN2-like and SlAN1 genes were all more repressed
in the ETH-treated fruits relative to the mock (Figure 5F). However, SlHY5 was up-regulated
more in ETH-treated fruits than in the mock fruits (Figure 5F).

3. Discussion

Tomato is a climacteric fruit with undetectably low ethylene contents before the start
of fruit ripening [46]. Previously, high anthocyanin contents were detected in immature
and mature green fruits of ‘Indigo Rose’ [43,50], indicating that ethylene is not essential
for anthocyanin biosynthesis in tomato fruits. Thus, the bagged immature fruits gradually
turned purple with anthocyanin accumulation (Figure 1). At the red ripening stage, the
bagged fruits did not produce anthocyanins after bag removal (Figure 1). This response
suggests that anthocyanin biosynthesis was not induced or was highly repressed in the red
ripening fruit after exposure to natural light.

Moreover, the combined transcriptome and relative expression data showed that
anthocyanin-related genes, including the structure and regulatory genes, were more re-
pressed in the red ripening fruits compared to the immature fruits (Figures 2D and 3). SlHY5
was previously characterized as a key anthocyanin regulator in light-exposed tomatoes [50].
The expression of SlHY5 was indifferent between immature and red ripening fruits after
bag removal (2D and 5D; Figure 3C). This pattern suggests that other factors/genes inhibit
the transcription of anthocyanin-related genes in the red ripening fruits after bag removal.

In many fruit tree crops, fruit ripening is usually accompanied by anthocyanin accu-
mulation, and ethylene is considered an anthocyanin activator in plants. Several studies
have confirmed that ethylene induces red/purple coloration by activating anthocyanin
production in apple, plum, grape, and strawberry [19–21,51]. However, ethylene inhibited
anthocyanin accumulation in Arabidopsis [26], pear [27], and immature fruits of Fragaria
chiloensis [52]. Thus, the effect of ethylene on anthocyanin biosynthesis varies signifi-
cantly among species and needs further exploration. The ethylene content in tomato fruits
was highest at the onset of ripening (breaking stage) and sharply decreased during fruit
ripening. However, it remained higher in the red ripening fruits than in the immature or
mature green fruits [47]. Indeed, the ACS family of ethylene biosynthetic genes (ACS2
and Solyc08g081535.1) and the SlEBF family of ethylene signaling genes (ETR3, EIL3 and
Solyc07g008250.3) were more highly expressed in the red ripening than in the immature
fruits (Figure 5A). Thus, we hypothesized that the ethylene in the bagged red ripening
fruits probably effects anthocyanin production.

The ETH-treated fruits had lighter purple pigmentation than the mock fruits (Figure 5B).
Consistent with the above, the visual observation showed lower anthocyanin content in the
ETH-treated fruits than in the mock fruits (Figure 5C). Similarly, ethylene inhibited light-
induced anthocyanin biosynthesis in the red pear fruits [27]. Moreover, the transcriptome
data showed that anthocyanin- and flavone-related genes (PpANS, PpUFGT2, PpMYB10,
and PpMYB114) were positively and highly correlated with anthocyanin content, meaning
that these genes were repressed in exogenous ethylene-treated pear fruits [27]. In tomatoes,
the anthocyanin latter biosynthesis (F3′5′H, DFR, and ANS) and the key positive regulatory
genes (SlAN2-like and SlAN1) were more down-regulated in the ETH-treated fruits than
in the mock fruits (Figure 5D–F). In addition, several transcription factors, including
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ERF, MYB, and bHLH, were identified from the transcriptome analysis and were highly
correlated with the anthocyanin content (Tables S4 and S5). Nevertheless, their function in
anthocyanin regulation in tomato fruit requires further studies. These results imply that
ethylene inhibits anthocyanin production by repressing SlAN2-like expression. However,
the regulatory efforts of ethylene on SlAN2-like expression require further exploration.

In summary, in this study, we investigated the effects of fruit ripening and ethylene on
anthocyanin biosynthesis in purple tomato fruits. We found that bagged fruits of the purple
tomato cultivar ‘Indigo Rose’ failed to produce anthocyanins at the red ripening stage after
bag removal. In contrast, the bagged immature fruits accumulated a significant amount of
anthocyanins after removing the bags. Combining RNA-seq analysis, exogenous ethylene
treatment, and relative expression analysis, we confirmed that ethylene inhibits anthocyanin
biosynthesis by repressing SlAN2-like expression in tomatoes. In addition, 86 transcription
factors, including ERF, MYB, and bHLH, were identified from the transcriptome analysis
and were highly correlated with the anthocyanin content. These findings provide new
insights into anthocyanin regulation in purple tomato fruit.

