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Abstract

Background/Objectives: Quantile-dependent expressivity occurs when a gene’s phenotypic 

expression depends upon whether the trait (e.g., BMI) is high or low relative to its distribution. We 

have previously shown that the obesity effects of a genetic risk score (GRSBMI) increased 

significantly with increasing quantiles of BMI. However, BMI is an inexact adiposity measure and 

GRSBMI explains <3% of the BMI variance. The purpose of this paper is to test BMI for quantile-

dependent expressivity using a more inclusive genetic measure (h2, heritability in the narrow 

sense), extend the result to other adiposity measures, and demonstrate its consistency with 

purported gene-environment interactions.

Subjects/Methods: Quantile-specific offspring-parent regression slopes (βOP) were obtained 

from quantile regression for height (ht) and computed tomography (CT), dual-energy x-ray 

absorptiometry (DXA), anthropometric, and bioelectrical impedance (BIA) adiposity measures. 

Heritability was estimated by 2βOP/(1+rspouse) in 6,227 offspring-parent pairs from the 

Framingham Heart Study, where rspouse is the spouse correlation.

Results: Compared to h2 at the 10th percentile, genetic heritability was significantly greater at the 

90th population percentile for BMI (3.14-fold greater, P<10−15), waist girth/ht (3.27-fold, 

P<10−15), hip girth/ht (3.12-fold, P=6.3×10−14), waist-to-hip ratio (1.75-fold, P=0.01), sagittal 

diameter/ht (3.89-fold, P=3.7×10−7), DXA total fat/ht2 (3.62-fold, P=0.0002), DXA leg fat/ht2 

(3.29-fold, P=2.0×10−11), DXA arm fat/ht2 (4.02-fold, P=0.001), CT-visceral fat/ht2 (3.03-fold, 

P=0.002), and CT-subcutaneous fat/ht2 (3.54-fold, P=0.0004). External validity was suggested by 

the phenomenon’s consistency with numerous published reports. Quantile-dependent expressivity 

potentially explains precision medicine markers for weight gain from overfeeding or antipsychotic 

medications, and the modifying effects of physical activity, sleep, diet, polycystic ovary syndrome, 

socioeconomic status, and depression on gene-BMI relationships.

Conclusion: Genetic heritabilities of anthropometric, CT, and DXA adiposity measures increase 

with increasing adiposity. Some gene-environment interactions may arise from analyzing subjects 
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by characteristics that distinguish high vs. low adiposity rather than the effects of environmental 

stimuli on transcriptional and epigenetic processes.

Quantile-dependent expressivity occurs when the phenotypic expression of a gene depends 

upon the percentile of the phenotype, i.e., whether the trait (e.g., body mass index, BMI) is 

high or low relative to its distribution [1–4]. This is in contrast to traditional estimates of a 

genetic effect size that are assumed to be constant across all population percentiles [5]. We 

have shown that the effect of a genetic risk score (GRSBMI) derived from 32 obesity-related 

single nucleotide polymorphisms (SNPs) increased significantly with increasing quantiles of 

the BMI distribution (P=0.002) and that its effect at the 90th percentile was 4.2-fold greater 

than at the 10th BMI percentile [1]. Moreover, the effect of the rs1558902 FTO risk allele 

was 6.7-fold greater at the 90th than the 10th BMI percentile. Others have also demonstrated 

increasing effect size with increasing BMI levels [6–9], and more recently that quantile-

dependent expressivity varies between SNPs [7].

Gene-environment interactions have been primarily attributed to the effects of environmental 

stimuli on: 1) differential transcription rates across genotypes, and 2) epigenetic changes, 

such as DNA methylation, histone modifications, and non-coding RNA [10,11]. An 

important consequence of quantile-dependent expressivity is that subjects selected for 

environmental factors that distinguish high vs. low BMI can produce apparent gene-

environment interactions [1]. No published account or systematic review appears to have 

considered quantile effects as the basis for creating gene-environment interactions [10,11].

Prior genetic analyses have focused almost exclusively on BMI, which does not distinguish 

fat from lean tissue [12]. Body fat includes both metabolically active visceral fat and less-

active subcutaneous fat. Computed tomography (CT) X-rays measure visceral adipose tissue 

volume directly by location, thus providing the standard reference for quantifying abdominal 

obesity [13]. Dual-energy x-ray absorptiometry (DXA) provides a less-expensive, less-

radioactive alternative to CT that provides regional measurements but does not directly 

discriminate visceral from subcutaneous fat in the abdominal region [13]. Bioelectrical 

impedance (BIA) measures body fat on the principle that fat facilitates higher resistance than 

the water in lean tissue. Anthropometric measures of obesity include waist-to-hip ratio, 

skinfolds and girths. Waist circumference is thought to represent both visceral and 

subcutaneous fat while hip circumference reflects subcutaneous fat only [12]. It is not know 

whether the heritabilities of CT, DXA, anthropometric, and BIA measures of adiposity are 

quantile specific.

The purpose of this paper is to test whether quantile-dependent expressivity of BMI is 

significant using a more inclusive genetic measure (h2, heritability in the narrow sense [5]) 

in a large population (Framingham Heart Study [14]), whether its effect extends other 

adiposity measurements, and whether it potentially explains gene-environment interactions 

reported by others. Heritability is studied because its estimate of additive genetic effects 

represents between 45% and 85% of the BMI [15], 57% of the CT-subcutaneous [16], and 

36% of CT-visceral fat variance [16], which are all considerably greater than the 2.7% of the 

BMI variance represented by the 97 loci identified in genome-wide association studies [17].
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Methods

Framingham Study FRAMCOHORT, GEN3, FRAMOFFSPRING Research Materials were 

obtained from the NHLBI Biologic Specimen and Data Repository Information 

Coordinating Center. Use of the anonymized Framingham Cohort data for analysis was 

approved by the Lawrence Berkeley National Laboratory Human Subjects Committee (HSC, 

Approval 107H021-13MR20). The hypothesis tested are exploratory and not considered as 

part of the initial Framingham Study design. Quantile regression [18] was applied to 

offspring-parent pairs and sibships of the Framingham Study [14] to obtain robust 

(insensitive to outliers), nonparametric estimates of quantile-specific heritability for CT, 

DXA, anthropometric, and BIA measures of adiposity. Means and regression slopes are 

presented ±SE. Detailed descriptions of the cohorts, adiposity measures, and statistical 

methods are provided as supplementary material.

