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Abstract

Background: Accurate description of protein interaction with aqueous solvent is crucial for
modeling of protein folding, protein-protein interaction, and drug design. Efforts to build a working
description of solvation, both by continuous models and by molecular dynamics, yield controversial
results. Specifically constructed knowledge-based potentials appear to be promising for accounting
for the solvation at the molecular level, yet have not been used for this purpose.

Results: We developed original knowledge-based potentials to study protein hydration at the level
of atom contacts. The potentials were obtained using a new Monte Carlo reference state (MCRS),
which simulates the expected probability density of atom-atom contacts via exhaustive sampling of
structure space with random probes. Using the MCRS allowed us to calculate the expected atom
contact densities with high resolution over a broad distance range including very short distances.
Knowledge-based potentials for hydration of protein atoms of different types were obtained based
on frequencies of their contacts at different distances with protein-bound water molecules, in a
non-redundant training data base of 1776 proteins with known 3D structures. Protein hydration
sites were predicted in a test set of 12 proteins with experimentally determined water locations.
The MCRS greatly improves prediction of water locations over existing methods. In addition, the
contribution of the energy of macromolecular solvation into total folding free energy was
estimated, and tested in fold recognition experiments. The correct folds were preferred over all
the misfolded decoys for the majority of proteins from the improved Rosetta decoy set based on
the structure hydration energy alone.

Conclusion: MCRS atomic hydration potentials provide a detailed distance-dependent description
of hydropathies of individual protein atoms. This allows placement of water molecules on the
surface of proteins and in protein interfaces with much higher precision. The potentials provide a
means to estimate the total solvation energy for a protein structure, in many cases achieving a
successful fold recognition. Possible applications of atomic hydration potentials to structure
verification, protein folding and stability, and protein-protein interactions are discussed.
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Background

Most biochemical and biophysical processes take place in
aqueous solutions. Interaction with water is the dominant
force driving protein folding, providing approximately
90% of the total structure stability [1,2]. In many cases
biological functions of macromolecules crucially depend
on specific bound water molecules [3,4]. Water molecules
bound in macromolecular interfaces significantly contrib-
ute to recognition of proteins by other proteins or DNA
[5]. Successful ligand design also requires consideration
of bound water molecules [6,7].

Protein solvation at the molecular level has been studied
with different approaches varying from first principle
modeling [1,8-10] to evolutionary considerations [11].
Here, we present a new approach to this important prob-
lem, which is based upon knowledge-based potentials
(KBP) that proved to be efficient for modeling atomic
interactions in biopolymers [12,13].

KBP are heuristic constructions [14] measuring the ten-
dency of particular atoms and residues to form close con-
tacts or to avoid each other in a macromolecular 3D
structure. Statistical preferences of structure variables such
as atom-atom contact distances in the conformation space
are measured by log likelihood ratio [15]. These prefer-
ences can also be measured in energy units, when multi-
plied by a kT factor, the absolute temperature times
Boltzmann constant [16]. The quasi-energy (the statistical
preference) then takes the form of the Boltzmann equilib-
rium energy distribution:

E(d) =~ In Jos(9) (1)
fexp(d)

Here f,,(d) is the observed frequency of contacts between
atoms of two considered types at distance d in the data-
base of macromolecular structures. Preferable atomic con-
tact distances correspond to higher frequencies of atom
contacts observed at this distance. It should be noted, that
physical meaning of KBPs is not clearly defined, for
instance, incorrect is a direct interpretation of (1) as Boltz-
mann distribution in some energy field [17]. In this study,
atom types were defined as both residue- and atom-spe-
cific, e.g., a CA_Val atom type was assigned for the C-
atom of valine. The expected frequency of atom pair con-
tacts f,,,(d) is evaluated for a virtual state where the atoms
do not interact, the so-called reference state. Calculation
of the observed frequency f,, is relatively straightforward,
although it depends on selection of the training data set,
the binning procedure, and other technicalities. The prin-
cipal difference between methods for construction of
knowledge-based potentials lies in the definition of the
reference state for calculation of f,,,(d) [15,18-21].
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Historically, KBPs were developed in parallel with con-
struction of more complex and elaborate reference states.
In the pioneering work of Tanaka and Scheraga [22],
equations for complex formation at low concentrations
were used as an implicit reference state. The quasi-chemi-
cal approximation reference state [18] employed an equi-
librium mixture of unconnected residues to derive
distance-independent inter-residue contact energies. Sippl
[19] introduced distance-dependent potentials, and
explicit accounting for chain connectivity. The "uniform
density" reference state in [19] was based on the distribu-
tion of distances between all residue pairs of different
types separated by k residues in the protein backbone
averaged over a large training set of known structures.
Subsequently, Samudrala and Moult [23] used condi-
tional probability formalism, evaluating the probability
for two atoms a and b to be found within a particular dis-
tance shell or bin in a correctly folded structure. Skolnick
et al [20] introduced their composition-corrected refer-
ence state, with a direct dependence on the amino acid
composition of individual structures from the training set.

In all the examples above, reference states were con-
structed via averaging of observed distances over pairs of
residues of all possible types. Such atom type-averaged
reference states tend to underestimate the interactions
common to all types of atoms, such as atom repulsion at
close distances or protein compaction due to solvent
expulsion. However, inclusion of additional terms can
compensate the effects of protein packing and compact-
ness [24].

