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Abstract: Age-related macular degeneration (AMD) was described for the first time in the 1840s
and is currently the leading cause of blindness for patients over 65 years in Western Countries. This
disease impacts the eye’s posterior segment and damages the macula, a retina section with high levels
of photoreceptor cells and responsible for the central vision. Advanced AMD stages are divided into
the atrophic (dry) form and the exudative (wet) form. Atrophic AMD consists in the progressive
atrophy of the retinal pigment epithelium (RPE) and the outer retinal layers, while the exudative
form results in the anarchic invasion by choroidal neo-vessels of RPE and the retina. This invasion is
responsible for fluid accumulation in the intra/sub-retinal spaces and for a progressive dysfunction of
the photoreceptor cells. To date, the few existing anti-AMD therapies may only delay or suspend its
progression, without providing cure to patients. However, in the last decade, an outstanding number
of research programs targeting its different aspects have been initiated by academics and industrials.
This review aims to bring together the most recent advances and insights into the mechanisms
underlying AMD pathogenicity and disease evolution, and to highlight the current hypotheses
towards the development of new treatments, i.e., symptomatic vs. curative. The therapeutic options
and drugs proposed to tackle these mechanisms are analyzed and critically compared. A particular
emphasis has been given to the therapeutic agents currently tested in clinical trials, whose results
have been carefully collected and discussed whenever possible.

Keywords: age-related maculopathy; dry age-related macular degeneration; wet age-related macular
degeneration; eye’s disease; elderly; clinical trials

1. Introduction

In the last century, the increase in life expectancy led to the emergence of new public
health problems related to the high prevalence of age-related pathologies. Among them,
age-related macular degeneration (AMD) is a degenerative disease associated with the ag-
ing of the macula [1]. Nowadays, AMD affects more than 50% of people over 80 worldwide.
Currently, no curative treatments for AMD exist, the only proposed cares are limited to
slowing down its progression. AMD is one of the leading causes of blindness in developed
countries. Therefore, the search for new AMD treatments has grown considerably during
the last decade. However, their development remains very challenging because the patho-
genesis and the progression of the disease to advanced stages have not been completely
elucidated. In consequence, several clinical trials have been launched, first arousing hopes,
but most of them have been stopped due to poor clinical outcomes. This review aims at
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providing to the reader a comprehensive and critical overview of relevant investigations,
mechanisms, and hypotheses. The main therapeutic agents investigated by the scientific
community are depicted, in order to point out the most promising direction toward the
development of efficient and safe treatments in a near future.

The eye is the central organ of the visual system, responsible of the phototransduc-
tion mechanism. It consists of the switch of captured light into a cellular signal, and its
transmission to the brain through the optic nerve [2,3].

The eyeball is divided into two segments that encompass different compartments and
envelopes with distinct and specific functions: (i) the anterior segment includes the ciliary
body, the cornea, the iris, and the lens, while (ii) the posterior segment includes the choroid,
the retina and the optic nerve. In the center of the retina, more precisely in the macula, is
located the highest concentration of photoreceptors, responsible for both color perception
and vision clarity. Macula therefore allow maximal visual acuity (VA) [4]. In addition,
several envelopes protect the eye globe, and maintain the eye’s shape. Among them, we
could distinguish the sclera, a white resistant fibrous tissue that protects the eye, as well as
the conjunctiva, a very thin membrane covering the sclera at its front (Figure 1) [3].
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can distinguish two main categories of pathologies: the general diseases affecting the eye 
in its globality, and the specific pathologies restricted to one compartment or membrane. 
Three diseases, cataracts (20%), glaucoma (20.5%), and AMD (26%), are responsible for 
more than two-thirds of patients suffering from eye pathologies (Figure 2) [6].  

Figure 1. Anatomy of the eye divided into different segments (anterior, intermediate, and posterior)
including the macula corresponding to the AMD disease area.

Worldwide, according to World Health Organization (WHO), approximately 2.2 billion
people suffer a form of vision impairment caused by different eye pathologies [5]. We can
distinguish two main categories of pathologies: the general diseases affecting the eye in its
globality, and the specific pathologies restricted to one compartment or membrane. Three
diseases, cataracts (20%), glaucoma (20.5%), and AMD (26%), are responsible for more than
two-thirds of patients suffering from eye pathologies (Figure 2) [6].

Cataracts affects the crystalline lens resulting in lens opacity, that usually affects both
eyes [6]. The only effective treatment consists in the surgical replacement of the crystalline
lens by an artificial one. On the other hand, glaucoma is a medical emergency, caused by
an abnormal accumulation of fluids in the eye’s anterior fragment, leading to an increased
intraocular pressure in its posterior segment and to a degeneration and necrosis of the
optic nerve cells. The glaucoma’s causes remain not fully understood, and treatments are
rare, sometime only palliative, and include trabeculectomy, and drugs able to decrease the
intraocular fluid accumulation.
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However, AMD is the most common eye disease, and it covers different types of lesions
affecting the macula. Its early-stage, so-called “early AMD”, is usually asymptomatic but
could evolve into two advanced forms: the atrophic (dry) or the exudative (neovascular or
wet) AMD. These aggravations can occur over few months or several years, and depend on
various and poorly understood parameters, such as demographic, environmental, genetic,
gender, and phenotypic risk factors [8]. Contrary to early AMD, the advanced forms are
characterized by a central vision loss combined with metamorphopsia (distorted perception
of straight lines and wavy images) and with scotoma (dark spot), rendering progressively
the daily activities (e.g., reading and driving) tricky to impossible (Figure 3) [4]. The
mechanisms underlying these two advanced forms are not entirely characterized, which
make the development of a global cure against AMD very challenging. To this day, no
efficient and curative treatment exists for AMD, and this pathology is considered in western
countries as a leading cause of blindness for patients over 65 years.
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2. Pathogenesis, Development, and Characteristics of AMD
2.1. Epidemiology and Diagnosis