Results

Supplementary Table 1 presents the baseline characteristics, spousal correlations, offspring-

parent (βOP) and full-sibling regression slopes (βFS), and traditional estimates of heritability 

as derived from βOP (h2=2βOP/(1+rspouse)) and βFS (h2=[(1+8rspouseβFS)0.5−1]/(2rspouse)) 

[5]. Spouses were most concordant for age- and sex-adjusted height and moderately 

concordant for all adiposity measures. Heritability was strongest for height, followed by 

BMI and CT-subcutaneous fat, then remaining DXA and anthropometric measurements, and 

weakest for BIA-estimated fat body mass. In most cases, estimates calculated from βOP were 

similar to those calculated from βFS. This suggests that, for most measures, the effects of 

dominance and shared sibling environment that would increase the βFS but not βOP [5], and 

the different effects of assortative mating on sibling vis-à-vis offspring-parent heritability 

estimates [5], were probably modest.

Quantile-dependent expressivity.

Figure 1A presents the offspring-parent regression lines at the 10th, 25th, 50th, 75th, and 90th 

percentiles of the offspring’s age- and sex-adjusted BMI distribution. The slopes (βOP) get 

progressively steeper with increasing percentiles of the offspring’s distribution. The slope at 

the 90th percentile was 3.14-fold greater than the slope at the 10th percentile (P<10−15). 

Figure 1B plots these slopes, along with those of the other percentiles between the 5th and 

95th percentiles, vs. the percentiles of the offspring’s distribution. They show that heritability 

increased linearly with increasing percentiles of the offspring’s distribution (i.e., slope±SE: 

0.0040±0.0004 increase per percent, P<10−15) with some evidence of nonlinearity. If the 

genetic effect size was constant over all percentiles, as traditionally assumed, then all the 

line segments in Figure 1A would be parallel, and the graph in Figure 1B would be flat.

Figure 2A shows that height h2 was level throughout its distribution (i.e., a non-significant 

linear increase in slope of only 0.0003±0.0002, P=0.26). Moreover, Table 1 also shows that 

the difference in βOP between short (10th percentile) and tall individuals (90th percentile) 

was 0.024±0.022 (P=0.27). Increasing heritability at higher quantiles of the offspring’s 

distribution were significant for DXA estimates of total fat (P=7.8×10−8, Figure 2B), and CT 

estimates of visceral (P=0.0002, Figure 2C) and subcutaneous fat (P=2.5×10−8, Figure 2D).
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Table 1 and Supplementary Figures 1–3 show that similar results were obtained for the other 

adiposity and weight measurements. Compared to h2 at the 10th percentile, h2 was 

significantly greater at the 90th population percentile for waist girth/ht (3.27-fold greater, 

P<10−15), hip girth/ht (3.12-fold, P=6.3×10−14), waist-to-hip ratio (1.75-fold, P=0.01), 

sagittal diameter/ht (3.89-fold, P=3.7×10−7), DXA total fat/ht2 (3.62-fold, P=0.0002), DXA 

leg fat/ht2 (3.29-fold, P=2.0×10−11), DXA arm fat/ht2 (4.02-fold, P=0.001), CT-visceral 

fat/ht2 (3.03-fold, P=0.002), CT-subcutaneous fat/ht2 (3.54-fold, P=0.0004), bi-deltoid 

diameter/ht (2.45-fold, P=0.0009), thigh girth/ht (2.34-fold, P=2.9×10−6), arm girth/ht (2.29-

fold, P=0.001), and neck girth/ht (2.05-fold, P=0.0001). The supplementary figures and 

Supplementary Table 2 show h2 estimated from βFS was usually similar to h2 estimated from 

βOP. Supplementary Table 3 shows that significant quantile-dependent heritability was 

replicated separately for the first generation βOP (children in the Offspring Cohort and their 

Original Cohort parents) and βFS (Offspring Cohort siblings) and the second-generation βOP 

(children in the Third Generation Cohort and their Offspring Cohort parents) and βFS (Third 

Generation Cohort siblings).

Discussion

These analyses provide consistent evidence for quantile-dependent expressivity from 

applying a simple, robust estimate of quantile-specific heritability (h2) to a diversity of 

adiposity measures. Their nonparametric significances were determined from 1000 bootstrap 

samples. With the exception of BIA, all of the measures showed significant quantile-specific 

heritability, including both visceral and subcutaneous fat, both axial and appendicular fat, 

and both upper and lower depots. These results could have important implications with 

respect to published conclusions of precision medicine and gene-environment interaction. 

Important caveats to our analyses are: 1) h2 lacks the specificity of directly measured 

genotypes even if it is a more inclusive genetic measure; and 2) the formula used for h2 

probably do not adequately represent the true complexity of obesity genetics and shared 

environmental effects. To addresses these concerns, the discussion to follow re-evaluates 

published studies from perspective of quantile-dependent expressivity. These are studies that 

differed from our analyses in that they measured genetic variants directly, or they used 

different estimates of heritability. External validity is suggested by the many published 

examples of gene-environment interactions that are consistent with quantile-dependent 

expressivity.

Gene-environment interactions

Reddon et al. [10] and Youngson and Morris [11] provide a comprehensive review of gene-

environment interactions, their limitations, and their possible epigenetic origins. Abadi et al. 

[7] discussed gene-gene interactions as a potential contributor to gene-environment 

interactions. Alternatively, as illustrated in Figure 1B (italics), quantile-dependent 

expressivity suggests that gene-environment interactions could potentially be the 

consequence of sampling from different portions of the adiposity distribution [1–4]. 

Specifically, environmental factors associated with higher or lower BMI (e.g., physical 

activity, diet, socio-economic status) will exhibit greater or lesser genetic effect sizes in 

accordance with their different average BMI. Figure 3 demonstrates this possibility using 
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Rask-Andersen et al.’s analysis of their 94-SNP GRSBMI vs. 131 lifestyle factors in 362,496 

unrelated Caucasian subjects [19]. Specifically, the figure shows a strong linear relationship 

between gene-environment interactions (βGxE, vertical axis) vs. the effects of lifestyle 

factors on BMI (βE, horizontal axis) when evaluated at a one standard deviation lifestyle 

difference (to adjust for the differences in scale across variables). The nineteen βGxE 

interactions that attained Bonferroni significance (solid circles) all showed strong 

environmental effects, consistent with the prediction that factors that distinguish high vs. low 

BMI will produce apparent gene-environment interactions.

The examples to follow present some better-known gene-environment interactions that 

might be more easily explained by quantile-dependent expressivity. Quantile-dependent 

expressivity could potentially provide a single explanation for many reported gene-

environment interactions (reductionism), whereas their transcriptional/epigenetic 

explanation would presumably involve many different mechanisms for the diversity of genes 

and environmental effects.