At small distances KBP are also plagued by small statistics
of observed interactions. Therefore, the atom-atom con-
tacts at distances closer than 2.0-3.0 angstrom are usually
treated separately with the interaction potential at such
distances set to some arbitrary prohibitive value. In the
"ideal gas" reference state [21] which is not atom type
averaged, the potential is also calculated separately for dis-
tances greater than 3.0 A. This approach is based on uni-
formly distributed points in finite spheres with a
complicated empirical dependence of a sphere radius
based on the length of the protein backbone.

In this work, we present a novel method for construction
of the reference state, which we have called Monte Carlo
Reference State (MCRS). This method utilizes random 3D
points in the structure volume as (by definition) non-
interacting probes for calculation of the expected contact
probability density distance distribution. These random
probes are evenly distributed in the structure space regard-
less of the structure elements, thus providing a true zero
interaction energy reference for atom-atom interaction.
Monte Carlo methods have been long and successfully
used in protein folding modeling ([22,25,26]) and atom
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interaction studies [27]. However, to our knowledge, no
attempts have been made to use these methods for con-
struction of the reference state.

Although MCRS technique can also be applied to produce
knowledge-based potentials for interaction of protein
atoms with each other, we used it to obtain KBP for hydra-
tion of protein atoms (atom hydration potentials, or
AHP), based on the statistics of their contacts with struc-
ture-bound water molecules. Any atom locally distorts the
interaction-free hydration density, obtained using MCRS.
The direction and magnitude of this influence depends on
the atom-water contact distance and on the hydropathy of
the atoms of this type. Our aim in obtaining the AHP was
to estimate the atomic hydropathy, quantitatively and in
a distance dependent manner, for all types of atoms found
in proteins.

Since water molecules are small and are not connected to
the protein backbone, their location is primarily deter-
mined by intermolecular interactions of non-covalent
nature. There are also comparatively many structure water
molecules in the PDB database. Thus, the defined set of
structural water contacts with different amino acids is rel-
atively large, providing statistical power for our study.
This suggests that KPBs for protein atom - water interac-
tion can be obtained with greater detail and with less dis-
tortion than KPBs for residue-residue interaction used in
protein folding.

Results

Water distribution in structural space

Distribution of distances from a water oxygen to the near-
est heavy (non-hydrogen) protein atom is shown in Fig-
ure 1. The first narrow maximum at approximately 2.75 A
corresponds to the solvent contacts with oxygen or nitro-
gen atoms, while the broader second peak is formed by
water contacts with different protein carbon atoms. Figure
2 provides several examples of distributions of the aver-
aged likelihood ratios for finding a water molecule at a
given distance, from a random location within a structure,
as calculated for five different structures. As it is evident
from Figure 2, different proteins can have dramatically
different expected distributions of distances from a ran-
dom point within the structure volume to structure water
molecules.

The probability curve depends substantially on the size
and the shape of the protein molecule, and on water con-
tent and distribution. Bell-shaped hydration distance dis-
tribution curves are typical for roughly globular structures.
In contrast, a bimodal distribution is obtained with the
hourglass-shaped FE hydrogenase (1HFE) subunit S, and
the low-value, long-range distribution of 1JSU, subunit C
reflects an elongated 3D structure. Because of this variabil-
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ity, we believe that it is not possible to generate a reliable
reference state by measuring atom-water distances in the
aggregate for the entire training set, or by using common
geometric parameters for some generalized average struc-
ture. In our approach, the distance distribution of atom-
water contacts observed in a given structure is normalized
by the expected distance distribution from a random
point to water for that structure. This procedure automat-
ically takes into account variations in structure size, shape,
bound water content, and pattern of water distribution.

Interaction of protein bound water molecules with each
other

The diagram in Figure 3 shows the likelihood ratio dis-
playing the relative number of water oxygen atoms at a
given distance from another water oxygen atom than from
arandom point in structure space. It reflects how a crystal-
lographic structure water molecule influences other such
molecules around itself. Fy,/Fey, values above 1 indicate
preferred distances between water oxygen atoms and vice
versa. In liquid water, a similar quantity called the g,(7)
factor or oxygen-oxygen radial distribution function is
extracted from x-ray diffraction or neutron scattering
measurements [28].

Although the structure of the liquid water and the distri-
bution of the bound water molecules in protein structures
are not directly related, the F,,/F,,, ratio we obtained for
protein crystal structure water agrees remarkably well with
the goo(r) plot for liquid water. The higher g, (r) levels
observed for protein crystals may be due to the excluded
volume taken by protein atoms, which biases the expecta-
tion, and the fact that water molecules group around
charged protein atoms, increasing the chances of observ-
ing one water molecule in the vicinity of another. The
effective repulsion in the medium range in the g,(r) for
interacting structure water molecules is probably non-
physical. In bulk water it appears to be a collective effect
most likely related to formation of clusters of coordinated
water molecules [29].

The three peaks at 2.75 A, 4.5 A and 7 A reflect the layers
of structured water molecules that are also present in
water distance distribution around hydrophilic oxygen
atoms within different protein groups as it can be seen
from Figure 3(a).

