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Abstract

Single-cell RNA-seq is being increasingly applied in complex study designs, commonly spanning 

multiple individuals, conditions, or tissues. Analysis of such heterogeneous collections requires a 

way of identifying recurrent cell subpopulations. We developed Conos, an approach that relies on 

multiple plausible inter-sample mappings to construct a global graph connecting all measured 

cells. The graph enables identification of recurrent cell clusters and propagation of information 

between datasets in multi-sample or atlas-scale collections.

Progress of scRNA-seq techniques has enabled individual groups to measure dozens of 

samples, often in complex designs incorporating treatment / control sets, disease and normal 

pathology, or multiple tissues. Consortium efforts are underway to generate atlases of single-

cell datasets covering diverse biological contexts with thousands of samples1, 2. Joint 

consideration of such panels poses technical and conceptual analysis challenges, 

necessitating new methods and re-consideration of the aims. In contrast to the traditional 

batch correction problem, where inter-sample variation can be treated as a technical artifact 

that needs to be controlled for3, 4, the panels can include systematically different samples, 

with some of the datasets lacking any shared cell subpopulations. Recent alignment 

methods5, 6, while significantly more flexible, were designed to align relatively small sample 

panels with modest compositional variation. We therefore set out to develop an approach for 

analyzing and navigating large heterogeneous sample collections.
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We reasoned that a unified graph representation could capture likely relationships between 

cells in different samples, and that statistical analysis of such a joint graph can identify 

subpopulations across different samples (Figure 1a). To construct the joint graph, Conos 

(Clustering On Network Of Samples) performs pairwise alignments of individual samples, 

identifying plausible inter-sample cell-cell correspondence (inter-sample edges). Such 

mappings are error-prone, as inter-sample variation cannot be usually modeled or 

constrained. Across many pair-wise comparisons, however, the recurrent subpopulations of 

cells will tend to map to each other, forming clique-like communities within the joint graph 

that can be identified over the background noise of spurious edges (Figure 1a). Conos also 

adds low-weight edges connecting neighboring cells within the individual samples, as a 

weak prior for preserving local neighborhoods of cells in each sample. The plausible 

mapping between a pair of samples is established using mutual nearest-neighbor (mNN) 

mapping in reduced expression space5, 6. We evaluated spaces capturing common variation 

across two or more samples, including common principal component analysis7 (CPCA), 

joint non-negative matrix factorization, and higher order generalized singular value 

decomposition8.

We first applied Conos to a collection of sixteen scRNA-seq samples of human bone marrow 

and cord blood from the Human Cell Atlas2. Projection of the resulting joint graph separated 

all major subpopulations (Figure 1b, Supp. Figure 1), with the detected joint cell clusters 

connecting the corresponding subpopulations across the entire collection. While the 

individual samples were well-mixed within the joint graph, the systematic difference in the 

composition of the two tissues was also apparent (Figure 1c). To quantify robustness and 

sensitivity we perturbed the full dataset to decrease signal or increase heterogeneity between 

samples. Examining recovery of the original subpopulations identified by each method 

under decreasing numbers of cells (Figure 1d) or under decreasing magnitude of 

subpopulation-specific expression signatures (Supp. Figure 1e), we find that CPCA shows 

optimal performance, significantly outperforming earlier methods. Conos performance 

remained robust under parameter perturbations (Supp. Note 1), and even with simple 

pairwise alignment strategies (e.g. nearest neighbor mapping based on simple gene 

correlation; Supp. Figure 1). We have applied Conos to re-analyze a number of recently 

published complex datasets9-12, in all cases joining corresponding annotated subpopulations 

across different samples and tissues (Supp. Figures 2-7).

Modern experimental designs are likely to combine distinct classes of samples within the 

panels, such as sets of disease samples and healthy controls, or multiple tissues from 

different individuals. We simulated increasing heterogeneity of a panel by omitting 

increasing number of random clusters from samples, and evaluating the method’s ability to 

recover originally detected subpopulations (Figure 1e). Conos showed higher robustness 

compared to other methods. Furthermore, Conos was able to sustain uniform mixing (i.e. 

high entropy) of cells from different samples among the identified joint clusters even under 

high sample heterogeneity, where some of the samples shared few or no cell subpopulations 

(Figure 1f,g). Community detection on a joint graph shows high sensitivity, for instance 

enabling Conos to detect subpopulations that may be represented by only a single cell in a 

given sample (Supp. Figure 1f). More importantly, the sensitivity of the proposed approach 
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increases as more samples are added to the panel (Figure 1h), suggesting that larger 

collections of scRNA-seq samples will reveal more subtle recurrent cell subpopulations.