Current obesogenic environment

Rokholm et al. [20,21] describe two examples of contemporaneous increases in BMI genetic 

variance and obesity. In Danes born between 1931 and 1982, the additive genetic variance 

was significantly and positively associated with mean BMI (p=0.015) and percent obese (p = 

0.001) across 15,017 twin pairs divided by sex and birth year [20]. In male Swedish 

conscripts born between 1951 and 1983, BMI genetic variance increased from 4.3 to 7.9 

whilst the percent obese increased >5-fold (from 0.8% to 4.4%) [21]. Not only did BMI 

genetic variance correlate strongly with prevalence of obesity over time (r=0.92), both 

variables showed the same moderate increase between 1972 and 1991, and accelerated 

increase thereafter. Whereas Rokholm et al. attribute the temporal increase in genetic effects 

to the obesogenic environment, quantile-dependent expressivity attributes these effects to 

higher average BMI per se (i.e., where the genetic effect size would not increase if BMI was 

constant even in the context of a more obesogenic environment). Guo et al. [22] reported 

that genome-wide complex trait analysis (GCTA) estimates of BMI heritability were greater 

during the obesogenic period (>1985) than before in individuals aged 21–40 (during vs. 

before: 0.71 vs 0.42), 41–50 (0.56 vs. 0.30), and 51–60 years old (0.27 vs. 0.10), consistent 

with quantile-dependent expressivity and the ~2 kg/m2 higher average BMI after 1985.

Physical activity

The FTO and other obesogenic genes produce smaller differences in adiposity in physically 

active than sedentary subjects. Quantile dependent expressivity likely accounts for this 

attenuating effect, and for the greater attenuation in North American than European cohorts. 

The largest meta-analysis of the FTO-physical activity interaction to date involves 218,166 

adults from 45 studies [23]. It showed that the FTO rs9939609 risk allele produced 

significantly smaller increases in adiposity in physically active vs. inactive subjects for 

multiple adiposity measurements: BMI (0.32±0.02 vs. 0.46±0.05 kg/m2 per allele, P=0.005), 

body fat (0.28±0.04 vs. 0.44±0.07% per allele, P=0.01), waist circumference (0.68±0.05 vs. 

1.01±0.11 cm per allele, P=0.002), being obese (22% vs. 30% odds increase per allele, 

P=0.001) and being overweight (14% vs. 19% odds increase per allele, P=0.02). Consistent 

Williams Page 5

Int J Obes (Lond). Author manuscript; available in PMC 2021 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with quantile-dependent expressivity, physically active individuals had lower BMI (0.79 

kg/m2 lower, P=3×10−15), lower body fat (1.30% lower, P=2×10−15), and lower waist 

circumference (2.44 cm lower, P=1.1×10−20), and were less likely to be obese (33% lower 

odds, P=1.1×10−13) and overweight (19% lower odds, P=7×10−9). The original studies 

proposed no explanation for the significantly greater attenuating effect in North American 

than European populations given their common ancestral roots [23,24]. However, quantile-

dependent expressivity suggests that the difference follows from the greater BMI reduction 

from physical activity in North Americans (1.34 kg/m2) than Europeans (0.72 kg/m2) [23].

Inactivity

Television watching is reported to accentuate the effects of genes on BMI [25,26], 

independent of leisure time physical activity [25]. Specifically, a 10-allele difference in a 32-

SNP GRSBMI was associated with a BMI difference of 0.8±0.2 kg/m2 for ≤5 hr/wk of 

watching, 1.4±0.2 kg/m2 for 6 to 20 hr/wk, 1.5±0.3 kg/m2 for 21 to 40 hr/wk, and 3.4±1.0 

kg/m2 for ≥41 hr/wk (Pinteraction=0.001) [25]. Although the paper did not report BMI levels 

by viewing time [25], others report that compared to <2 hours/day, the risk for obesity is 

increased by 35% for 2 to 3, 70% for 4 to 5, 94% for 6 to 7, and 92% for 8 or more 

hours/day [27]. In another study, Graff et al. reported that greater screen time in European-

Americans was associated with higher BMI (P<0.05) and accentuated the effects of the 

rs2112347 polymorphism (near FLJ35779) on BMI (Pinteraction=0.02) [26]. Klimentidis et al. 

[28] reported that more time-spent sitting was associated with greater BMI (P <10−6), and 

that the FTO rs9939609 effect was least for the shortest (0.16±0.12), intermediate for 

moderate (0.45±0.17) and greatest for longest sitting time (0.85±0.18, Pinteraction=0.003).

Sleeping

Watson et al. [29] reported that shorter sleep duration was associated with greater BMI (P < 

0.05), and that BMI heritability was 70% for < 7 hr vs. 32% ≥ 9 hr (Pinteraction<0.05) in 1088 

twin pairs, while Young et al. [30] reported that large deviations from average sleep were 

associated with a enhanced effect of the FTO locus (0.13%, P=8×10−4) in accordance with 

its association with greater BMI (+0.42%, P<10−30), consistent with quantile-dependent 

expressivity.

Polycystic ovary syndrome (PCOS)

Meta-analysis of eight PCOS cohorts by Wojciechowski et al. showed the FTO rs9939609 

polymorphism had a greater effect in PCOS than unaffected women, i.e., 3.3 kg/m2 greater 

BMI and 9.6 kg greater body weight difference between TT and AA/CC homozygotes [31]. 

The effect per A-allele was greater than that of 109,955 unaffected women from the GIANT 

Consortium cohort (P=0.0005) [32], and greater than previously reported for the general 

unaffected female population by Frayling et al. [33] (P=0.03 corrected for age). Whereas the 

authors sought a biological explanation for the altered effect size related to 

hyperandrogenaemia and significant extra glandular aromatisation of androgens, reduced sex 

hormone-binding globulin levels, or insulin resistance [34], quantile-dependent expressivity 

would attribute the difference to the greater body weight of PCOS vis-à-vis unaffected 

women [34,35].
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High caloric intake

Ahmad et al. reported that each copy of the A allele of the FTO rs8050136 polymorphism 

was associated with a mean BMI increase of 0.65±0.07 kg/m2 in 10,561 women who ate 

above the median intake (1679 kcal/d) vs. 0.38±0.07 kg/m2 in those who ate less 

(Pinteraction<0.001 before adjusting for physical activity, P=0.003 after adjustment) [36]. 

Quantile-dependent expressivity may have contributed to the difference given that BMI was 

significantly greater in the women who consumed more calories regardless of whether they 

were inactive (27.1±0.08 vs. 26.5±0.07 kg/m2, P=9×10−9) or active (25.2±0.06 vs. 

24.8±0.06 kg/m2, P=1.3×10−6). Similarly, Celis-Morales et al. reported that increasing 

tertiles of energy intake were associated with increasing BMI-differences between the lowest 

and highest quartile of GRSBMI (1.2, 1.4, and 1.5 kg/m2, Pinteraction=0.007) in accordance 

with quantile-dependent expressivity and increases in average BMI by tertile of energy 

intake (26.5±0.04, 26.8±0.03, 27.4±0.04 kg/m2, P<10−16) [37].