Interaction of bound water molecules with protein atoms

of different types

Figure 4 gives several examples of likelihood ratios and
KBP for protein atoms of different types. For reference, we
also provide the hydration distance plot of structural
water itself, which we have compared with water-water
interaction in pure liquid in Figure 3.
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Figure |

Distribution of distances from a structure water molecule to the nearest protein atom. Distribution of distances
from a structure water molecule to the nearest protein atom for 319024 water oxygen atoms in 1776 structures. The two
main peaks correspond to contacts of water with different oxygen and nitrogen atoms of proteins (the first peak at approxi-
mately 2.75 angstrom), and carbon atoms (the peak at ~3.7 angstrom).

Comparison of the profiles shown in Figure 4(a),(b) and
4(c) reveals that the location of the first maximum of pref-
erable hydration distance is determined by the van der
Waals radii of the water oxygen and the corresponding
protein atom. The optimal hydration distance of carbon
atoms (3.7 A, Figure 4(c)) is considerably larger than that
of nitrogen and oxygen atoms (2.8 A, Figure 4(a) and
4(b)). For oxygen and nitrogen, the secondary maximum
is also present at about 4.9 A and 5 A respectively, with an
additional maximum at 7.2 A. These additional maxima
for oxygen are much sharper than the corresponding
maxima in liquid water. This likely reflects stabilization of
the structural water sites by the protein crystal, which
causes better molecular resolution. In addition, the pro-
tein hydration shell itself may be more structured than the
liquid water [30]. The first peak for oxygen and nitrogen

atoms is generally narrower than for carbon atoms. This is
probably related to the ability of hydrophilic oxygen and
nitrogen atoms to form hydrogen bonds with water.

Atoms of similar types, but from different amino acids,
may have different AHP, which reflects preferences for
amino acid location in the protein hydrophobic core or at
the surface, and the average solvent accessibility. For
example, C, atom of isoleucine has a very different hydra-
tion distance plot than the C, atom of aspartate (Figure
4(c)). However, even the most hydrophobic residues and
atoms, such as Cj of isoleucine or C, of tyrosine (Fig.
4(d,e)), are occasionally exposed in solvent even in folded
proteins, and thus exhibit the first peak at the van der
Waals distance. One can see from Figure 4(b), that N,
atom of lysine typically attracts significantly more water
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Figure 2

Expected hydration contact densities, calculated using MCRS. The expected hydration distance distributions of prob-
ability density calculated for five different protein structures. The area under each curve is equal to the number of waters in the

structure.

molecules than the backbone nitrogen of histidine. This
happens because the N, of lysine has a substantial partial
charge, and because this atom at the tip of a long side
chain is more solvent-accessible. Figure 4(c) also shows
how a partial charge at a carbon atom (C, atom of aspar-
tate) shifts the first hydration maximum to a smaller dis-
tance, most likely because the electrostatic forces of ion
solvation attract water molecules. This effect is less pro-
nounced for nitrogen or oxygen atoms.

The behavior of AHP at large distances also reflects the for-
mation of hydrophobic core of the protein globule. For
example, atoms within hydrophilic residues have a sharp
peak at short distances, but a long basin in the range of 8-
25 angstroms (Figure 4(e)). In contrast, atoms within
hydrophobic residues have a much lower peak at short

distances, and a very broad elevation in the 8-25A range.
This elevation is probably attributable to the typical dis-
tance from a residue buried in a protein hydrophobic core
to the hydrated surface of the protein.

Residues with symmetric side chains and atoms, such as
symmetric carbons in the aromatic rings of tyrosine or
phenylalanine, provide a sort of a natural test for statisti-
cal atom contact potentials. These atoms are far enough
from each other to have independent statistics of water
contact distances, yet there is no physical reason why
these chemically identical atoms in undistinguishable
positions should have different potentials. Figure 4(d))
shows that indeed they are very similar. It also demon-
strates the magnitude of the statistical error in the AHP
obtained using MCRS.
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Hydration Potential (kT)

Figure 3

Woater-water empirical contact potential. Normalized distribution of contact distances between water oxygen atoms in
protein crystals (top) and the corresponding knowledge-based interaction potential (bottom), based on 54356851 contacts
between 319024 crystallographic water oxygen atoms. The grey line gOO(r) in (a) shows oxygen-oxygen radial distribution
function in the liquid water taken from [28].
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Hydration potentials of several protein atoms. Atom hydration likelihood ratios (a-e), and potentials (f) for atom con-

tacts with explicit structural water, calculated for several protein atom types. (a) oxygen atoms of proline, alanine, isoleucine

backbone groups; (b) nitrogen atoms: N of lysine, N, of histidine, backbone N of histidine (c) carbon atoms: C, of asparagine,
C, of aspartate, C,, of isoleucine; (d) symmetric atom pairs: C¢| and Cy; of tyrosine and C, and Cy, of phenylalanine; (e) large
scale behavior of distributions N, atom of lysine, Cg, of isoleucine, O of serine; (f) atomic hydration potentials, the same atoms
as in (e). In (2), (b), and (c), the plot for water oxygen as in Figure 3, is given for reference.
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Prediction of hydration sites in protein structures

Using the AHP obtained by MCRS, we calculated putative
bound water locations for several protein structures (see
Methods for details). For some of the proteins studied,
structural water locations were predicted earlier using
Molecular Dynamics [31-33] or Monte Carlo simulation
[34]. The results of our hydration site prediction experi-
ments are summarized in Table 1. One example of such
prediction is given in Figure 5.