Consideration of diverse sample panels requires one to re-examine the aims of integration. 

While for homogeneous panels, the aim is to identify a set of clusters that appear in nearly 

every sample, this is not the case for panels with distinct classes of samples. For example, 

for a panel containing both tumor and adjacent normal samples12, it would not be desirable 

to lump tumor cells with any normal tissue subpopulations, even though the cluster of tumor 

cells would be restricted to a subset of samples (e.g. Supp. Figure 5). In a more nuanced 

scenario, the clustering may separate tumor-associated CD4+ T cells from their counter-parts 

in the healthy tissues9, picking up persistent biological difference in their state (Figure 2a-d). 

However, for annotating major cell types, a unified cluster of CD4+ T cells across all 

samples would be more appropriate. Graph communities can be viewed as a hierarchical 

clustering of cells, and in that way the difference between separating or joining tissue-

specific subgroups of CD4+ T cells is equivalent to cutting the hierarchy at different levels 

(Figure 2d,e, Supp. Figure 5). Overall, lower cuts will yield higher resolution of 

subpopulations, but will also decrease cluster breadth – the average fraction of samples in 

which a cluster appears. As the balance between the desired resolution and breadth will 

depend on the question being posed by the investigator, Conos incorporates an interactive 

tool to explore the hierarchical community structures (Supp. Figure 8). For the situations 

when higher degree of mixing between samples is desired, Conos implements an option to 

increase “alignment strength” by sampling cell-cell edges from neighborhoods of higher 

radii and rebalancing edge weights (see Methods). Adjustment of this continuous “alignment 

strength” parameter and the optional edge weight rebalancing based on the sample type 

enables higher mixing at expense of resolution (Supp. Figure 9).

Joint graph can be used to map properties between samples by simulating the diffusion 

process. For instance, one can propagate discrete cell annotation labels to datasets that have 

not yet been annotated (Figure 2f). On the bone marrow example, Conos propagates labels 

from one dataset to the other seven with 97% accuracy (Figure 2g). The diffusion 

propagation keeps track of uncertainty, and almost all of the misclassified cells were 

reported to have high uncertainty of the labels (Figure 2h,i). Similarly, diffusion of gene 

expression magnitudes provides a way of deriving common expression space (Supp. Figure 

10). Such “corrected” expression values are often estimated by the existing batch correction 

or alignment methods. We contend that the utility of such “corrected” expression values will 

be mostly limited to visualization. Once the appropriate clustering of cells is established, we 

expect follow up analyses to focus on the expression variation among samples. This includes 

cell type-specific analysis of expression differences between groups of samples, or variation 

within groups. Corrected expression values specifically attenuate differences between 

samples, and would lead to inflated significance estimates in comparisons of different cell 

subpopulations. Instead, Conos reformulates the differential expression tests as comparisons 

of in silico bulk RNA-seq measurements13 that can be delegated to common differential 

expression software14,15, providing convenience routines for the common differential tests.

Overall, our results demonstrate that integration of single-cell collections into a unified 

graph representation provides effective means for integrative analysis, including 
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subpopulation identification, differential expression or annotation. Compared to existing 

methods, Conos implementation shows improved stability and sensitivity, particularly 

notable on heterogeneous sample panels, such as multi-tissue / multi-patient clinical study 

designs. This robustness allows Conos to wire together very diverse collections of samples, 

such as organism-scale atlases where most of the samples will have few or no cell types in 

common. For example, we re-analyzed Tabula Muris mouse atlas1, combining 48 datasets 

covering different mouse tissues (Supp. Figures 11-13), and further combined it with another 

atlas by Han et al.16 (Figure 2j,k). The resulting joint graph integrated a total of 127 

individual datasets, containing 419,405 cells, and was effective at identifying common cell 

populations across samples measuring diverse tissues, as well as overcoming the differences 

of the three different scRNA-seq platforms utilized (Supp. Figures 14-18). The approach is 

fast, particularly when using a simpler PCA space (Supp. Figure 19). Conos can also be 

applied other molecular modalities. As an example, we used Conos to assemble mouse 

single-cell chromatin accessibility atlas17, 18, as well integrate accessibility and scRNA-seq 

data (Supp. Note 2). We hope that the presented approach will enable other research groups 

to effectively interpret single-cell RNA-seq collections in complex experimental designs.