Dietary quality

Ding et al. reported that the effects of a 97-SNP GRSBMI were significantly attenuated by a 

better quality diet when data from the Nurses’ Health Study, the Health Professional Follow-

up Study, and the Women’s Genome Health Study were pooled [38]. Specifically, a 10 unit-

increment in their GRSBMI produced a 1.14±0.04 kg/m2 BMI increase in the lowest 

(poorest) tertile of the Alternative Healthy Eating Index 2010, a 0.87±0.03 kg/m2 increase in 

its intermediate tertile, and a 0.84±0.03 kg/m2 increase in its highest (best) tertile 

(Pinteraction=0.003). Similarly, the GRSBMI effects were attenuated by going from the lowest 

to the higher tertiles of the Alternative Mediterranean Diet score (1.17±0.03, 0.81±0.03, 

0.84±0.03 kg/m2, respectively, P=0.001), and the Dietary Approach to Stop Hypertension 

(DASH) score (1.09±0.04, 0.98±0.04, 0.79±0.03 kg/m2, respectively, P=0.004). However, 

average BMI also decreased significantly (P<10−15) from the lowest through the highest 

tertiles of the all three diet scores, suggesting that at least some of the attenuating effect 

could be attributable to quantile-dependent expressivity.

Fried food consumption

Fried foods are reported to exacerbate FTO and other obesogenic effects [39]. The BMI-

increase for a 10-allele difference in a 32-SNP GRSBMI was found to depending upon diet: 

1.1±0.2 kg/m2 for consuming fried foods <1 per week, 1.6±0.3 kg/m2 for 1–3 times per 

week, and 2.2±0.6 kg/m2 for ≥4 times per week [39]. The BMI-increase per dose of the FTO 

rs1558902 risk allele also differed significantly by usual intake: 0.33 kg/m2 for <1 per week, 

0.49 kg/m2 for 1–3 times per week, and 0.72 kg/m2 for ≥4 times per week (P<0.001). 

However, average BMI increased with fried food intake, i.e. 24.95 kg/m2 for those 

consuming fried foods <1 per week, 25.71 kg/m2 for 1–3 times per week, and 26.31 kg/m2 

for ≥4 times per week, and we propose that the higher BMI from fried food consumption 

facilitates greater phenotypic expression of the obesogenic genes, i.e. quantile-dependent 

expressivity.
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Sugar-sweetened beverages

Qi et al. compared the effect of their 32-SNP GRSBMI on BMI by intake of sweetened 

beverages in three different samples [40]. In the Nurses Health Study and the Health 

Professional’s Follow-up Study, the BMI-increase for the 10-allele GRS difference was 

1.00±0.13 kg/m2 if consuming <1 beverage per month, 1.20±0.13 kg/m2 if 1–4 beverages 

per month, 1.37±0.15 kg/m2 if 2–6 beverages per week, and 1.85±0.27 kg/m2 if ≥1 beverage 

per day (Pinteraction<0.001). The corresponding BMI-increases for the Women’s Genome 

Health Study were somewhat greater: 1.46±0.13, 1.65±0.19, 1.97±0.18, and 2.43±0.36 

kg/m2 per 10-allele increase, respectively (Pinteraction=0.002). Quantile-dependent 

expressivity could have contributed to the trend within studies because average BMI 

increased moderately with beverage consumption, i.e. 24.94±0.06, 24.95±0.08, 25.37±0.08, 

and 25.46±0.14 kg/m2, respectively, in the Nurses Health and the Health Professional’s 

Follow-up Studies combined (P=0.0002). In another study of two Swedish cohorts, 

Brunkwall et al. reported that each category increment in sugar-sweetened beverage 

consumption was associated with a 0.18±0.02 increase in BMI (P=1.7×10−20), and 

correspondingly, there was a significantly greater effect of their GRSBMI on BMI at the 

highest vs. lowest consumption category (0.24±0.04 vs. 0.15±0.04, Pinteraction=0.03) [41].

Protein intake

Higher protein intake was purported to accentuate the effect of FTO on z-standardized BMI 

in over 16,000 children and adolescents (Pinteraction = 7.2×10−4, with the effect per allele of 

FTO on BMI being significantly greater in higher (0.10±0.02 SD, P=8.2×10−10) than lower 

protein consumers (0.04±0.02 SD per allele P=0.02) [42]. However, given that higher 

protein intake was significantly associated with higher BMI (0.09±0.01, P=5×10−10), some 

or all of the BMI difference could be due to quantile-dependent expressivity.

Saturated fat intake

Celis-Morales et al. reported that increasing tertiles of saturated fat intake were associated 

with increasing BMI-differences between the lowest and highest quartile of GRSBMI (1.1, 

1.2, and 1.8 kg/m2, Pinteraction=1.3×10−5); this is in accordance with quantile-dependent 

expressivity and increases in average BMI by saturated fat tertile (26.6±0.03, 26.9±0.03, 

27.3±0.04 kg/m2, P<10−16). [37]. Similarly, Corella et al. report significant interactions 

between saturated fat intake and APOA2 −265T>C on BMI in the Framingham Offspring 

(P=0.01) and GOLDN studies (P=0.009) were in the context of 0.6 kg/m2 higher BMI for 

high vs. low saturated fat intake in both [43]. They also reported that higher saturated fat 

intake in the Boston Puerto Rican Health Study was associated with greater BMI (31.58 vs. 

30.67 kg/m2) and accentuated the effect of FTO rs9939609 on BMI, such that differences 

between TT homozygotes vs. C-carrier BMI were significantly greater on the high vs. low 

saturated fat intake (2.30 vs. −0.16 kg/m2 estimated from their figure 1b Pinteraction=0.02) 

[44].

Meal frequency

There is a well-established association between meal frequency and obesity, and it has been 

proposed that a regular five-meal-a-day pattern attenuates genetic susceptibility to increased 
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BMI in Finnish teenagers [45]. The difference in BMI between having <8 vs. ≥8 BMI-

raising alleles of an 8 SNP GRSBMI was 0.90±0.14 kg/m2 in meal skippers vs. 0.32±0.13 

kg/m2 in regular eaters (Pinteraction=0.003). Compared to regular eaters, there was a 3-folded 

greater effect of each MC4R rs17782313 risk allele on BMI in meal skippers (0.47±0.13 vs. 

0.18±0.09 kg/m2, Pinteraction=0.03) and 2-fold greater per-allele effect of the FTO rs1421085 

in meal skippers (0.46 vs. 0.24 kg/m2, Pinteraction=0.02 in males). However, meal skippers 

weighed more than regular eaters (21.6±0.1 vs. 20.7±0.1 kg/m2) and quantile-dependent 

expressivity may contribute to the stronger genetic association in skippers.