As can be seen from the Table 1, the number of predicted
hydration sites is equal to twice the number of the exper-
imental water positions in that structure. In cases where
the number of the lowest energy putative hydration sites
equaled the number of reported waters for the structure,
usually approximately 50 per cent of the experimental
hydration sites were closely reproduced (with the distance
from the structure water to the nearest predicted hydra-
tion site less than 1 A). The percentage of correctly pre-
dicted structure waters was about 75-90% depending on
the structure with the number of predicted hydration sites
equal to twice of the number of real waters. This over-pre-
diction is inevitable due to the fact that the number of
structure-bound water molecules, reported by the struc-
ture depositors, may vary very much for similar structures.
This problem is also addressed in 'the Discussion' section
below. Routinely, it takes the number of putative hydra-
tion sites 3 to 10 times more than the number of reported
waters, to reproduce most water locations [32]. A level of
over-prediction as high as 40 times may be necessary to
reproduce bound water well [34]. Predictions using AHP
for the same structures have higher precision, a level of
over-prediction reduced 2- to 5- fold, and are less
demanding computationally.

Decoy selectivity experiments

It is well-known [35] that hydrophobic interactions are
decisive factors in protein folding. Thus, we tested the
power of the AHP we had generated to select correct pro-
tein folds exclusively on the basis of hydration energy,
using a decoy selectivity test. We used Decoys'R'Us data-
base [36] used in [37] for evaluation of protein models by
atomic solvation preference, and in [38,39] for fold recog-
nition tests of an effective energy function using a Gaus-
sian model for the solvation free energy.

To evaluate the differences in the hydration energy
between the native and the decoy conformations, we
introduced a geometric hydration shell (HS), defined as
the 3D area in which water molecules can closely
approach a heavy protein atom. Monte Carlo methods
were used both to construct the HS, and to evaluate the
number of water molecules within the HS (please see
Methods section for the details).
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The results of the decoy recognition tests are shown in
Table 2, lines 1-23. For 23 out of the 23 structure sets, the
native structures had the lowest average hydration shell
energy normalized for the volume, as compared to the
decoys. Relatively high AG differences between the native
structures and the decoys indicate that hydration energy
calculations using AHP allow one to clearly recognize the
correct fold in 100% of the cases.

Inspired by the results of AHP application in this relatively
simple decoy set, we tried a more demanding test. We
used the improved Rosetta decoy set [40], which has an
increased frequency of near native models and is consid-
ered to be a well-constructed decoy set obtained by large-
scale comparative modeling [41]. Each of 41 native struc-
tures in the Rosetta set has between 1724 and 1900
decoys. Results are given in Table 2, lines 24-64. For 26
proteins, the native structure had the lowest hydration
energy, often separated from those of all the decoys with
a considerable energy gap amounting up to several stand-
ard deviations. Several of the structures tested could not
be satisfactorily distinguished from their decoys using
AHP. After close inspection we found that 'good' struc-
tures were mostly globular proteins with distinct hydro-
phobic cores and hydrophilic surfaces. Among
unrecognized structures, e.g. 1ptq has a large hydrophobic
patch at its surface and lacks a clearly defined hydropho-
bic core, whereas 1a32 has a loose packing with a number
of hydrophobic groups accessible to the solvent. An inter-
esting example is 1utg, which is a shell-shaped structure,
with practically all hydrophobic residues at its concave
side, thus providing a large hydrophobic momentum. The
structure as it is given in the test set has all these hydro-
phobic residues accessible to the solvent, whereas in the
native state, the protein forms a dimer, with its concave
sides pressed against each other, forming a small hydro-
phobic cave. In our opinion, this test reveals the limits of
applicability of our potentials in the field of the fold rec-
ognition, as mostly to soluble globular proteins.

Discussion

Comparison of atomic hydration potentials with other
methods

Commonly used knowledge based approaches to mode-
ling protein solvation are based on amino acid hydropho-
bicity or solvation preference, and solvation accessible
surface area (SASA) calculations [42,43]. It has been noted
that in protein-structure selections, all-atom based poten-
tials perform better than residue-based potentials, and
distance-dependent potentials better than distance-inde-
pendent ones [[21], and the references therein]. In con-
trast to SASA-based methods, in AHP approach, no rigid
atomic radii are set. Distance-dependent potentials allow
considering spatial hydration shell rather than just the
surface of the molecule. This may have an advantage in
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Table I: Prediction of hydration sites in 16 structures
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HH Protein Number of Amino  Structural waters Hydration sites Water prediction Z-score
Acids (experimental) predicted average RMSD
| 1A)) 37 30 60 1.02 6.97
2 IECA 136 94 188 1.72 4.72
3 IENH 54 33 66 0.87 5.36
4 IFFO 202 122 244 0.91 9.18
5 IIRD 287 325 650 1.44 2.69
6 IKR7 110 106 212 0.86 9.60
7 IMAA 540 187 374 1.32 5.41
8 IMOF 53 39 78 0.90 7.34
9 ISBX 103 79 158 0.86 10.41
10 IUoY 64 126 252 1.03 1.73
I 4MT2 62 69 138 1.35 4.48
12 S5PTI 58 63 126 1.07 8.53
13 IIFC 131 206 412 1.49 6.15
14 2PTH 193 175 350 1.68 5.91
I5 3EBX 62 82 164 1.58 4.52
16 4PTI 58 57 114 1.29 7.28