In 2015, around 67 million people in the EU were affected by AMD with severe visual
loss [9]. This number is expected to increase by 15% by 2050, due to the increase in life
expectancy [10]. The annual incidence for late AMD stage is 0.5 cases per 1000 individuals
under 70, and 6.7 cases per 1000 individuals over 70 years old (Figures 4 and 5); in addition,
this prevalence is higher in women than in men [11] (Figure 4) [11].
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Several epidemiological studies have demonstrated a strong correlation between the
prevalence of AMD and the age of patients: (i) BEAVER DAM, an American study
(1988–1990, 4926 participants) [12], (ii) BLUE MOUNTAINS, an Australian study
(1992–1994, 2454 participants) [13], and (iii) EUREYE, a European study (2000–2003,
5040 participants) [14].

More recently, in 2021, a review referenced thirty studies, including eleven after the 2000s,
on four continents (Europe, Asia, Oceania, and Northern America) [15]. This work pointed
out an annual incidence increase correlated with age, and higher in Asia and Oceania.

The diagnosis of AMD is currently based on several visual tests and on multimodal
imagery. A very common and convenient test is the Amsler grid (or Amsler chart), devel-
oped by Marc Amsler (Zurich, Switzerland) in the 1940s, which allows a self-diagnosis
“at-home”. This test consists in measuring the visual perception of a grid, the central
part of which may appear wavy, irregular, or distorted in patients with macular diseases.
The visual acuity can also be evaluated using the ETDRS scale score (Early Treatment
Diabetic Retinopathy Study) [16]. Nevertheless, eye imagery remains the most precise
method to diagnose the pathology and to precisely characterize its form and evolution. In
particular, ophthalmologists can monitor the retina, retinal pigment epithelium (RPE), and
choroid morphological changes by fundus exam, color fundus photography [17], fundus
autofluorescence (FAF) [18], optical coherence tomography (OCT) [19], infrared reflectance
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(IR) [20], fluorescein/indocyanine green angiographies, or OCT angiography. These various
ocular-imaging techniques allow a classification of the different AMD forms (Figure 6) [21].
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Figure 6. Samples of imagery commonly used to diagnose AMD. (A,B) Early AMD infra-red/OCT
with serous drusen (lipidic aggregates—see text for details); significant detachment of the pigment
epithelium retrofoveolar is also observed. (C) Age-related maculopathy retinography with serous
drusen. (D) Atrophic AMD monitored with infra-red/OCT: macular chorioretinal atrophy ranges
and external retinal atrophy with disappearance of the outer nuclear layer. (E) Exudative AMD infra-
red/OCT: foveolar section showing retinal exudation with detachment of the pigment epithelium,
intraretinal oedema and subretinal fluid. (F) Fluorescein angiography (left) and ICG (right) showing
an exudative retro-foveolar type 1 neovessel. (G) ICG angiography showing a retro-foveolar type
1 neovessel.

2.2. Age-Related Maculopathy (ARM) and Its Progression to AMD Advanced Stages

ARM is characterized by the emergence and the progressive growing of lipidic aggre-
gates, organic wastes, and β-amyloid peptides named drusens (Figure 6A–C). They are
rejected by cells via exocytosis and accumulated in the retinal and subretinal spaces. In
the early ARM stage, drusens’ diameters do not exceed 63 µm; their growth is combined
with the production of inflammatory factors (cytokines). At this stage, the macula’s lesions
remain asymptomatic or would lead to a slight decrease in visual capacities [22].

Some aggravating factors responsible for irreversible ARM evolution to AMD have
been identified; however, not entirely understood. In addition to the above-mentioned
age and gender [12–14], the patient’s lifestyle (smoking, diet and body mass index, and
education) seems to play a role in the disease’s evolution. Some genetic factors have also
been underlined, such as gene mutations coding for the complement factor, as well as
phenotypic factors, including pigment abnormalities. Of note, biochemical markers (high-
density lipoprotein cholesterol (HDL-C), docosahexaenoic acid (DHA), eicosapentaenoic
acid (EPA), zeaxanthin, or lutein) are currently not considered in the predictive models but
they might be studied as potential markers in the future, as they are easily accessible via
blood analysis [8].

The most common marker of the evolution to AMD stages is the presence of larger
drusens, with diameters up to 125 µm [23,24]. Importantly, the two advanced AMD stages
characteristics are very distinct. The exudative form is characterized by an abnormal
neovascularization invading choroid, Bruch’s membrane and RPE, which leads to an
accumulation of fluid (Figure 7). Contrarily, the atrophic (dry) form presents no new
vessels formation [25,26]. It should be noted that both advanced forms are not mutually
exclusive: the atrophic form can eventually develop neovascularization and switch to the
exudative form, and patients with exudative form may display some atrophy after few
years [27].
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In contrast with ARM, the late AMD stages are symptomatic; they are characterized
by a vision decrease as well as a progressive and irreversible loss of the central vision.
These symptoms are due to several factors including (i) geographic atrophy (GA), and/or
(ii) subretinal hemorrhage, in the exudative form, induced by the invasion of RPE and/or
retina by abnormal blood vessels. The exudative form that is more severe than the atrophic
one affects 10% to 15% of patients causing 90% of acute blindness [28].

2.3. AMD Characteristics
2.3.1. Common Characteristics of the AMD Advanced Stages

Both atrophic and exudative AMD forms are characterized by chronic inflammation,
which may be a key player in AMD evolution through different pathways. Inflammation
induces endothelial dysfunction in choroidal vessels, development of basal deposits and
drusens, and degeneration of Bruch’s membrane.