Online Methods

Overview of the approach.

Conos processing can be divided into several key phases. During the phase I, each 

individual dataset in the sample panel is filtered and normalized using standard packages for 

single-dataset processing: pagoda2 or Seurat. Specifically, Conos relies on these methods to 

perform cell filtering, library size normalization, identification of overdispersed genes, and 

in case of pagoda2 - variance normalization. Conos is robust to variations in the 

normalization procedures, but it is recommended that all of the datasets would be processed 

uniformly. During phase II, Conos performs pairwise comparisons of the datasets in the 

panel to establish initial, error-prone, mapping between cells of different datasets. These 

inter-sample edges are then combined with lower-weight intra-sample edges during phase 
III – joint graph construction. The joint graph is then used for downstream analysis, 

including community detection, label propagation, etc.

Pairwise dataset alignments (phase II).

Initial inter-sample edges between a given pair of datasets i and j was established based on a 

choice of 1) rotation space, and 2) neighbor mapping strategy (nearest neighbor or mutual 

nearest neighbor). For each dataset, a set of overdispersed (hypervariable) genes (gi, gj) was 

determined using pagoda2 (by default n.odgenes=2000 top overdispersed genes were used), 

and a union of overdispersed genes from both datasets was taken, limiting the genes to those 

for which the data was available in both datasets: g = [gi ∪ gj] ∩ Gi ∩ Gj, where Gi and Gj 

are the full gene sets for the two datasets. Subsequent analysis was carried out on matrices 

Mi and Mj, with columns corresponding to genes g, and rows corresponding to the cells in 

each dataset. The entries of each matrix were taken to be the variance-normalized expression 

magnitudes determined by pagoda2 (normalized expression magnitudes are used if pre-

processing was performed by Seurat).
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The reduced projection matrices Ri and Rj were obtained according to the space used: For 

CPCA and JNMF, these corresponded to projections onto the corresponding common/joint 

components (30 components, by default). For PCA space, PCs (30 by default) were 

determined independently for Mi and Mj, with Ri and Rj then determined by projecting the 

cells of each dataset onto a joint (i.e. 60-dimensional) space of both sets of PCs. For gene 

space, Ri and Rj were taken to be the matrices Mi and Mj themselves.

Cell-cell similarity between cells k and l was determined as wkl = max(rkl,0), where rkl is the 

Pearson linear correlation between the k-th row of Mi and l-th row of Mj. An alternative L2 

distance was implemented as wkl = exp −
‖Mk

i − Ml
j‖2

σ , where the default scaling constant σ = 

105.

Joint graph (phase III).

For a given sample collection, the nodes of the joint graph G correspond to all of the cells 

included in the collection, connected by a combination of inter- and intra-sample edges. The 

inter-sample edges were determined as mutual nearest neighbors (mNN, default) or plain 

nearest neighbors (NN), with the weight wkl. Neighborhood size k=15 was used by default. 

Intra-sample edges for each dataset i connected each cell to kself (default kself = 5) cells 

within the dataset i using weights wkl = cself · rkl within the reduced space Ri as determined 

by the projection of the cells onto the top PCs of Mi. The constant cself = 0.1 was used to 

reduce the contribution of the intra-sample edges relative to the inter-sample edges.For the 

visualization purposes, joint graphs were laid out in two dimensions using largeVis 
algorithm, varying parameter alpha between 0.5 and 2.5 depending on the complexity of the 

dataset.

Joint clustering.

Joint clusters were determined as communities of the joint graph G, using standard 

community detection methods. By default, walktrap.communities algorithm implemented by 

the igraph package was used, with step=20. Louvain clustering implemented by 

igraph::multilevel.communities method provided much faster performance, but lacked 

hierarchical output. Implementation of the Leiden community detection method with the 

resolution parameter was adapted from https://github.com/vtraag/leidenalg.

Alignment strength.

By default, Conos aims to preserve biological variation by keeping track of cell-cell 

distances using edge weights, and treating all comparisons in a symmetric way. In some 

cases, however, the user may want to force greater degree of alignment (mixing) of the 

datasets. This results in a trade-off between resolution (ability to resolve finer 

subpopulation) and mixing of samples (Supp. Figure 9). To provide such a control we added 

k1 parameter, which allows to increase the nearest neighbor search radii. k1 is initially used 

instead of k during mNN-graph construction. Then, the edges are pared down to reduce 

maximal degree of the graph vertices close to k, making the graph less dense and more 

regular. The following greedy procedure is used:
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1. Vertices are ordered from the highest to the lowest degree.