Prediction of hydration sites in 16 structures (PDB IDs are indicated). Twice the number of reported experimental water molecules was predicted
as hydration locations, to achieve the given average RMSD between the predicted and the actual positions of water molecules.

certain conformational scenarios, not distinguishable in
terms of surface area.

A recent comparison [44] of five different protein solva-
tion models, including a grid-based finite difference Pois-
son-Boltzmann procedure, demonstrated that the
empirical atomic solvation model performed better than
all the other models. At the same time [44] reports that
protein design presents a particularly challenging test for
implicit solvation models because it requires accurate esti-
mates of the solvation contribution of individual residues.
AHP introduce elaborate, distance-dependent representa-
tion of amphiphilic properties of individual protein
atoms, which we believe may have important role in
many practical applications.

First-principle physical models yield good approxima-
tions for water structure around solvated ions in solution
[45], and have been applied to prediction of structural
waters around protein globules [32,9]. The MCRS
approach we have developed may have a number of
advantages in addressing this problem. First, it allows cal-
culation of the expected contact densities for any atom
pair, to any desired precision, reducing the statistical error
inevitable for the atom-type-averaged reference states. Sec-
ond, it uses an individualized approach for each structure,
taking into account protein shape, atom molar fractions
and spatial distribution of atoms. Third, the MCRS
scheme also generates detailed empirical short range atom
interaction potentials. Figure 4(c) illustrates that AHP can
characterize atomic interaction even at sub-van der
Waalse distances, thus providing a unique capacity for

quantitative description of atom contacts in this impor-
tant distance range.

In principle, the MCRS allows one to obtain the expected
atom-atom contact probability density distance distribu-
tion starting from zero distance, and for any individual
macromolecular structure. The accuracy of the expected
probability density estimates depends on the number of
the random probes, which in turn is limited only by the
computational power.

Oxygen-oxygen distribution function in structural and bulk
water

One particularly interesting result of this study is the oxy-
gen-oxygen radial distribution function of the structural
water. As Figure 3 shows, this function exhibits three
peaks at similar distances to those observed in the oxygen-
oxygen radial distribution function gyo(r) obtained
experimentally for the liquid water [28]. The protein
structure is likely to stabilize locations of bound water
molecules [30], which agrees with the taller and narrower
first peak in the distribution. However, water molecules in
bulk liquid probably also form large clusters with quasi-
stable structure [46,47]. The coincidence of main maxima
in oxygen-oxygen distance distribution agrees with the
hypotheses that the water around the protein basically
retains its non-trivial structure found in the liquid
[1,29,30].

The remarkable agreement demonstrated by Figure 3 not
only indirectly justifies the accuracy of our technique, but
also allows us to compare the packing of water molecules
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Figure 5

Example of hydration sites prediction outcome. An example of a hydration site prediction outcome. White spheres
denote the experimental waters; colored spheres are the predicted hydration site location; the color of the predicted sites is
according to the probability for observing a water molecule in the vicinity of the probe, red end of the spectrum corresponding
to higher calculated hydration probability.

in liquid water and in protein crystals. Interestingly, while  tion (and other physical properties) in water [48] and
Molecular Dynamics simulation of pure liquid water  simple solutions [49], the same function of radial oxygen-
reproduces well the experimental radial distribution func-  oxygen contact frequency, obtained during MD simula-
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Table 2: Decoy recognition based on total structure hydration energy estimates

# Structure ID Hydration Shell Energy Average, kT Native to Decoy AG, kT\Z-Score Enrichment, %
Native Decoy

| SRXN -7.22 -6.13 1.09 100
2 IREI -15.21 -11.98 3.23 100
3 2CRO -6.42 -5.57 0.85 100
4 AN -8.77 -7.45 1.32 100
5 2PAZ -7.34 -5.59 1.75 100
6 ILHI -13.82 -9.63 4.59 100
7 2ILB -6.83 -5.92 0.91 100
8 5PAD -12.95 -11.41 1.54 100
9 IP2P -13.24 -10.51 2.73 100
10 IRHD -11.98 -10.62 1.36 100
I 2CI12 -8.65 -7.46 1.19 100
12 2B5C -7.36 -5.68 1.68 100
13 2TMN -10.160 -9.10 1.06 100
14 2CYP -12.208 -9.33 2.88 100
15 2bp2 -9.635 -7.90 1.73 100
16 Icbh -10.17 -8.65 1.52 100
17 Ifdx -8.12 -7.09 1.03 100
18 Ihip -6.14 -5.40 0.74 100
19 Ippt -11.01 -6.98 4.03 100
20 Irn3 -12.09 -10.50 1.59 100
21 Isn3 -8.89 -7.38 1.51 100
22 2cdv -10.27 -8.84 1.43 100
23 2ts| -11.77 -9.75 2.02 100
24 Ires -11.30 -9.63 5.10 100
25 Iptq -10.21 -9.70 0.68 74
26 luxd -10.04 -8.27 5.08 100
27 2pdd -8.68 -8.73 0.04 51
28 luba -9.01 -8.28 1.24 88
29 Igab -7.71 -5.98 3.25 100
30 Ivif -10.05 -8.70 2.37 98.5
31 Ibq9 -10.22 -8.01 3.55 100
32 Spti -11.12 -8.31 4.70 100
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Table 2: Decoy recognition based on total structure hydration energy estimates (Continued)