Some other factors, such as β-amyloids leading to drusen accumulation, and reactive
oxygen species (ROS) are involved in the aggravation of the two advanced forms, even if
their precise roles remain elusive and must be investigated (Figure 8) [29].

2.3.2. Clinical Specificities of the Atrophic AMD form (Dry-AMD)

In the atrophic form, the drusen accumulation that leads to the thickening of the
Bruch’s membrane (BrM) is a key feature. The expansion of drusens results in RPE cells
dysfunction and may lead to their death. Drusens are also responsible of the photoreceptors
degeneration and death as well as the alteration of the RPE fluid efflux through the BrM,
choriocapillaris, and peripapillary atrophy (Figures 6D and 9) [30–34]. Finally, drusens also
induce and sustain eye inflammation.

In addition, in the elderly, biochemical and anatomical changes occur in the BrM
resulting in a decrease in the nutrients’ flow through BrM [35]. These changes could lead to
the aggravation of AMD symptoms. Consequently, hypopigmentation areas of the RPE
monolayer are observed in the macula and are also associated with mild to moderate retinal
degeneration and vision loss.
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Today, no therapeutic options can be proposed to patients to slow down the atrophic
AMD progression. It should be noted that, in some cases, it may switch to the exudative
form, and this must be prevented [36]. In line with this consideration, several strategies of
care are currently under investigation to decrease drusens’ formation of and avoid RPE
disorders. Nevertheless, the lack of the global comprehension in the AMD’s aggravation
mechanisms impairs drastically the emergence of a rational and efficient treatment.

The only current therapies against atrophic AMD are symptomatic, and they aim
at (i) regulating the visual cycle to lower drusens formation [29], (ii) counteracting the
choroid’s atrophy and choriocapillaries’ (CC) atrophy [37,38], (iii) avoiding the death of
the photoreceptor and the RPE cells, (iv) reducing the oxidative stress in the eye [39], and
finally (v) reducing eye inflammation [40,41] (Figure 9). Some of these treatments have
been tested in clinical trials (phase 1, 2, and 3). These different approaches are presented in
the Section 3 of this review.
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2.3.3. Clinical Specificities of the Exudative AMD form (Wet-AMD)

The exudative form is characterized by an invasive neovascularization of the choroid,
Bruch’s membrane, RPE and retina, which contributes, in combination with GA, to a
progressive vision loss. This neovascularization [42] is mediated by the overexpression of
the vascular endothelial growth factor (VEGF) as well as by local inflammatory cytokines,
such as tumor necrosis factor-alpha (TNF-alpha) (Figure 10) [43–45]. Indeed, in healthy
eyes, VEGF plays a physiological role in the development and trophic maintenance of
the choriocapillaries [46]. VEGF also protects retinal neurons from apoptosis in ischemic
conditions. Conversely, its pathological overexpression induces the formation of angiogenic
germs in the fovea, a small depression of the macula that contains the highest concentration
of photoreceptors. VEGF overexpression also leads to activation, survival and proliferation
of new vessels (CNV) commonly divided into three types: type 1 to type 3 new vessels.
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These CNV may be categorized into three major types depending on their localization:

1. Extrafoveal, when neovascularization is located between 200 µm and 2500 µm from
the geometric center of the foveal avascular zone,

2. Juxtafoveal, when neovascularization is restricted to an area up to 199 µm from the
geometric center of the foveal avascular zone (this area may include portions of the
foveal avascular zone),

3. Subfoveal, when neovascularization is directly beneath the geometric center of the
foveal avascular zone.

New vessels progressively invade the BrM, the pigment epithelium and/or the sub-
retinal space under the macula, causing significant retinal detachment. In addition, these
new vessels are characterized by an abnormal structuration allowing lipids, plasma and
blood extravasation, resulting in fluid accumulation in the invaded tissues (Figure 6E–G).
This fluid retention induces a drastic aggravation of the retinal detachment and subretinal
hemorrhages causing degeneration and death of the photoreceptors. These morphological
changes quickly damage the macula and dramatically impair the visual acuity. The ultimate
clinical evolution is characterized by the appearance of a fibrous scar, called disciform [4].

The exudative AMD form can develop suddenly, leading in few weeks or months
to photoreceptors’ death, to severe decrease in VA and to permanent central scotoma. If
untreated, exudative AMD progresses irreversibly to central blindness [42]. Nevertheless,
some therapeutic options emerged since the 1980s. These strategies consist in tackling
the neovascularization, either directly, using laser beam or photodynamic therapy, or
indirectly, using anti-angiogenic drugs (anti-VEGF agents) [47]. However, these approaches
are currently counterbalanced by several recent studies suggesting that, alone, VEGF
is not sufficient to significantly increase choroid vascularization. Combined activation
or inhibition of various angiogenic factors may lead to the pathological vascularization.
These redundancy in pro-angiogenic pathways underline the need of targeting other
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receptors/endothelial factors to obtain a satisfactory response [48]. The overall experience
concerning the injection of anti-VEGF demonstrated their good tolerability; however, a
controversy exists on their potential atrophic action in the long term. In any case, even if
anti-angiogenic treatments offer short-term clinical benefits, this treatment is not curative, it
may only delay or pause the progression of the disease. Therefore, great efforts, in academia
as well as in the industry, are currently dedicated to identifying alternative strategies. These
are presented and discussed in the Section 4 of this review.