4. Materials and Methods
4.1. Plant Materials and Treatments

The study used the purple–black tomato cultivator ‘Indigo Rose’. The plants were
cultured in plastic greenhouses in Guangzhou, Guangdong province, China, 2021. After
setting, the fruits were bagged with lightproof double-layered paper. The bags were
removed when fruit developed at a certain stage in the experiments. Simultaneously, the
surrounding leaves were removed to expose the fruits fully under natural light. The fruit
peels were collected before (0 days, 0D) and at 2, 5, and 8 days after removing the bags and
subjected to anthocyanin content measurement and qRT-PCR analysis.

For ethylene treatment, the immature fruits bagged for 35 days after bloom (DAB)
were sprayed with 50 mg/L ethephon (ETH, an ethylene-releasing reagent) containing
0.05% Tween 20. Mock treated fruits were sprayed with distilled water containing 0.05%
Tween 20. After treatment, the bags were removed. During the treatment, anthocyanin
content and gene relative expression levels were measured at certain times. Finally, the
fruits were peeled, frozen in liquid nitrogen immediately, and stored at −80 ◦C until use.
All tests were conducted thrice.

4.2. Anthocyanin Extraction and Quantification

Tomato fruit peels collected from three fruits from different plants were used for
anthocyanin quantification. Anthocyanin extraction and quantification were performed
following previously published methods [53]. Briefly, the fruits were washed with tap
water after sampling and then peeled. The peels were manually ground with liquid
nitrogen into powder. 1 g of the powder was extracted with 10 mL HCl 1% (v/v) in
methanol with the addition of two-thirds volume of distilled water. After a 12 h extraction
at 4 ◦C, the samples were centrifuged at 3900 rpm for 20 min. The supernatant (2 mL)
was filtered by 0.45 µm nylon membrane (Whatman 0.45 µm PVDF), and absorption was
determined spectrophotometrically (A535 and A650). The amount of anthocyanin was
determined spectrophotometrically (A535-A650) and expressed as mg of petunidin-3-(p-
coumaroyl rutinoside)-5-glucoside per g, based on an extinction coefficient of 17,000 and a
molecular weight of 934. All experiments were repeated three times.

4.3. Total RNA Isolation, cDNA Synthesis and Real-Time PCR Analysis

RNA extraction from frozen peels, cDNA synthesis, and real-time PCR was performed
following previously described methods [42]. Briefly, total RNA was isolated using an
Eastep Super RNA isolation kit (Promega, WI, USA). cDNA was synthesized from 1 ug
of total RNA using the GoScript TM Reverse Transcription System (Promega, WI, USA).
qRT-PCR was performed using previously described methods [41] using the tomato ACTIN
(Solyc03g078400) gene as the reference. Next, all analyses were performed with three tech-
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nical replicates. The 2–4Ct method was used to calculate the relative gene expression [54].
The data were analyzed by one-way analysis of variance (ANOVA) using EXCEL 2016. The
primers used for qRT-PCR are listed in Supplementary Table S1.

4.4. RNA-Seq Analysis

The fruit peels collected from the immature (35 DAB) and red ripening (48 DAB) stages
before (0D) and after (2D) removing bags were used for RNA-seq analysis. The fruit peels
were carefully split with a scalpel blade and rapidly frozen in liquid nitrogen. Five fruits
from different plants were pooled to make a sample. Then, three biological replicates were
used for each RNA sequencing treatment. The transcriptome libraries were generated using
a NEBNext UltraTM RNA Library Prep Kit (New England Biolabs, MA, USA) designed for
Illumina, following the manufacturer’s protocols. Indexed codes were added to attribute
sequences to each sample. Next, the index-coded samples were clustered on a cBot Cluster
Generation System using a HiSeq 4000 PE Cluster Kit (Illumina, CA, USA) following the
manufacturer’s instructions. After cluster generation, the libraries were sequenced on an
Illumina Hiseq 4000 platform (Illumina, CA, USA), generating 150 bp paired-end reads.

The raw reads were filtered using the Fastp software by removing the adaptor and
low-quality sequences with the default parameters [55]. The STAR software was used to
map the clean reads to the tomato reference genome (SL4.0) [56], and FeatureCounts was
used to analyze the transcript levels of annotated genes [57]. Then, the transcript levels
of each annotated gene (ITAG4.1) were counted and normalized as FPKM. The DEGseq
package was used to calculate the p-values, and p < 0.01 was considered the threshold
for identifying DEGs [58]. GO term analysis was conducted in the GENE ONTOLOGY
(http://geneontology.org/ (accessed on 1 March 2022)) in biological processes using the
most homologous genes in Arabidopsis [59].
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