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

6l

62

63

64

laa3
Ibwé
lorc
lam3
I pgx
Itif
Imsi
2ptl
1r69
Ituc
Idol
lutg
lesp
la32
2ezh
Inre
Isro
2fow
lail
I ctf
1Ifb
Inkl
Ipou
Imzm
| afi
Sicb
Ikjs
Thyp
lcc5
lvee
2fxb

Icei

-9.94

-7.962

-8.944

-10.857

-10.211

-10.283

-12.712

-10.982

-10.316

-10.564

-10.890

-7.998

-11.524

-9.844

-11.496

-8.198

-11.319

-9.442

-10.957

-8.758

-9.387

-11.289

-11.890

-12.126

-10.691

-9.006

-10.521

-14.662

-10.227

-13.279

-11.126

-9.810

-1.76

-7.564

-9.693

-9.126

-8.262

-8.416

-10.401

-7.708

-7.670

-8.614

-8.611

-7.792

-8.227

-10.077

-9.431

-7.288

-9.443

-7.466

-10.734

-7.123

-7.908

-10.048

-9.495

-9.837

-9.655

-6.895

-9.063

-12.513

-9.895

-11.533

-8.699

-9.589

3.78

0.80

-1.04

3.67

3.40

3.33

3.69

6.89

4.69

2.28

3.68

0.42

4.30

-0.50

3.74

1.92

2.85

5.24

0.38

3.30

3.18

221

4.40

4.93

2.28

5.80

2.90

2.63

0.64

2.71

437

0.43

100

79

100

100

100

100

100

100

100

100

67

100

28

100

97

99.5

100

63

100

100

99

100

100

99.5

100

100

98.5

77

100

100

65

The average hydration energy of the structure hydration shell, calculated with AHP, was used as a discriminating criterion for the fold recognition
test. Column five gives the estimated free energy difference between the native and the decoy structures (lines 1-23), or a Z-score in case of the

multiple decoys (lines 24—64). The last column, 'Enrichment’, gives the percentage of the decoys with the estimated free energy higher (not as good)
than the native structure. Decoys'R'Us database hg_structal misfold decoy set [36] was used for this test, lines | to 23, and the improved Rosetta

set (lines 24 to 64), made by Tsai et al. [39].
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Figure 6

Woater in a protein hydrophobic cavity hydration energy estimation. Hydration energies (kcal/mol) vs. atom contacts
number plot for some hydration sites of | TSF, calculated using AHP. Note the rightmost water below at the bottom of the dia-

gram (circled).

tion of solvated protein crystals, may have maxima loca-
tions and amplitudes different from those obtained for
pure water [1].

The quality of training data of structure water location
and prediction of protein hydration sites

Evaluation of the quality of the prediction of structural
waters reported in a PDB structure is not trivial. Favorable
hydration locations can produce a diffuse electron density
and be excluded from the structure [1]. Thus, only a frac-
tion of strongly bound water molecules in protein crystals
is usually reported. We observed that the number of
waters detected for similar structures may vary by two

orders of magnitude (for instance, compare two structures
of the same HIV-1 protease-inhibitor complexes: 2BPY
with 115 reported water molecules, and 1HVK with just
one). Second, a large fraction of the structural waters
reported for X-ray structures are probably stabilized not
only by the protein molecule, but by the crystal unit cell.
Indeed, [50] reported that only 17 structural water mole-
cules were found at the same sites in nine crystals of ribo-
nuclease A resolved from five different space groups and
containing from 88 to 188 water molecules. Similar
results have been published for other proteins [51,52] and
discussed in [53]. The extremely variable water content
reported for different proteins most likely reflects the fact
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that not all suitable sites are occupied, and this obviously
hinders verification of location of hydration sites. Never-
theless, we believe that despite a considerable noise in the
input data, our procedure still affords to capture the essen-
tial aspects of the interaction potentials at the atomic level
provided enough statistical data, as illustrated by Figure
3(d), and allows us to provide a valuable prediction of
putative structural water sites.