3. Ongoing Research and Trials in Therapeutic Options against the Atrophic form of
AMD (Dry-AMD)

The search for therapeutic options towards atrophic AMD has started less than two
decades ago but it is still an active field of research (Figures 9 and 11). A particular emphasis
has been given to the drugs formulation, for patients’ long-term acceptance and compliance
with the treatment. In particular, intraocular injections may be considered as traumatic and
dissuasive by some patients. Systemic treatments or eye drops, more difficult to develop,
might be clearly preferred even if they do not allow a precise control in the amount of drug
in the local targets, and may lead in some cases to systemic adverse effects (in the case or
systemic drugs).
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3.1. Visual Cycle

Vision consists in the conversion of light into a nervous influx, which is transmitted to
the brain through the optic nerve. When light reaches the photoreceptors, retinal 11-cis, a
vitamin A derivative covalently bound to rhodopsin, undergoes a photochemical reaction
and is converted into its more stable all-trans isomer. This stereochemical change in the
retinal structure induces a conformational change in the rhodopsin structure, resulting in
the activation of the nervous influx.

The visual cycle consists in the regeneration of the retinal-11-cis from its all-trans
isomer, thanks to a succession of enzymatic reactions occurring in the photoreceptor cells
and in the RPE cells. At first, all-trans retinal is reduced into all-trans retinol (vitamine
A) in photoreceptor cells. Then all-trans retinol migrates to the RPE, and undergoes
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an esterification mediated by lecithin retinol acyltransferase (LRAT). Subsequently, all-
trans retinyl ester is isomerized, then hydrolyzed by retinal pigment epithelium-specific
65 (RPE65) to form 11-cis retinol. Finally, 11-cis retinol is oxidized into 11-cis retinal by
11-cis retinol dehydrogenase (RDH), before returning into the photoreceptor cells [49,50].

The precise turn-over of the visual cycle is deeply altered in atrophic AMD pa-
tients. Thus, in RPE cells, all-trans retinal isomer dimerizes to afford N-retinylidene-
N-retinylethanolamine (A2E). A2E could form aggregates leading to lipofuscin, a key
aggravating factor (Figures 12 and 13) [50–52]. In line with these observations, the decel-
eration of the visual cycle turn-over has been proposed as a therapeutic option [51]. To
date, five small organic molecules have been developed to interfere with this mechanism
(Table 1). All of them are administered via oral pills for systemic exposure.
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Figure 12. Visual cycle in the retina with AMD disease. A2E: N-retinylidene-N-retinylethanolamine;
ABCA4: ATP-Binding Cassette Subfamily A Member 4; LRAT: lecithin retinol acyltransferase;
RBP4: retinol 4; RDH: retinol dehydrogenase; RPE65: retinal pigment epithelium-specific 65;
TTR: transthyretin.
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Emixustat or ACU-4429

Emixustat (Acucela, Inc., Seattle, WA, USA; Kubota Vision Inc., Tokyo, Japan; Otsuka
Pharmaceutical Co., Ltd., Tokyo, Japan, 2012) is the first small-sized modulator of the visual
cycle [53,54]. This molecule inhibits the conversion of all-trans retinyl ester into 11-cis-retinol,
catalyzed by RPE65. Emixustat binds the retinoid site of RPE65 and inhibits its activity via
its hydroxyl group, (IC50 = 4.4 nM) [55]. In turn, emixustat induces the deceleration of the
visual cycle and the reduction in A2E accumulation. Eximustat is a chiral derivative and its (R)
enantiomer is the most potent one [56]. Phase 1 and phase 2 studies (NCT02130531, 2014–2016;
NCT01002950, 2009–2014) [57,58] have been performed to evaluate the safety, the tolerability
and the pharmacokinetics/pharmacodynamics of emixustat at different doses for 90 days (2,
5, 7 or 10 mg). The drug was well tolerated upon daily administration for 2 weeks (phase
1 trial), and [54] at this level emixustat displayed a reversible dose-response effect (phase
2 trial). Two doses were interrupted (7 and 10 mg) due to side effects, even if in the 5 and
7 mg groups, two patients (in each group) showed a decrease in VA compared to the placebo
patients [59]. Of note, this molecule has been described, in in vivo studies, for the treatment of
Stargardt macular dystrophy [60], a pathology in which lipofuscin formation is also observed.
Emixustat dose-effects have been evaluated in a phase 2/3 study (SEATTLE, NCT01802866,
2013–2017) [61,62] with different drug amounts (2.5 to 10 mg) for a treatment of 24 months.
However, whatever the dose was, the growth rate of GA was not reduced by the drug.

CU239

More recently, in 2018, a new compound CU239 has been identified to inhibit RPE65
(IC50 = 6 µM) as emixustat [63]. CU239 inhibits the RPE65 isomerase activity by competing
with all-trans retinyl ester that may cause retinal degeneration [63].

Fenretinide

The interaction between transthyretin (TTR) and retinol 4 (RBP4) is responsible for
all-trans retinol transport from the photoreceptors to the RPE cells, [64,65] is targeted
by Fenretinide, a RBP4 antagonist that mimics vitamin A [66]. Fenretinide inhibits the
TTR-RBP4 complex formation (IC50 = 56 nM) [67,68]. A phase 2 study (NCT00429936,
2007–2010) [69] evaluated the efficacy of this molecule (dose given to patients: 100 mg over
24 months) in atrophic AMD. This trial showed a reduction in the growth of GA lesions
and a decrease in neovascularization. This result suggests that fenretinide may prevent the
evolution of the AMD from its dry to its wet form [66].