Parental dietary restriction

Tovar et al. reported a significant interaction (P=0.02) between the child’s FTO 

polymorphism and parental food restrictions on the child’s BMI [46]. However, the 

interaction can also be interpreted as the FTO polymorphism affecting only those children 

whose parents were restrictive, which is consistent with quantile-dependent expressivity 

given that parental restrictiveness was greater in overweight and obese children than normal 

weight children (P=0.002).

Social-economic status

Frank et al. [47] reported that each additional allele of their GRSBMI was associated with 

0.24±0.04 kg/m2 BMI increase for ≤10 yrs of education, 0.09±0.02 for 11–13 yrs, 0.04±0.02 

for 14–17 yrs, and 0.03±0.03 kg/m2 increase for ≥ 18 yrs of education 

(Pinteraction=1.3×10−5), and a 0.14±0.02 kg/m2 BMI increase for the lowest, 0.11±0.02 for 

the second, 0.07±0.02 for the third, and 0.05±0.02 kg/m2 for the highest income quartile 

(Pinteraction=0.002) in the Heinz Nixdorf Recall Study [47]. However, age- and sex-adjusted 

BMI decreased with both education (−0.25±0.03 kg/m2 per year, P=2×10−16) and income 

(−0.59±0.10 kg/m2 per 100€ per month, P=4×10−9), suggesting a possible contribution of 

quantile-dependent expressivity to the reported results. Rask-Andersen et al. reported a 

significant interaction between their GRSBMI and the Townsend deprivation index 

(Pinteraction=4.7×10−11), a measure of socioeconomic status showing a strong inverse 

association with BMI (Figure 3, point #2) [19]. Corella et al. reported that the FTO 

rs9939609 polymorphism was significantly associated with BMI in non-university educated 

(P=0.001) but not university-educated members of the general population (P=0.79, 

Pinteraction=0.05) in accordance with quantile-dependent expressivity and the higher average 

BMI in the less-educated subjects (average BMI 26–28 vs. ≤25 kg/m2) [48]. Lower income 

was associated with both greater BMI (P=1.3×10−6) and greater BMI genetic variance in 

719 twin pairs from the National Survey of Midlife Development [49].

Depression

A bidirectional causal relationship appears to exist between depression and obesity. Rivera et 

al.’s meta-analysis of 13,701 subjects from five studies showed depressed patients who were 

carriers of the FTO rs9939609 risk allele had 2.2% higher BMI per risk allele than controls 

(Pinteraction=6.9×10−8), consistent with quantile-dependent expressivity and the depressed 

patients’ higher BMI (26.13±0.05 vs. 25.20±0.05 kg/m2) [50].
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Other environmental factors

For the FTO locus, quantile-dependent expressivity may also contribute to the greater mean 

BMI difference between carriers and non-carriers of the risk allele in: 1) metabolic 

syndrome cases than healthy controls (0.9±0.3 vs. 0.1±0.1 kg/m2, Pinteraction=0.01), which 

corresponds to the greater average BMI of the cases (28.8 vs. 23.2 kg/m2) [51], and in urban 

than rural dwellers (0.15 z-score difference per minor allele, Pinteraction=0.03), corresponding 

to urban dwellers greater average weight (men: 66.7±0.24 vs. 59.5±0.28; women: 59.6±0.27 

vs. 52.5±0.39 kg) [52]. Young et al.’s [53] analysis of the UK Biobank showed that more 

frequent alcohol consumption was associated with a diminished effect of the FTO locus 

(−0.24%, P=3×10−4) in accordance with its association with lower BMI (−1.97% per SD, 

P<10−30). The weaker effect of the FTO variant on BMI in Indian vs. European populations 

may also be due in part the greater leanness of the former [54].

With respect to other genes, quantile-dependent expressivity might also contribute to: 1) 

Latella et al.’s report that men’s alcohol intake increased overall BMI and significantly 

accentuated their BMI difference between alcohol dehydrogenases 1C (ADH1C) rs698 

genotypes in the IMMIDIET study (Pinteraction=0.006) [55], Levitan et al.’s report that spring 

birth increased women’s maximum lifetime BMI (29.4±1.2 vs. 26.7±0.43, P<0.0001) and 

maximum BMI differences (P=0.02) between hypofunctional 7-repeat (7R) genotypes of the 

dopamine-4 receptor gene (DRD4) [56], Young et al.’s report of greater effects of MC4R 

rs571312 and POC5 rs2112347 on BMI in female adolescents of European ancestry who 

smoked than did not smoke (P≤0.05) in accordance with the higher BMI of the smokers 

(23.1±0.15 vs. 22.6±0.13, P=0.02), but not in males that showed no BMI difference by 

smoking status [53].

Precision medicine

Precision medicine seeks to employ genetic markers to identify patients most likely to be 

affected by treatment, as for example, the effects of overfeeding or antipsychotic 

medications on weight gain. The histogram in Figure 4A shows significantly greater weight 

gain in CT heterozygotes than CC homozygotes of the cholesteryl ester transfer protein 

(CETP) C>T/In9 rs289714 polymorphism from overfeeding (3.3±0.4 vs. 2.5±0.2 kg/m2, 

P=0.04) [57]. However, from the perspective of quantile-dependent expressivity, the graph 

shows that average BMI was greater after overfeeding than before (22.4 vs. 19.7 kg/m2), and 

correspondingly, the difference between genotypes was greater when overfed (1.5 vs. 0.7 

kg/m2). Figure 4B presents Kuzman et al.’s report of a significantly greater increase in waist 

circumference for TT homozygotes of the −759CT 5-HT2C polymorphism than carriers of 

the C allele (9.4 vs. 4.0 cm, P=0.03) following a 3-month olanzapine or risperidone regimen 

[58]. Again, quantile-dependent expressivity would attribute the larger genotype difference 

on treatment than at baseline (+14.0±6.9 vs. +8.6±6.8 cm) to the higher average waist 

circumferences on treatment (84.5±1.4 vs. 80.2±1.3 cm). Thus, whereas precision medicine 

would identify rs289714 CT heterozygotes and 5-HT2C TT homozygotes as markers of 

weight gain vulnerability, quantile-dependent expressivity postulates that these genetic 

markers merely track the correspondence between the genetic effect size and changes in the 

phenotype distribution’s average. The trajectories of the genotype-specific weight gains 
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cannot move in parallel if the pre- and post-treatment effect sizes are different–this gives rise 

to the different genotype effects.