2. For each vertex, edges are ordered by the degree of their target vertices (high to 

low).

3. Algorithm iterates through the vertices and corresponding edges, removing an 

edge if the degrees of its both incident vertices are larger than a specific cut-off 

k0.

As this is a greedy algorithm, to achieve more uniform reduction Conos runs the procedure 

iteratively, reducing k0 from k1 to k using logarithmic grid of three steps. We also observed 

that even with very large k1 (when trying to force alignment of very distant cells), some 

vertices have too few nearest neighbors with positive correlation rkl. To prevent that, weight 

calculation can be changed from wkl = max(rkl, 0) to wkl = 1 + rkl (using cor.base=2 

argument; by default cor.base value will be increased towards 2 automatically when 

increasing k1). To provide a user-friendly way to control k1 we also implemented an 

alignment strength parameter α (alignment.strength), such that k1 = α2Kmax, where Kmax is 

the maximal number of total cells among the samples in the panel. Thus, α varies from 0 to 

1, where 0 (default) corresponds to the alignment with no additional edges, and 1 

corresponds to a full (non-informative) alignment with uniform edge placement over graph.

Rebalancing of edge weights.

In many experimental designs, samples can be classified by an extraneous factor, such as 

patient group (e.g. healthy vs. disease), or protocol (e.g. Smart-seq2 vs. 10x Chromium). As 

discussed in the manuscript, such systematic differences should typically lead to 

hierarchically-defined factor-specific subclusters within each major subpopulation. However, 

in some cases, the user may want to explicitly force alignment across such factors. To 

implement such control, we added an optional step, which balances weights of the edges 

connecting cells from samples belonging to the same or different values of the factor. This is 

achieved by minimizing of the following function:

∑
l = 1

N factors
∑

s = 1

Ncells ∑t ∈ adjl(s)Wst
∑t ∈ adj(s)Wst

− 1
N factors

s ,

where Nfactors is the total number of factor levels; Ncells is the total number of cells in the 

dataset; adj(s) is the set of cells adjacent to the cell s; adjl (s) is the set of cells adjacent to s 
and belonging to the factor level l; wst is the weight of the edge between cells s and 

t; N factors
s  is the number of different factors among cells connected to s. The minimization is 

performed using a the two-step procedure. The first step estimates the imbalance ratio for a 

cell s and a factor level l:usl = N factors
s

∑t ∈ adjl(s)wst

∑t ∈ adj(s)
qqqqq wst

. The second step updates the edge 

weights as wst =
wst

uslt
utls

, where lc denotes the factor level of the cell c. This procedure is 

repeated 50 times, which does not guarantee convergence, but allows to reduce the loss 
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function by several orders of magnitude in a reasonable time. Such optimization preserves 

the ratios of the edge weights ∀
ws j
wsi

: li = l j, varying only the weight ratios between the edges 

connecting cells with different factor levels. Further prioritization of the edges connecting 

samples from different factor levels can be gained using same.factor.downweight parameter 

(which, when set below the default value of 1 will reduce the weight of edges connecting 

cells of the same factor level). Edge rebalancing procedure can also be applied without an 

extraneous grouping of samples by assigning each sample to its own factor level.

Label and value propagation.

Propagation of both labels and expression magnitudes was treated as a general problem of 

information propagation between graph vertices. Graph vertices can have multiple labels, 

either continuous or discrete. Such labels can be affected by biases or different kinds of 

noise. Assuming that adjacent vertices on the graph have similar labels, we can reduce this 

noise using iterative diffusion process on the joint graph. For continuous labels the diffusion 

process was implemented as follows:

1. At the beginning of an iteration, each vertex has a label Li ; An edge between 

vertices i and j has weight wi,j and length di,j = 1 – wi,j (see phases II and III for 

info about weight estimation).

2.
During the iteration, for each label we update its value with Li′ =

∑ j ∈ ad ji
v
i, j∗

L j

∑ j ∈ ad ji
vi, j

, 

where vi,j = exp(−a(di,j + b)), a and b are hyper-parameters of the algorithm 

(default values a = 10, b=0.5 were used). The set adji includes all vertices 

adjacent to i, including vertex i(wi,i = 1).