A1120

A1120 is a small molecule with high affinity for RBP4 (Ki = 8.3 nM) and blocks the
interaction between RBP4 and TTR. A1120 inhibits the TTR-RBP4 complex formation
(IC50 = 14.8 nM) [67]. It induces retinol conformational changes and leads to the blockade
of lipofuscin formation in an Abca4 mouse model [67]. Remarkably, the scaffold of this
molecule differs strongly from vitamin A, suggesting an original mode of interaction with
its target [67]. However, to date, this molecule has not reached the clinical trial stage.
Due to poor human liver microsome (HLM) stability of A1120 (∼3%, 30 min incubation),
several new antagonists have been designed [70]: (i) by replacing the aryl carboxylic
acid by its isosters, (ii) to increase flexibility, by replacing piperidine ring with an acyclic
N-methyl-N-(2-phenoxyethyl)amido linker, (iii) finally, by replacing piperidine ring by
bicyclic fragments. This last bispecific analogues research highlighted an isostere of A1120,
(±)-1-(4-(2-(trifluoromethyl)phenyl)piperidine-1-carbonyl)pyrrolidine-2-carboxylic acid as
promising oral treatment for atrophic AMD [71,72].

ALK-001

ALK-001, or C20-D3-vitamin A, is a deuterated derivative of vitamin A, which prevents
A2E formation [73]. A pre-clinical study revealed that ALK-001 uses a physical-chemistry
property, the effect of deuteration, in order to profoundly modulate the vitamin A dimer-
ization process by slowing it down (Scheme 1) [52]. ALK-001 was developed by Alkeus
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Pharmaceuticals, Inc. (Boston, MA, USA) to slow down or stop vision loss in atrophic AMD
and Stargardt disease [52]. After a phase 1 study (NCT02230228, 2014–2015) [74] to evaluate
its safety and pharmacokinetics in 40 healthy patients, a phase 3 study (SAGA, NCT03845582,
2019–2023) [75] recently recruited 300 AMD patients to evaluate its potential benefits.

Molecules 2022, 27, x FOR PEER REVIEW 12 of 66 
 

 

lipofuscin formation in an Abca4 mouse model [67]. Remarkably, the scaffold of this mol-
ecule differs strongly from vitamin A, suggesting an original mode of interaction with its 
target [67]. However, to date, this molecule has not reached the clinical trial stage. Due to 
poor human liver microsome (HLM) stability of A1120 (∼3%, 30 min incubation), several 
new antagonists have been designed [70]: (i) by replacing the aryl carboxylic acid by its 
isosters, (ii) to increase flexibility, by replacing piperidine ring with an acyclic N-methyl-
N-(2-phenoxyethyl)amido linker, (iii) finally, by replacing piperidine ring by bicyclic frag-
ments. This last bispecific analogues research highlighted an isostere of A1120, (±)-1-(4-(2-
(trifluoromethyl)phenyl)piperidine-1- carbonyl)pyrrolidine-2-carboxylic acid as promis-
ing oral treatment for atrophic AMD [71,72]. 
ALK-001 

ALK-001, or C20-D3-vitamin A, is a deuterated derivative of vitamin A, which pre-
vents A2E formation [73]. A pre-clinical study revealed that ALK-001 uses a physical-
chemistry property, the effect of deuteration, in order to profoundly modulate the vitamin 
A dimerization process by slowing it down (Scheme 1) [52]. ALK-001 was developed by 
Alkeus Pharmaceuticals, Inc. (Boston, MA, USA) to slow down or stop vision loss in 
atrophic AMD and Stargardt disease [52]. After a phase 1 study (NCT02230228, 2014–
2015) [74] to evaluate its safety and pharmacokinetics in 40 healthy patients, a phase 3 
study (SAGA, NCT03845582, 2019–2023) [75] recently recruited 300 AMD patients to eval-
uate its potential benefits. 

 
Scheme 1. Vitamin A dimerization. Dimerization occurs after cleavage of a C-H bond in position 
C20. 

Table 1. Drugs targeting the visual cycle. 

Drugs Structure Target Clinic or 
Research 

Formulation Ref. 

Emixustat O
H2N

OH

 
RPE65 1, 2 Oral (Tablet) 

NCT01802866 [61] 
NCT02130531 [57] 
NCT01002950 [58] 

CU239 

 

RPE65 R - [63] 

Fenretinide 
O

HN OH  

RBP4 2 Oral capsules NCT00429936 [69] 

A1120 

 

RBP4 R - [67] 

Scheme 1. Vitamin A dimerization. Dimerization occurs after cleavage of a C–H bond in position C20.

Table 1. Drugs targeting the visual cycle.

Drugs Structure Target Clinic or Research Formulation Ref.

Emixustat

Molecules 2022, 27, x FOR PEER REVIEW 12 of 66 
 

 

lipofuscin formation in an Abca4 mouse model [67]. Remarkably, the scaffold of this mol-
ecule differs strongly from vitamin A, suggesting an original mode of interaction with its 
target [67]. However, to date, this molecule has not reached the clinical trial stage. Due to 
poor human liver microsome (HLM) stability of A1120 (∼3%, 30 min incubation), several 
new antagonists have been designed [70]: (i) by replacing the aryl carboxylic acid by its 
isosters, (ii) to increase flexibility, by replacing piperidine ring with an acyclic N-methyl-
N-(2-phenoxyethyl)amido linker, (iii) finally, by replacing piperidine ring by bicyclic frag-
ments. This last bispecific analogues research highlighted an isostere of A1120, (±)-1-(4-(2-
(trifluoromethyl)phenyl)piperidine-1- carbonyl)pyrrolidine-2-carboxylic acid as promis-
ing oral treatment for atrophic AMD [71,72]. 
ALK-001 

ALK-001, or C20-D3-vitamin A, is a deuterated derivative of vitamin A, which pre-
vents A2E formation [73]. A pre-clinical study revealed that ALK-001 uses a physical-
chemistry property, the effect of deuteration, in order to profoundly modulate the vitamin 
A dimerization process by slowing it down (Scheme 1) [52]. ALK-001 was developed by 
Alkeus Pharmaceuticals, Inc. (Boston, MA, USA) to slow down or stop vision loss in 
atrophic AMD and Stargardt disease [52]. After a phase 1 study (NCT02230228, 2014–
2015) [74] to evaluate its safety and pharmacokinetics in 40 healthy patients, a phase 3 
study (SAGA, NCT03845582, 2019–2023) [75] recently recruited 300 AMD patients to eval-
uate its potential benefits. 