In summary our analyses suggest that genetic heritabilities of anthropometric, CT, and DXA 

adiposity measures increase with increasing adiposity. Published examples show larger 

genetic effect sizes associated with greater adiposity, which could be the consequence of 

quantile-dependent expressivity. Our re-interpretation of these published example do not 

reject the traditional interpretation of gene-environment interaction, rather they suggest an 

alternative interpretation based on Figure 1. An important limitation is that Falconer’s 

heritability formula probably underestimate the importance of shared environmental effects 

that likely contribute to both offspring-parent and full-sib concordance. Elsewhere we have 

shown that environmental risk factors (education [59], diet [59], and physical activity [60]) 

also exhibit quantile-dependent effects on BMI, suggesting that the quantile-dependent 

expressivity could be a property of the phenotype [59]. Some reports of gene-environment 

interactions may arise from analyzing subjects by characteristics that distinguish high vs. 

low adiposity (Figure 1B) rather than from the effects of environmental stimuli on 

transcriptional and epigenetic processes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgement.

We are grateful to the efforts of the investigators and staff of the Framingham Heart Study who collected the data 
used in these analyses. This manuscript was prepared using Framingham Heart Study Research Materials obtained 
from the National Heart, Lung, and Blood Institute (NHLBI) Biologic Specimens and Data Repository Information 
Coordinating Center. The Framingham Heart Study is conducted and supported by the NHLBI in collaboration with 
Boston University (Contract No. N01-HC-25195 and HHSN268201500001I). Funding support for the Framingham 
Whole Body and Regional Dual X-ray Absorptiometry (DXA) dataset was provided by NIH grants R01 AR/AG 
41398. This manuscript was not prepared in collaboration with investigators of the Framingham Heart Study and 
does not necessarily reflect the opinions or views of the Framingham Heart Study, Boston University, or NHLBI.

This research was supported by NIH grant R21ES020700 from the National Institute of Environmental Health 
Sciences, and an unrestricted gift from HOKA ONE ONE.

References

1. Williams PT. Quantile-specific penetrance of genes affecting lipoproteins, adiposity and height. 
PLoS One 2012;7:e28764. [PubMed: 22235250] 

2. Williams PT. Quantile-specific heritability may account for gene-environment interactions involving 
coffee consumption. Behav Genet. 2020;50:119–126 [PubMed: 31900678] 

3. Williams PT. Gene-environment interactions due to quantile-specific heritability of triglyceride and 
VLDL concentrations. Sci Rep. 2020;10:4486. [PubMed: 32161301] 

4. Williams PT. Quantile-dependent expressivity of postprandial lipemia. PLoS One. 
2020;15:e0229495. [PubMed: 32101585] 

5. Falconer DS, Mackay TFC. Introduction to Quantative Genetics. 4th edition. 2004 Pearson 
Education Limited London ISBN 978-81-317-2740-9

6. Rokholm B, Silventoinen K, Ängquist L, Skytthe A, Kyvik KO, Sørensen TI. Increased genetic 
variance of BMI with a higher prevalence of obesity. PLoS One. 2011;6:e20816. [PubMed: 
21738588] 

Williams Page 11

Int J Obes (Lond). Author manuscript; available in PMC 2021 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Abadi A, Alyass A, Robiou du Pont S, Bolker B, Singh P, Mohan V, et al. Penetrance of polygenic 
obesity susceptibility loci across the body mass index distribution. Am J Hum Genet. 
2012;101:925–938.

8. Beyerlein A, von Kries R, Ness AR, Ong KK. Genetic markers of obesity risk: stronger associations 
with body composition in overweight compared to normal-weight children. PLoS ONE 
2011,6:e19057. [PubMed: 21526213] 

9. Mitchell JA, Hakonarson H, Rebbeck TR, Grant SFA. Obesity-susceptibility loci and the tails of the 
pediatric BMI distribution. Obesity (Silver Spring) 2013, 21:1256–1260. [PubMed: 23408508] 

10. Reddon H, Guéant JL, Meyre D. The importance of gene-environment interactions in human 
obesity. Clin Sci (Lond). 2016;130:1571–97. [PubMed: 27503943] 

11. Youngson NA, Morris MJ. What obesity research tells us about epigenetic mechanisms. Philos 
Trans R Soc Lond B Biol Sci. 2013;368:20110337. [PubMed: 23166398] 

12. Shuster A, Patlas M, Pinthus JH, Mourtzakis M. The clinical importance of visceral adiposity: a 
critical review of methods for visceral adipose tissue analysis. Br J Radiol. 2012;85:1–10. 
[PubMed: 21937614] 

13. Snijder MB, Visser M, Dekker JM, Seidell JC, Fuerst T, Tylavsky F, et al. The prediction of 
visceral fat by dual-energy X-ray absorptiometry in the elderly: a comparison with computed 
tomography and anthropometry. Int J Obes Relat Metab Disord. 2002;26:984–93 [PubMed: 
12080454] 

14. Kannel WB, Feinleib M, McNamara PM, Garrison RJ, Castelli WP. An investigation of coronary 
heart disease in families. The Framingham offspring study. Am J Epidemiol. 2006;110:281–90.

15. Schousboe K, Willemsen G, Kyvik KO, Mortensen J, Boomsma DI, Cornes BK. Sex differences in 
heritability of BMI: a comparative study of results from twin studies in eight countries. Twin Res. 
2003;6:409–21. [PubMed: 14624725] 

16. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al. Abdominal 
visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in 
the Framingham Heart Study. Circulation. 2007;116:39–48 [PubMed: 17576866] 

17. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass 
index yield new insights for obesity biology. Nature. 2015;518(7538):197–206. [PubMed: 
25673413] 

18. Koenker R, Hallock KF. Quantile regression. J Economic Perspectives. 2001;15:143–56.

19. Rask-Andersen M, Karlsson T, Ek WE, Johansson Å. Gene-environment interaction study for BMI 
reveals interactions between genetic factors and physical activity, alcohol consumption and 
socioeconomic status. PLoS Genet. 2017;13:e1006977. [PubMed: 28873402] 

20. Rokholm B, Silventoinen K, Angquist L, Skytthe A, Kyvik KO, Sorensen TI. Increased genetic 
variance of BMI with a higher prevalence of obesity. PLoS One 2011; 6:e20816 [PubMed: 
21738588] 

21. Rokholm B, Silventoinen K, Tynelius P, Gamborg M, Sørensen TI, Rasmussen F. Increasing 
genetic variance of body mass index during the Swedish obesity epidemic. PLoS One. 
2011;6:e27135. [PubMed: 22087252] 

22. Guo G, Liu H, Wang L, Shen H, Hu W. The genome-wide influence on human BMI depends on 
physical activity, life course, and historical period. Demography. 2015;52:1651–70. [PubMed: 
26319003] 