3. The iterations are carried out until one of the two conditions are met: i) a 

maximum allowed number of iterations is reached (default 15), or the infinity 

norm of difference between the two labelings (maxi∣Li′ – Li∣) falls below a 

minimal threshold (default 0.005).

Considering each gene as a continuous label, Conos uses this diffusion process to correct 

gene expression matrices and bring all of the datasets into a “common” expression space. 

We note that a single iteration of the diffusion process with parameter a=0 is equivalent 

summing of expression over adjacent cells, which is a common approach for noise 

correction in scRNA-seq data.

For discrete labels, the implementation tracked label uncertainty, with the diffusion process 

being used to estimate posterior probability of each label for each vertex. This was 

performed by running diffusions on the probability distribution of the labels:

1. Posterior distribution of possible labels was kept for each vertex. The starting 

state for the labeled vertices was set so that the probability of the true label is set 

to 1, with the probability of other values set to 0. For the unlabeled vertices, all 

of the values were initially set to 0.

Barkas et al. Page 7

Nat Methods. Author manuscript; available in PMC 2020 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. On these distributions we simultaneously simulate the diffusion process for each 

component of the distribution (i.e. for each label). After each diffusion step, the 

values of the posterior distributions were re-normalized so that the sum of the 

label probabilities was equal to 1.

Diffusion of discrete values was used for the cell annotation propagation results (Figure 2f-

h). In the figures, the uncertainty of the labeling was evaluated as 1 – maxi(pi).

Benchmark design.

Quantitative performance of different methods shown in Figure 1 and Supp. Figure 1 relied 

on the same general design, where each method m was ran on a full dataset to obtain 

clustering Cm. The full dataset was then gradually perturbed to pose a more challenging 

problem, and the ability of different methods to recover their corresponding original 

clustering Cm was measured. Such procedure aims to place different methods on equal 

footing, and make use of realistic data (as opposed to synthetic). Details of different 

benchmarks are given below:

• Cell subsampling benchmark (Figure 1e). HCA BM+CB 3k dataset containing a 

total of 16 samples was used (see below for dataset details). A percentage of cells 

premoved ∈ [0, 80%] (x-axis) was randomly sampled and removed from each 

dataset in the collection. For each value of premoved, a total of 10 replicates of 

dataset perturbation were generated. To assess performance, adjusted Rand index 

(y axis) was calculated relative to the first replicate with premoved = 0. A 

smoothed mean for each method and the corresponding 95% confidence band is 

shown on the Figure 1e were calculated using igraph::geom_smooth() method. 

Note that all of the examined methods show certain level of instability to 

negligible perturbations of the dataset (such as shuffling of the cell order in the 

matrix, or removal of a single cell). As datasets sampled with premoved = 0 

shuffled the order of the cells, the adjusted Rand index value at premoved = 0 is 

below 1.

• Cell mixing benchmark (Supp. Figure 1e). HCA BM+CB 3k dataset was used. 

For each dataset i, background expression vector bi was determined for each 

gene g as bg
i = Ng

i , where Ng
i  is the total number of molecules of gene g detected 

in the dataset i. A perturbed dataset with a mixing proportion pmix ∈ [0,1] was 

generated for each cell by iterating through each molecule of the cell, keeping 

the original molecule with a probability 1 – pmix, or alternatively (with 

probability pmix) replacing it with a molecule randomly sampled from the 

background profile bi. This way datasets generated with pmix = 0 are equivalent 

to the original data, whereas pmix = 1 yields datasets where each cell is a random 

sampling of the background, and any cell subpopulations would be impossible to 

discern.

• Cluster dropping benchmark (Figure 1f-h). To simulate increasing compositional 

variability between the samples, cells belonging to a cluster c ∈ Cm were omitted 

with a probability pomit. The sampling procedure was carried out independently 

for each dataset, so that different clusters were dropped from different datasets 
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(increasing compositional variability). To guarantee a minimal dataset size, a 

total of 5 clusters were sampled this way in each dataset. Under such procedure, 

pomit = 0 maintains the full original dataset, whereas pomit = 1 maximizes inter-

sample compositional differences.