 
Scheme 1. Vitamin A dimerization. Dimerization occurs after cleavage of a C-H bond in position 
C20. 

Table 1. Drugs targeting the visual cycle. 

Drugs Structure Target Clinic or 
Research 

Formulation Ref. 

Emixustat O
H2N

OH

 
RPE65 1, 2 Oral (Tablet) 

NCT01802866 [61] 
NCT02130531 [57] 
NCT01002950 [58] 

CU239 

 

RPE65 R - [63] 

Fenretinide 
O

HN OH  

RBP4 2 Oral capsules NCT00429936 [69] 

A1120 

 

RBP4 R - [67] 

RPE65 1, 2 Oral (Tablet)
NCT01802866 [61]
NCT02130531 [57]
NCT01002950 [58]

CU239

Molecules 2022, 27, x FOR PEER REVIEW 12 of 66 
 

 

lipofuscin formation in an Abca4 mouse model [67]. Remarkably, the scaffold of this mol-
ecule differs strongly from vitamin A, suggesting an original mode of interaction with its 
target [67]. However, to date, this molecule has not reached the clinical trial stage. Due to 
poor human liver microsome (HLM) stability of A1120 (∼3%, 30 min incubation), several 
new antagonists have been designed [70]: (i) by replacing the aryl carboxylic acid by its 
isosters, (ii) to increase flexibility, by replacing piperidine ring with an acyclic N-methyl-
N-(2-phenoxyethyl)amido linker, (iii) finally, by replacing piperidine ring by bicyclic frag-
ments. This last bispecific analogues research highlighted an isostere of A1120, (±)-1-(4-(2-
(trifluoromethyl)phenyl)piperidine-1- carbonyl)pyrrolidine-2-carboxylic acid as promis-
ing oral treatment for atrophic AMD [71,72]. 
ALK-001 

ALK-001, or C20-D3-vitamin A, is a deuterated derivative of vitamin A, which pre-
vents A2E formation [73]. A pre-clinical study revealed that ALK-001 uses a physical-
chemistry property, the effect of deuteration, in order to profoundly modulate the vitamin 
A dimerization process by slowing it down (Scheme 1) [52]. ALK-001 was developed by 
Alkeus Pharmaceuticals, Inc. (Boston, MA, USA) to slow down or stop vision loss in 
atrophic AMD and Stargardt disease [52]. After a phase 1 study (NCT02230228, 2014–
2015) [74] to evaluate its safety and pharmacokinetics in 40 healthy patients, a phase 3 
study (SAGA, NCT03845582, 2019–2023) [75] recently recruited 300 AMD patients to eval-
uate its potential benefits. 

 
Scheme 1. Vitamin A dimerization. Dimerization occurs after cleavage of a C-H bond in position 
C20. 

Table 1. Drugs targeting the visual cycle. 

Drugs Structure Target Clinic or 
Research 

Formulation Ref. 

Emixustat O
H2N

OH

 
RPE65 1, 2 Oral (Tablet) 

NCT01802866 [61] 
NCT02130531 [57] 
NCT01002950 [58] 

CU239 

 

RPE65 R - [63] 

Fenretinide 
O

HN OH  

RBP4 2 Oral capsules NCT00429936 [69] 

A1120 

 

RBP4 R - [67] 

RPE65 R - [63]

Fenretinide

Molecules 2022, 27, x FOR PEER REVIEW 12 of 66 
 

 

lipofuscin formation in an Abca4 mouse model [67]. Remarkably, the scaffold of this mol-
ecule differs strongly from vitamin A, suggesting an original mode of interaction with its 
target [67]. However, to date, this molecule has not reached the clinical trial stage. Due to 
poor human liver microsome (HLM) stability of A1120 (∼3%, 30 min incubation), several 
new antagonists have been designed [70]: (i) by replacing the aryl carboxylic acid by its 
isosters, (ii) to increase flexibility, by replacing piperidine ring with an acyclic N-methyl-
N-(2-phenoxyethyl)amido linker, (iii) finally, by replacing piperidine ring by bicyclic frag-
ments. This last bispecific analogues research highlighted an isostere of A1120, (±)-1-(4-(2-
(trifluoromethyl)phenyl)piperidine-1- carbonyl)pyrrolidine-2-carboxylic acid as promis-
ing oral treatment for atrophic AMD [71,72]. 
ALK-001 

ALK-001, or C20-D3-vitamin A, is a deuterated derivative of vitamin A, which pre-
vents A2E formation [73]. A pre-clinical study revealed that ALK-001 uses a physical-
chemistry property, the effect of deuteration, in order to profoundly modulate the vitamin 
A dimerization process by slowing it down (Scheme 1) [52]. ALK-001 was developed by 
Alkeus Pharmaceuticals, Inc. (Boston, MA, USA) to slow down or stop vision loss in 
atrophic AMD and Stargardt disease [52]. After a phase 1 study (NCT02230228, 2014–
2015) [74] to evaluate its safety and pharmacokinetics in 40 healthy patients, a phase 3 
study (SAGA, NCT03845582, 2019–2023) [75] recently recruited 300 AMD patients to eval-
uate its potential benefits. 