23. Kilpelainen TO, Qi L, Brage S, Sharp SJ, Sonestedt E, Demerath E, et al. Physical activity 
attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 
19,268 children. PLoS Med 2011;8: e1001116. [PubMed: 22069379] 

24. Ahmad S, Rukh G, Varga TV, Ali A, Kurbasic A, Shungin D, Ericson U, et al. Gene × physical 
activity interactions in obesity: combined analysis of 111,421 individuals of European ancestry. 
PLoS Genet. 2013;9:e1003607. [PubMed: 23935507] 

25. Qi Q, Li Y, Chomistek AK, Kang JH, Curhan GC, Pasquale LR, et al. Television watching, leisure 
time physical activity, and the genetic predisposition in relation to body mass index in women and 
men. Circulation 2012; 126: 1821–1827. [PubMed: 22949498] 

26. Graff M, North KE, Richardson AS, Young KM, Mohlke KL, Lange LA, et al. Screen time 
behaviours may interact with obesity genes, independent of physical activity, to influence 

Williams Page 12

Int J Obes (Lond). Author manuscript; available in PMC 2021 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



adolescent BMI in an ethnically diverse cohort. Pediatr Obes 2013; 8: e74–e79. [PubMed: 
24039247] 

27. Banks E, Jorm L, Rogers K, Clements M, Bauman A. Screen-time, obesity, ageing and disability: 
findings from 91 266 participants in the 45 and Up Study. Public Health Nutr. 2011;14:34–43. 
[PubMed: 20409356] 

28. Klimentidis YC, Arora A, Chougule A, Zhou J, Raichlen DA. FTO association and interaction with 
time spent sitting. Int J Obes (Lond). 2016;40:411–6. [PubMed: 26392018] 

29. Watson NF, Harden KP, Buchwald D, Vitiello MV, Pack AI, Weigle DS, Goldberg J. Sleep duration 
and body mass index in twins: a gene-environment interaction. Sleep. 2012;35:597–603. [PubMed: 
22547885] 

30. Young AI, Wauthier F, Donnelly P. Multiple novel gene-by-environment interactions modify the 
effect of FTO variants on body mass index. Nat Commun. 2016;7:12724. [PubMed: 27596730] 

31. Wojciechowski P, Lipowska A, Rys P, Ewens KG, Franks S, Tan S, et al. Impact of FTO genotypes 
on BMI and weight in polycystic ovary syndrome: a systematic review and meta-analysis. 
Diabetologia. 2012;55:2636–45. [PubMed: 22801903] 

32. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association 
analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 
2010;42:937–948. [PubMed: 20935630] 

33. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common 
variant in the FTO gene is associated with body mass index and predisposes to childhood and adult 
obesity. Science 2007;316, 889–894. [PubMed: 17434869] 

34. Tan S, Scherag A, Janssen OE, Hahn S, Lahner H, Dietz T, et al. Large effects on body mass index 
and insulin resistance of fat mass and obesity associated gene (FTO) variants in patients with 
polycystic ovary syndrome (PCOS). BMC Med Genet. 2010;11:12. [PubMed: 20092643] 

35. Barber TM, Bennett AJ, Groves CJ, Sovio U, Ruokonen A, Martikainen H, et al. Association of 
variants in the fat mass and obesity associated (FTO) gene with polycystic ovary syndrome. 
Diabetologia. 2008;51:1153–8. [PubMed: 18478198] 

36. Ahmad T, Lee IM, Paré G, Chasman DI, Rose L, Ridker PM, et al. Lifestyle interaction with fat 
mass and obesity-associated (FTO) genotype and risk of obesity in apparently healthy U.S. 
women. Diabetes Care. 2011;34:675–80. [PubMed: 21266646] 

37. Celis-Morales CA, Lyall DM, Gray SR, Steell L, Anderson J, Iliodromiti S, et al. Dietary fat and 
total energy intake modifies the association of genetic profile risk score on obesity: evidence from 
48,170 UK Biobank participants. Int J Obes (Lond). 2017;41:1761–1768. [PubMed: 28736445] 

38. Ding M, Ellervik C, Huang T, Jensen MK, Curhan GC, Pasquale LR, et al. Diet quality and genetic 
association with body mass index: results from 3 observational studies. Am J Clin Nutr. 
2018;108:1291–1300. [PubMed: 30351367] 

39. Qi Q, Chu AY, Kang JH, Huang J, Rose LM, Jensen MK, et al. Fried food consumption, genetic 
risk, and body mass index: gene-diet interaction analysis in three US cohort studies. BMJ. 
2014;348:g1610 [PubMed: 24646652] 

40. Qi Q, Chu AY, Kang JH, Jensen MK, Curhan GC, Pasquale LR, et al. Sugar-sweetened beverages 
and genetic risk of obesity. N Engl J Med. 2012 10 11;367:1387–96. [PubMed: 22998338] 

41. Brunkwall L, Chen Y, Hindy G, Rukh G, Ericson U, Barroso I, et al. Sugar-sweetened beverage 
consumption and genetic predisposition to obesity in 2 Swedish cohorts. Am J Clin Nutr. 
2016;104:809–15. [PubMed: 27465381] 

42. Qi Q, Downer MK, Kilpeläinen TO, Taal HR, Barton SJ, Ntalla I, et al. Dietary intake, FTO 
genetic variants, and adiposity: A combined analysis of Over 16,000 Children and adolescents. 
Diabetes. 2015;64:2467–76. [PubMed: 25720386] 

43. Corella D, Peloso G, Arnett DK, Demissie S, Cupples LA, Tucker K, et al. APOA2, dietary fat, 
and body mass index: replication of a gene-diet interaction in 3 independent populations. Arch 
Intern Med. 2009 9;169:1897–906. [PubMed: 19901143] 

44. Corella D, Arnett DK, Tucker KL, Kabagambe EK, Tsai M, Parnell LD, et al. A high intake of 
saturated fatty acids strengthens the association between the fat mass and obesity-associated gene 
and BMI. J Nutr. 2011;141:2219–25. [PubMed: 22049296] 

Williams Page 13

Int J Obes (Lond). Author manuscript; available in PMC 2021 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



45. Jääskeläinen A, Schwab U, Kolehmainen M, Kaakinen M, Savolainen MJ, Froguel P, et al. Meal 
frequencies modify the effect of common genetic variants on body mass index in adolescents of 
the northern Finland birth cohort 1986. PLoS One. 2013;8:e73802. [PubMed: 24040077] 

46. Tovar A, Emond JA, Hennessy E, Gilbert-Diamond D. An FTO gene variant moderates the 
association between parental restriction and child BMI. PLoS One. 2016;11:e0155521. [PubMed: 
27196523] 