The degree to which the cells from the different samples were mixed within the 

resulting clusters was quantified using normalized relative entropy, weighted by 

the cluster size:

1 −
∑k = 1

nclust skKL( f k, F)

log(nsamples)∑k = 1
nclust sk

where fk is a vector giving the number of cells from each sample in a cluster k, 

KL(fk, F) is the empirical KL divergence (relative entropy) between the fk and 

the total number of cells in each dataset F (calculated using KL.empirical from 

entropy package in R), sk is the total number of cells in a cluster k, nclust is the 

number of clusters detected by the method on a current realization of the dataset, 

and nsamples is the total number of samples in the panel. As we expected to 

observe systematic composition differences between bone marrow (BM) and 

cord blood (CB), the normalized entropy was assessed separately for BM and CB 

cells (Figure 1g and 1h, respectively).

• Number of stable clusters (Figure 1i). To assess how the number of stable 

clusters changes with the increasing size of the sample panel, we assembled a 

larger panel of samples covering the same tissue (HCA BM+10x BM dataset). 

Ten randomized “series” were constructed, with each series starting with two 

randomly chosen datasets, and then adding one dataset per step up to a maximum 

of 10 available datasets (sampling without replacement was used to construct the 

series). As community detection algorithms rely on heuristics such as 

maximization of modularity, we evaluated the number of stably detectable 

clusters as a number of independent subtrees in the hierarchy returned by the 

walktrap.community algorithm. A stable subtree was determined as a subtree 

containing at least 30 cells that can be detected under a 10% cell subsampling 

perturbation (see below) with the Jaccard coefficient to the best matching subtree 

above 0.8. To evaluate these stability properties, for each run additional 10 

subsampling runs were made omitting 10% of the cells of the sample and 

rerunning walktrap.community to generate the perturbed trees based on which 

the Jaccard coefficient was calculated.

• Sensitivity to individual cells (Supp. Figure 1f). To evaluate how well different 

methods are able to pick up rare cells in the dataset, we simulated rare cell 

occurrences by randomly choosing a single sample in the panel, choosing a 

random joint cluster c ∈ Cm that occurs within that dataset, and then leaving only 

one randomly selected cell from that cluster c within that sample. HCA BM+CB 

1k panel was used, containing 16 samples. A total of 16 × 5 × 5 = 400 perturbed 
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panels were generated, sampling five different clusters c from each of the 16 

datasets, with five different random choices of the retained cell being made. In 

evaluating the performance, the remaining cell from the cluster c was scored as 

correctly classified if it was assigned to a cluster to which other cells of a cluster 

c were most commonly assigned.

• Control of alignment strength (Supp. Figure 9). To evaluate the effectiveness of 

the optional alignment strength and edge weight rebalancing parameters, we used 

an example of the human pancreas islets datasets (Dataset 10) from 10x 

Chromium, inDrops and Smart-Seq2 protocols. Individual samples were 

separated according to the provided annotations, and normalized using Pagoda2 

with parameters nPcs=100 and n.odgenes=1000. Pagoda2 objects were aligned 

using Conos with PCA space (k=30, k.self=5, cor.base=2). For each value of the 

alignment strength parameter (α ∈ [0.0, 0.1, 0.2, 0.3, 0.5, 1.0]), the analyses 

were run with and without edge weight balancing. Because cell type annotation 

for Smart-Seq2 protocol was not available, Conos label propagation procedure 

was used to label these cells (Supp. Figure 9a; label transfer was performed using 

alignment generated using default Conos parameters, i.e. α = 0.0 and no edge 

weight balancing).

For each combination of the alignment strength and edge balancing parameters 

we obtained a joint graph, representing the dataset alignment. For each such 

graph Gi we then estimated a value of the resolution parameter Ri of Leiden 

clustering, which yields approximately 100 clusters of size ≥ 10 cells. Then, for 

each Gi we ran Leiden clustering while varying the resolution parameter on a 

uniform grid between 0.1 and Ri with 15 intermediate points. For each of the 

resulting clusterings, we then estimated the normalized relative entropy against 

the protocol factor (Supp. Figure 9b). Finally, as a visual check, we visualized 

the embeddings of the graphs using largeVis (Supp. Figure 9c).

• Assessment of runtime performance. Suppl. Figure 19 shows runtime CPU and 

memory requirements of Conos under two different scenarios: i) cell 

subsampling benchmark detailed above, and ii) integration of increasing number 

of datasets. The later was done by taking an increasing number of random 1k cell 

draws from the first HCA BM dataset, combining up to a 100 such simulated 

datasets. Memory usage was approximated based on the total size of the session 

(which may not account for transient spikes of memory usage). We note that 

while the current implementation performs O(N2) comparisons between samples 

N, the overall runtime, especially in PCA space, is fast enough to allow for 

integration of hundreds of datasets. Simple schemes to reduce runtime and 

memory requirements can be devised for very large collections, such as limiting 

pairwise alignments to a certain random fraction of all possible comparisons. 