 
Scheme 1. Vitamin A dimerization. Dimerization occurs after cleavage of a C-H bond in position 
C20. 

Table 1. Drugs targeting the visual cycle. 

Drugs Structure Target Clinic or 
Research 

Formulation Ref. 

Emixustat O
H2N

OH

 
RPE65 1, 2 Oral (Tablet) 

NCT01802866 [61] 
NCT02130531 [57] 
NCT01002950 [58] 

CU239 

 

RPE65 R - [63] 

Fenretinide 
O

HN OH  

RBP4 2 Oral capsules NCT00429936 [69] 

A1120 

 

RBP4 R - [67] 

RBP4 2 Oral capsules NCT00429936 [69]

A1120

Molecules 2022, 27, x FOR PEER REVIEW 12 of 66 
 

 

lipofuscin formation in an Abca4 mouse model [67]. Remarkably, the scaffold of this mol-
ecule differs strongly from vitamin A, suggesting an original mode of interaction with its 
target [67]. However, to date, this molecule has not reached the clinical trial stage. Due to 
poor human liver microsome (HLM) stability of A1120 (∼3%, 30 min incubation), several 
new antagonists have been designed [70]: (i) by replacing the aryl carboxylic acid by its 
isosters, (ii) to increase flexibility, by replacing piperidine ring with an acyclic N-methyl-
N-(2-phenoxyethyl)amido linker, (iii) finally, by replacing piperidine ring by bicyclic frag-
ments. This last bispecific analogues research highlighted an isostere of A1120, (±)-1-(4-(2-
(trifluoromethyl)phenyl)piperidine-1- carbonyl)pyrrolidine-2-carboxylic acid as promis-
ing oral treatment for atrophic AMD [71,72]. 
ALK-001 

ALK-001, or C20-D3-vitamin A, is a deuterated derivative of vitamin A, which pre-
vents A2E formation [73]. A pre-clinical study revealed that ALK-001 uses a physical-
chemistry property, the effect of deuteration, in order to profoundly modulate the vitamin 
A dimerization process by slowing it down (Scheme 1) [52]. ALK-001 was developed by 
Alkeus Pharmaceuticals, Inc. (Boston, MA, USA) to slow down or stop vision loss in 
atrophic AMD and Stargardt disease [52]. After a phase 1 study (NCT02230228, 2014–
2015) [74] to evaluate its safety and pharmacokinetics in 40 healthy patients, a phase 3 
study (SAGA, NCT03845582, 2019–2023) [75] recently recruited 300 AMD patients to eval-
uate its potential benefits. 

 
Scheme 1. Vitamin A dimerization. Dimerization occurs after cleavage of a C-H bond in position 
C20. 

Table 1. Drugs targeting the visual cycle. 

Drugs Structure Target Clinic or 
Research 

Formulation Ref. 

Emixustat O
H2N

OH

 
RPE65 1, 2 Oral (Tablet) 

NCT01802866 [61] 
NCT02130531 [57] 
NCT01002950 [58] 

CU239 

 

RPE65 R - [63] 

Fenretinide 
O

HN OH  

RBP4 2 Oral capsules NCT00429936 [69] 

A1120 

 

RBP4 R - [67] RBP4 R - [67]

ALK-001

Molecules 2022, 27, x FOR PEER REVIEW 13 of 66 
 

 

ALK-001 

 

Vit. A 1 Oral capsules NCT02230228 [74] 
NCT03845582 [75] 

3.2. β-Amyloid (Aβ) 
The β-amyloid (Aβ) accumulation in drusen, in particular the amyloid peptides Aβ1–

40 (Aβ40) and Aβ1–42 (Aβ42), is responsible for AMD aggravation [29,76]. In addition, 
Aβ inhibits the complement factor I (CFI) activity, responsible for the alternative comple-
ment cascade, and participates therefore in the inflammatory induction [77]. Thus, lower-
ing Aβ production might be a therapeutic option for atrophic AMD treatment.  
RN6G 

RN6G (also called PF-04382923, Table 2) is an anti-amyloid-β monoclonal antibody 
developed by Pfizer (New York, NY, USA), which binds and traps Aβ in the retinal pe-
riphery. In mice, it reduces Aβ toxic accumulation in the macula [76,78]. Two phases 1 
studies (NCT01003691, 2009–2013; NCT00877032, 2009–2015) [79,80] have been completed 
to assess the RN6G optimal dose; however, in both cases, no improvement in visual acuity 
(BCVA assays) has been reported. In addition, a phase 2 study (NCT01577381, 2012–2016) 
[81] showed that there were neither improvements in BCVA nor in ocular lesions (GA).  
GSK933776 

GSK933776 (Table 2) is a fully humanized mouse anti-human Aβ immunoglobulin 
G1, which binds the Aβ N-terminal [82]. This drug, developed by GlaxoSmithKline (Brent-
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venous vs. subcutaneous injection, dose: 200 mg) and a phase 2 study (NCT01342926, 
2011–2017) [84]. This latter showed no improvement in GA enlargement rate and VA. 
Moreover, no correlation was observed between GA enlargement rate and the CFI varia-
tions [85].  
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(NCT01003691, 2009–2013; NCT00877032, 2009–2015) [79,80] have been completed to assess
the RN6G optimal dose; however, in both cases, no improvement in visual acuity (BCVA
assays) has been reported. In addition, a phase 2 study (NCT01577381, 2012–2016) [81]
showed that there were neither improvements in BCVA nor in ocular lesions (GA).