KBP for analysis of known structures

The currently weak definition of experimentally obtained
bound water molecules suggests the value of KBP for ver-
ification of reported structural waters. The presence of
water in protein hydrophobic cavities has been a source of
controversy. Hydrophobic cores in proteins sometimes
have cavities large enough to accommodate water mole-
cules. Water in such cavities is often missed in X-ray, but
detectable by NMR [54,55]. The expected average water
occupancy for a cavity is determined by a balance of the
entropy factor driving water into the cavity, proportional
to its volume, and the enthalpy of water contacts with the
protein atoms lining the cavity. Our calculations using
AHP show that the free energy change for the transfer of a
water molecule into compact all-hydrophobic cavities
from outside of a protein is very unfavorable. This indi-
cates that extremely hydrophobic small cavities probably
lack water molecules most of the time, so that the chances
for observing a water molecule are very low at any partic-
ular position within the cavity. Our analysis agrees with
the observations that disordered water molecules may be
present, at least transiently, in large hydrophobic cavities
in proteins [56]. Nevertheless, we observe that some pub-
lished protein structures have one or more water mole-
cule, placed at a highly energetically unfavorable location,
usually into a closely packed hydrophobic environment.
Figure 6 illustrates this situation. Possibly, the source of
the corresponding electron density should be inspected
and the structure might be ameliorated.

Use of the AHP allows calculation of the probability that
a water molecule will occupy a certain site, or, equiva-
lently, the proportion of time that a molecule of water is
present within a certain volume in the protein environ-
ment. Moreover, individual inputs from atoms and resi-
dues into, for instance, transmembrane channel
permeability or a fold solvational stability can be esti-
mated.

MCRS KBP at short and large distances

AHP at short distances offer a high resolution water
assignment. At large distances (see Figure 4(f)), the poten-
tials allow applying them to model cooperative processes
like protein folding. For decoy recognition and similar
applications, the behavior of KBP at large distances (Fig-
ure 4e,f) is important. These distances are comparable

http://www.biomedcentral.com/1472-6807/7/19

with the average radius of a protein globule, thus global
structures as a hydrophobic core may be discerned. At
these distances, the knowledge-based potentials work as
statistical models, rather than provide a description of
pairwise physical interactions.

Possible applications of the KBP for protein folding and
interaction

Solvation term is the single most important factor, usually
providing about 90% of the total structure stability [57].
Models for protein folding were even proposed which
included only the hydrophobic interactions of amino
acids [58].

In the decoy recognition tests we evaluated the change in
the hydration energy of the entire structure that accompa-
nies changes in protein conformation. These tests ignored
any intra-molecular interaction, i.e. between different
protein atoms and groups. As such, evaluation of hydra-
tion energy with AHP can be complementary to other
potential sets and atomic force fields in estimation of
structure stability, by adding an explicit accounting of the
solvation forces.

Accounting for hydration changes at the atomic level is
crucial for interaction of macromolecules. Even indirect
account for water mediated interactions improve signifi-
cantly the quality of analysis of interaction of supersec-
ondary structural elements in protein folding, which
probably is true also for protein binding [59].

AHP also allow calculating the desolvation energies
accompanying mutual occlusion of different parts of
hydration shells during protein-protein or protein-DNA
interaction and ranking of different binding variants with
regard to desolvation.

Conclusion

We present a novel method for constructing the reference
state for knowledge-based inter-atomic potentials, based
on a Monte Carlo technique (MCRS). Using it, we have
developed original potentials for protein atom hydration.
The new potentials provide a detailed quantitative
description of atom hydropathies in a distance-dependent
manner. Using the new potentials allows calculated place-
ment of individual water molecules in a protein environ-
ment, and estimation of the (de)solvation energy changes
accompanying protein conformational changes and inter-
action.

Methods

Training database

The training database contained 1776 3D structure of pro-
teins and protein subunits, with sequence identity
between any pair of proteins less than 25% [60]. For each
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structure, all explicit water molecules located within 4.5A
from any structural atom were collected. Figure 1 illus-
trates this selection of the cutoff distance. Coordinates of
only the electron-dense oxygen atoms were used for water
molecules.

Crystallographically symmetrical positions were calcu-
lated for all water molecules, using the unit cell data and
symmetry transformation operators provided in the PDB
file. If such transformation yielded a symmetrical loca-
tion, which was at sterically acceptable but closer distance
to any of the protein atoms, the new position was adopted
for the corresponding water molecule.

Distances from each protein atom to each water molecule
were calculated and stored for each atom type. Our defini-
tion of atom type takes into account the specific amino
acid context and the elemental identity, e.g., a C,-atom of
valine is different from C,-atom of leucine, different from
Cg-atom of leucine. No effort was made to group atom
types on the basis of their hydropathy properties, or to
cluster them depending on their determined hydration
potentials.

Constructing the Monte Carlo Reference State

For each structure in the training set, probes with random
coordinates were generated in the rectangular box encom-
passing the structure plus 2.5 A in every direction. The
number of probes was sufficient to produce a stable atom-
probe distance distribution, and typically was 100-fold
greater than the number of atoms in the structure. We dis-
carded isolated probes separated by more than 2.5 A from
any heavy protein atom. For each of the remaining
probes, a distance distribution to all the explicit water
molecules was computed and stored. This quantity was
aggregated for all probes, and divided by the number of
probes, to obtain the structure-dependent empirical distri-
bution of the probability to find a water molecule at the
given distance from a random point in the structure vol-
ume. From this empirical distribution the smoothed
probability distribution, or hydration probability density
distance distribution for structure-specific MCRS was cal-
culated using Parzen kernels [61]. This approach is known
to give a consistent estimation of probability density dis-
tribution and has been successfully used in a study of sta-
tistical preferences in protein structures [62]. Several
examples of such distributions are given in Figure 2.