47. Frank M, Dragano N, Arendt M, Forstner AJ, Nöthen MM, Moebus S, et al. A genetic sum score 
of risk alleles associated with body mass index interacts with socioeconomic position in the Heinz 
Nixdorf Recall Study. PLoS One. 2019;14:e0221252. [PubMed: 31442235] 

48. Corella D, Carrasco P, Sorlí JV, Coltell O, Ortega-Azorín C, Guillén M, et al. Education modulates 
the association of the FTO rs9939609 polymorphism with body mass index and obesity risk in the 
Mediterranean population. Nutr Metab Cardiovasc Dis 2012;22:651–658. [PubMed: 21186106] 

49. Johnson W, Krueger RF. Genetic effects on physical health: lower at higher income levels. Behav 
Genet. 2005;35:579–90. [PubMed: 16184486] 

50. Rivera M, Locke AE, Corre T, Czamara D, Wolf C, Ching-Lopez A, et al. Interaction between the 
FTO gene, body mass index and depression: meta-analysis of 13701 individuals. Br J Psychiatry. 
2017;211:70–76. [PubMed: 28642257] 

51. Phillips CM, Kesse-Guyot E, McManus R, Hercberg S, Lairon D, Planells R, et al. High dietary 
saturated fat intake accentuates obesity risk associated with the fat mass and obesity-associated 
gene in adults. J Nutr. 2012;142:824–31. [PubMed: 22457394] 

52. Taylor AE, Sandeep MN, Janipalli CS, Giambartolomei C, Evans DM, Kranthi Kumar MV, et al. 
Associations of FTO and MC4R variants with obesity traits in Indians and the role of rural/urban 
environment as a possible effect modifier. J. Obes. 2011;2011:307542. [PubMed: 21785715] 

53. Young KL, Graff M, North KE, Richardson AS, Mohlke KL, Lange LA, et al. Interaction of 
smoking and obesity susceptibility loci on adolescent BMI: The National Longitudinal Study of 
Adolescent to Adult Health. BMC Genet. 2015;16:131. [PubMed: 26537541] 

54. Yajnik CS, Janipalli CS, Bhaskar S, Kulkarni SR, Freathy RM, Prakash S, et al. FTO gene variants 
are strongly associated with type 2 diabetes in South Asian Indians. Diabetologia. 2009;52:247–
52. [PubMed: 19005641] 

55. Latella MC, Di Castelnuovo A, de Lorgeril M, Arnout J, Cappuccio FP, Krogh V, et al. Genetic 
variation of alcohol dehydrogenase type 1C (ADH1C), alcohol consumption, and metabolic 
cardiovascular risk factors: results from the IMMIDIET study. Atherosclerosis. 2009;207:284–90. 
[PubMed: 19447389] 

56. Levitan RD, Masellis M, Lam RW, Kaplan AS, Davis C, Tharmalingam S, et al. A birth-season/
DRD4 gene interaction predicts weight gain and obesity in women with seasonal affective 
disorder: A seasonal thrifty phenotype hypothesis. Neuropsychopharmacology. 2006;31:2498–503. 
[PubMed: 16760922] 

57. Terán-García M, Després JP, Tremblay A, Bouchard C. Effects of cholesterol ester transfer protein 
(CETP) gene on adiposity in response to long-term overfeeding. Atherosclerosis. 2008;196:455–
60. [PubMed: 17196207] 

58. Kuzman MR, Medved V, Bozina N, Grubišin J, Jovanovic N, Sertic J. Association study of MDR1 
and 5-HT2C genetic polymorphisms and antipsychotic-induced metabolic disturbances in female 
patients with schizophrenia. Pharmacogenomics J. 2011;11:35–44 [PubMed: 20195292] 

59. Williams PT. Evidence that obesity risk factor potencies are weight dependent, a phenomenon that 
may explain accelerated weight gain in western societies. PLoS One. 2011;6:e27657. [PubMed: 
22132124] 

60. Williams PT, Satariano WA. Relationships of age and weekly running distance to BMI and 
circumferences in 41,582 physically active women. Obes Res. 2005;13:1370–1380. [PubMed: 
16129719] 

Williams Page 14

Int J Obes (Lond). Author manuscript; available in PMC 2021 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
A) Regression lines showing the increase in offspring’s BMI vs. the increase in their 

parent’s BMI (kg/m2) at the 10th, 25th, 50th, 75th, and 90th percentiles of the offspring’s 

distribution (i.e. offspring-parent slopes, βOP). B) Offspring-parent slopes (βOP, left vertical 

axis) plotted as a function of the percentiles of the offspring’s BMI distribution (horizontal 

axis). The right axis displays the corresponding heritability estimates (h2=2βOP/(1+rspouse)). 

Shaded region designates the 95% confidence interval for the quantile-specific heritabilities 

and slopes. Parents and offspring BMI adjusted for sex, age, age2, sex × age, and sex × age2. 

Environmental factors that distinguish high vs. low offspring BMI written in italics.
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Figure 2. 
Age and sex-adjusted quantile-specific offspring-parent regression slope (solid curve) ± 95% 

confidence interval (gray area) by quantile of the offspring distribution for: A) height; B) 

DXA- total fat/height2, C) CT-visceral fat/height2, D) CT-subcutaneous fat/height2. Sample 

sizes provided in Supplementary Table 1.
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Figure 3. 
Relationship between the effect of 131 lifestyle factors on BMI (βE) vs. the gene × 

environment interaction between GRSBMI and these lifestyle factors (βGxE) in the UK 

Biobank resource reported by Rask-Andersen et al. [19]. Nineteen lifestyle factors showed 

significant interaction with GRSBMI when Bonferroni corrected: 1 alcohol, 2 Townsend 

deprivation index, 3 television, 4 tiredness, 5 depression, 6 smoker, 7 medications, 8 nap 

frequency, 9 feeling fed-up, 10 number vehicles, 11 household size, 12 income, 13 stairs 

climbed, 14 vigorous activity, 15 red wine, 16 days walked, 17 moderate activity, 18 

children born, and 19 walking pace.
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Figure 4. 
A) Terán-García et al.’s results [57] from a precision medicine perspective of different mean 

BMI increases by CETP rs289714 genotypes following overfeeding (histogram insert) vs. 

quantile-dependent expressivity interpretation (larger post-feeding genetic effect size when 

average BMI was high vs. lower, requiring nonparallel BMI increases by genotype 

(Pinteraction=0.04); B) Kuzman et al.’s report of a significantly greater increase in waist 

circumference for TT homozygotes of the −759CT 5-HT2C polymorphism than carriers of 

the C allele (9.4 vs. 4.0 cm, P=0.03) following a 3-month olanzapine or risperidone regimen 

[58].
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