Performance was assessed a cluster of nodes equipped with Xeon E5-2XXX 

family CPUs, using 12 cores per process.
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Implementation of other methods.

Conos performance was compared with the two previously published methods, configured in 

the following way:

• Seurat package was installed from CRAN (v2.3.4). The pre-processing and 

dataset alignment was ran as recommended in the tutorial: http://satijalab.org/

seurat/immune_alignment.html . The results presented use default resolution. 

Using alternative resolution parameters (0.6, 1.4) did not affect the performance 

significantly.

• The mNN approach by Haghverdi et al. was ran by installing scran package from 

CRAN (v 1.6.9). Hypervariable genes for each dataset were determined 

according to the tutorial. To enable execution on large datasets within the 

available memory constraints, the number of hypervariable genes was limited to 

the top 2000 genes (same number as used for Conos), based on the sum rank of 

genes across dataset-specific hypervariable gene lists. To determine joint 

clustering, an approach analogous to Conos was used: k-nearest neighbor graph 

(k=30) was constructed based on the 30 top PCs of the adjusted expression 

values, and igraph::walktrap.community method was used to identify cell 

clusters. Using alternative number of genes (1000, 3000) and components 

(20,50) did not affect the performance significantly.

To enable large-scale benchmarking, the number of common space components estimated by 

Conos and the two methods above was limited to 20.

Data availability and dataset-specific analysis details.

1. Human Cell Atlas (HCA) bone marrow and cord blood was downloaded from 

the HCA portal (https://preview.data.humancellatlas.org/). The dataset represents 

a relatively uniform collection of data on well-studied tissues, making it 

particularly suitable for benchmarking purposes. To reduce calculation times in 

benchmark evaluations, we took a random subset of the cells from lane1 of each 

dataset. 3000 cells per sample were used by default (HCA BM+CB 3k datasets). 

A smaller, 1000 cell dataset (HCA BM+CB 1k) was used for the more extensive 

sensitivity analysis (Supp. Figure 1f).

2. For Figure 1i, we combined HCA BM samples with two samples (“Frozen 

BMMCs Healthy Donors 1 and 2”) downloaded from 10x Genomics (https://

www.10xgenomics.com/resources/datasets/). This was done to extend the 

number of samples (x axis in Figure 1i).

3. Azizi et al. data on breast cancer was downloaded from GEO (GSE114725) as a 

count matrix, together with the provided annotations. In showing the plots 

(Figure 2, Supp. Figure 4) the annotations were simplified to collapse patient-

specific populations and omit smaller subpopulation distinctions. To demonstrate 

applicability to different levels of data fragmentation, the dataset was re-analyzed 

by combining either 8 patients, 15 patient+tissue combinations, or 53 patient
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+tissue+replicate combinations. The dataset provides a good example of a 

clinically-oriented panel with both tissue and patient-level heterogeneity.

4. Lambretchs et al. molecular count data and annotations on the lung cancer were 

downloaded from ArrayExpress (E-MTAB-6149, E-MTAB-6653). The dataset 

provides an example of a more typical case-control design of a clinically-

oriented panel.

5. Guo et al. molecular count data and annotations non-small-cell lung cancer were 

downloaded from GEO (GSE99254). The dataset serves as an example of a 

heterogeneous clinically-oriented panel, with limited complexity and number of 

cells in some of the samples.

6. Puram et al. molecular count data and annotations on head-and-neck cancer were 

downloaded from GEO (GSE103322). Similar to Guo et al, the dataset provides 

an example of a collection with challenging complexity and cell number 

variation in a clinically-oriented panel.

7. Human cortex comparison. The datasets were included as an example of 

integration of distinct nuclei-based protocols.

• Count matrix for Hoghe et al. bioRxiv 2018 was downloaded from 

downloaded from http://celltypes.brain-map.org/rnaseq.

• Lake et al. count matrix was downloaded from GEO (GSE97930).

8. Tabula Muris mouse data was downloaded from https://tabula-

muris.ds.czbiohub.org/. Only cells with at least 1000 molecules were analyzed. A 

total of 48 datasets were combined.

9. Mouse cell atlas by Han et al. and the relevant annotations were downloaded 

from http://bis.zju.edu.cn/MCA/. Cell line datasets were excluded.