Calculating knowledge-based atom hydration potentials

For each structure in the training set and for every atom
type we calculated distribution of atom-water contact dis-
tances. This was done in a manner similar a MCRS calcu-
lation, but with structural atoms of a particular type used
instead of random probes. For each test atom type and for
each structure, the observed atom-water distance distribu-

http://www.biomedcentral.com/1472-6807/7/19

tion was divided by the expected atom-water distance dis-
tribution derived for that structure using MCRS. The
resulting likelihood ratios were summed for all structures
in the training set. This aggregate was divided by the over-
all number of the test atoms in the training set and
smoothed using Parzen kernels [61]. Examples of such
empirical normalized distance distributions are given in
Figure 4(a-e) and are also provided in the Additional files
[see Additional file 1]. A logarithm of this value multi-
plied by minus kT factor produces the KBP for hydration
of the test atom type (Figure 4(f)). The distance-depend-
ent hydration potentials thus obtained quantitatively
describe atomic hydropathies of all atom types found in
proteins, DNA and some hetero groups, such as ions, hem
groups etc. Characteristic features of the potentials were
robust in spite of variations in the training database com-
position; to establish this point, the training protein struc-
ture dataset was split into various subsets, and the
potentials were recalculated for each subset separately.

Prediction of location of structural water molecules

For this test, we selected 16 diverse protein structures
based on criteria including the published computational
predictions of water locations; a small to medium struc-
ture size; overall structure quality, and the number of
structure water molecules. Water molecules were pre-fil-
tered to remove those with any heavy protein atom closer
than 2.0A, or with no protein atoms within 4.5A; such
waters in the 16 structures were few, or none. Virtual
probes were placed at the nodes of a 0.2 A cubic grid
encompassing complete structure volume. Nodes with
any heavy protein atom closer than 1.8A, or with no pro-
tein atoms within 4.5A, were discarded. For all the
remaining probes, the local hydration energy was esti-
mated as the sum of hydration potentials contributed by
all protein atoms within 15 A. The grid step of 0.2 A
ensured that the estimated aggregate hydration energy was
comparable at adjacent grid nodes.

In the next step, the probe with the hydration energy min-
imum for the entire structure was selected and all nodes
within 2.6 A around it were removed. This was repeated
for the next best minimal energy probe, and continued
until only the probes located at local minima of hydration
energy and not closer to each other than 2.6 A remained.
The minima positions were further corrected via iterative
steepest descent energy minimization algorithm. This rap-
idly converged to very small displacements of probes per
one step. Inter-probe water-water interactions (Figure 3)
were added during this stage. The resulting set of predicted
structural water positions proved robust to variations in
the grid step and to the initial placement of probes. For
instance, a very close set of predicted structure water loca-
tions was obtained when a comparable number of probes
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were initially located at random points in the structure
space.

The number of predicted hydration sites (lowest hydra-
tion energy probes) for each of the 16 structures (Table 1)
was set to twice the number of the experimentally deter-
mined structural water molecules for the corresponding
structure (please see Discussion section for the explana-
tion of the increased number of probes in the prediction).
The positions of predicted probes were compared to those
of the experimental structural water molecules.

The prediction quality was assessed using a Z-score calcu-
lated as:

Z= (RMSDrandom - RMSDpredicted)/srandom'

where RMSD ;. jiceq IS the oot mean square deviation of
predicted hydration sites from the crystal structure water
locations, and RMSD_,, jorm a0d S, 40m are respectively the
mean similar quantity calculated for the same number of
random probes in the structure volume, and its standard
deviation. The latter is obtained in a computational exper-
iment with the same steric limitations imposed on the
probe - protein atom distances as used during prediction.

Decoy selectivity experiments

For the decoy selectivity tests, a Decoys'R'Us 'hg_structal
misfold' [36] decoy set was used, for Table 2, lines 1-23,
and, and the improved Rosetta set [39] for Table 2, lines
24-64.

Randomly placed probes were generated in a rectangular
box containing the structure with an extra 4.5A added
from all sides. Probes with any heavy protein atom closer
than 2.5A or with no protein atoms within 4.5A were dis-
carded. The remaining probes were considered as belong-
ing to the protein hydration shell (HS). For simplicity, the
volume of this shell was estimated via the ratio of the
number of probes assigned to the HS to the total number
of probes created in the box. To discriminate between the
native fold and the decoys, per-volume average hydration
energy of probes in the hydration shell was selected as a
criterion. Table 2 summarizes the results.
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Additional material

Additional file 1

Atomic Hydration Potentials. The distributions provided in the (archived
with WinRar) graphical form (bitmap file format, .bmp) are normalized
likelihood ratios for protein atom contacts with bound structure water mol-
ecules. Atomic hydration potentials in digitalized form and using it soft-
ware tools for macromolecular solvation analysis can be found at the web
page of the Laboratory for Bioinformatics at the Institute for Genetics and
Selection of Industrial Microorganisms, State Research Center GosNII-
Genetika.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6807-7-19-S1.rar|
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