10. Human pancreas islets data from different platforms, used to demonstrate 

alignment between different platforms and illustrate mixing controls (Supp. 

Figure 9) was taken from the following sources:

• 10x Chromium platform data were taken from the publication Xin et al.
19 and downloaded from GEO (GSE114297). Normalized count 

matrices were used.

• inDrops platform data were taken from the publication of Baron et al.20 

and downloaded from GEO (GSE84133). Only human data (4 samples) 

was used. Normalized count matrices were used.

• Smart-seq2 platform data were taken from the publication of 

Segerstolpe et al.21 with count matrices downloaded from ArrayExpress 

(E-MTAB-5061). Only data from healthy patients (6 samples) were 

used.

11. For the demonstration of ATAC-seq alignment, and alignment between ATAC-

seq and RNA-seq (Supp. Note 2), the following datasets were used:
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• sci-ATAC data from Cusanovich et al.17 was downloaded from the 

authors website (http://atlas.gs.washington.edu/mouse-atac/). Author-

provided accessibility scores were used as gene-level input to Conos.

• sci-CAR data from Cao et al.18 was downloaded from GEO 

(GSE117089). To increase coverage, the cells were aggregated into 

groups of 10 based on transcriptional similarity (see Supp. Note 2 for 

details)

Code availability.

Conos is implemented as an R package with C++ optimizations, and is available on GitHub 

(https://github.com/hms-dbmi/conos) under the GPL-3 open source license. Analysis scripts 

and intermediate data representations used for the preparation of the manuscript can be 

found on the author’s website (http://pklab.med.harvard.edu/peterk/conos/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Joint graph is an effective strategy for assembling diverse scRNA-seq dataset 
collections.
a. Conos builds joint graph by comparing all pairs of datasets. Reduced space (e.g. CPCA) is 

determined for each pair and the putative inter-sample edges are established using mutual-

nearest neighbor mapping. Low-weight within-sample edges are also included in the graph. 

Subpopulations of cells recurrent within the dataset collection form clique-like communities 

of inter-sample edges within the joint graph.

b. Joint graph combining eight human bone marrow and eight cord blood datasets is 

visualized using largeVis embedding.
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c. Visualization of each individual sample on the joint embedding.

d. Adjusted Rand index (y-axis) is shown as a function of the fraction of cells omitted from 

the datasets (x-axis) relative to the full dataset for different joint clustering approaches. 

Conos shows improved stability of subpopulation detection even for small numbers of cells.

e. Stability of the subpopulation detection is shown for increasing amount of heterogeneity 

between datasets. Adjusted Rand index is shown for increasing probability of random 

subpopulation omission from individual datasets (x-axis, see Methods).

f,g. Mixing of different bone marrow (h) and cord blood (i) datasets within the identified 

subpopulations is quantified using normalized average cluster entropy (see Methods).

h. The power to detect cell subpopulations increases with the size of the collection. The 

number of stable clusters (y axis, see Methods) detected in a collection of human bone 

marrow samples (red curve) increases as more samples are added to the collection (x-axis), 

while maintaining high level of sample mixing (high average cluster entropy) within each 

cluster. In contrast, addition of randomized expression datasets (grey) does not result in such 

increase.

d-h: Mean across n=10 random replicates is shown for each point, with shading marking the 

95% confidence band.
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Figure 2. Examples of analyses using joint graphs.
a-e. Trade-off between cluster resolution and sample breadth. Joint graph is shown for n=15 

samples from eight breast cancer patients9 (a). The distribution of source tissues (b). A 

fragment of the subpopulation hierarchy is shown for T cells subsets (d), with color of the 

branches showing tissue composition, and width showing normalized sample entropy 

(higher entropy corresponds to more samples contributing to the branch). Depending on the 

level, a cut of the cluster hierarchy can yield more granular but tissue-specific clusters (c) or 

less granular clusters that incorporate more tissues and samples (e).

f-i. Propagation of cell annotation labels. Joint embedding of bone marrow samples from 

n=8 patients is shown (f). The annotations were erased from all but one sample, and 

propagated back to the entire dataset. Positions of the incorrectly propagated labels (g). 

Uncertainty of propagation, reported by Conos (h). Reported uncertainty of correctly and 

incorrectly propagated labels (i).

j-k. Conos integration of the Tabula Muris1 and Han et al.16 mouse atlases. Joint graph of 

the 127 datasets is, with colors and numbers marking top-level joint clusters (j) or scRNA-

seq platforms (k).
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