GSK933776

GSK933776 (Table 2) is a fully humanized mouse anti-human Aβ immunoglobulin G1,
which binds the Aβ N-terminal [82]. This drug, developed by GlaxoSmithKline (Brentford,
UK), was designed to restore the CFI bioactivity, and it has been proved to be active in vivo [77].
GSK933776 was initially used in the treatment of the Alzheimer’s disease. For the treatment
of AMD, two trials have been completed: a phase 1 study (NCT02033668, 2014–2017) [83]
to evaluate the pharmacokinetics and different formulation modes (intravenous vs. subcu-
taneous injection, dose: 200 mg) and a phase 2 study (NCT01342926, 2011–2017) [84]. This
latter showed no improvement in GA enlargement rate and VA. Moreover, no correlation was
observed between GA enlargement rate and the CFI variations [85].

Table 2. Drugs targeting β-Amyloid.

Drugs Structure Clinic or Research Formulation Ref.

RNG6 Monoclonal antibody
1

Intravenous
NCT01003691 [79]
NCT00877032 [80]

2 NCT01577381 [81]

GSK933776 Monoclonal antibody 1 Intravenous or
subcutaneous injection

NCT02033668 [83]
2 NCT01342926 [84]

3.3. Choriocapillaries (CC) Atrophy

CC ensures nutriments intake and waste removal in the RPE [86]; their alteration
induces ocular hypoxia, which is potentially responsible for drusens’ multiplication. As a
result, vasodilators have been proposed to counteract CC atrophy [37,38].

MC-1101

Hydralazine (so-called MC-1101, or Apresoline® hydrochloride; MacuCLEAR Inc.,
Richardson, TX, USA) (Table 3) [87] is an antihypertensive, anti-inflammatory, antioxidant
and vasodilating agent, approved in 1997 (FDA) to regulate blood pressure [88]. On animal
models (rats and rabbits) MC-1101 showed an increase in the choroidal blood flow in the
macula [39,89]. Furthermore, hydralazine exerts an antioxidant action and reduces atrophic
AMD lesions [89]. In humans, two phase 1 studies (NCT01013376, 2009; NCT01922128,
2013–2014) [90,91] and a phase 2/3 study (NCT01601483, 2012–2014) [92] dealing with
hydralazine safety profile (including atrophic AMD patients) and its optimal regimen
(dose and administration mode) have been implemented. These assays proved that no
adverse effects (such as cardiovascular effects, ocular toxicity or degradation of the blood–
eye barrier) occurred when the drug was administered topically (eye drops, 1% in an
ophthalmic solution).

Moxaverine

Another vasodilatator assayed is moxaverine (Kollateral forte®), a papaverine deriva-
tive developed by Ursapharm (Saarbrücken, Germany) (Table 3) [93]. This phospho-
diesterase inhibitor was initially used for the treatment of peripheral microcirculatory
impairment [94]. In atrophic AMD, moxaverine has been assayed in phase 2/3 clinical
trial (NCT00709449, 2008–2009) [95] with a 150 mg dose as intravenous infusion. In this
assay, an increase in the choroidal blood flow has been observed in patients suffering AMD
and glaucoma, [93] revealing its potential efficiency. These results should be confirmed by
additional clinical trials.
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Sildenafil

Sildenafil citrate (Viagra®) (Table 3), developed by Pfizer (New York, NY, USA), is a
phosphodiesterase type-5 inhibitor marketed to treat the male erectile dysfunction [96].
A “pilot” phase 2 study (NCT01830790, 2013–2015) [97] enrolling only 10 AMD patients
(exudative and atrophic) underlined an increase in the choroid thickness (dose: 100 mg)
in both AMD forms) [98]. However, because of insufficient support to complete the
recruitment, this trial was prematurely terminated. In 2019, another study with 23 subjects,
including 15 AMD patients, showed an increase in choroid thickness after administration
of sildenafil (oral dose: 100 mg). Nevertheless, sildenafil may induce a weaker vascular
response in older patients [99]. More studies should be implemented to confirm these
preliminary results.

Trimetazidine

Trimetazidine (TMZ), Vastarel® (Table 3), is a piperazine derivative developed by
Servier (Suresnes, France) to inhibit fatty acids and glucose oxidation [100]. This drug
has been initially used for its anti-ischemic properties (1981) [101]. However, TMZ may
also prevent microvascular abnormalities in the choroid and retina. These protecting
effects have been validated in glaucoma and degenerative myopia. TMZ improves the
sensitivity to contrast and the patient’s visual acuity (treatment of 20 mg TMZ, twice a day
for 6 months) [102]. Nonetheless, a phase 3 study that was carried out for exudative and
atrophic AMD patients (dose of 35 mg, twice a day, over 3–5 years), failed to demonstrate a
clinical benefit on CNV [103], even if a possible preventive effect in delaying atrophy has
been suggested.

Table 3. Drugs targeting choriocapillaris atrophy.
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of action of OT-551 consists of downregulating the Nuclear factor E2-related factor (Nrf-
2), overexpressed in inflammatory diseases. In consequence, OT-551 may act as an anti-
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3.4. Oxidative Stress

Mitochondrial damages and oxidative stress in RPE are key players in AMD, even if
these mechanisms have not been understood yet [104]. Indeed, RPE cells are exposed to
chronic oxidative stress due to their oxygen requirements and their exposure to peroxilated
lipids [105]. At the RPE cells’ level, a set of ROS and free radicals are produced, such as
superoxide, hydrogen peroxide and hydroxyl radicals [106]. This accumulation is also
associated with lipofuscin and β-amyloid overproductions [107]. Damages to the RPE may
lead to the photoreceptors’ apoptosis. Furthermore, these oxidative stresses could aggravate
the inflammatory context. Moreover, inflammatory stimuli increase the production of
reactive oxygen intermediates and reduce the bioavailability of antioxidants, initiating
thereby a vicious circle [108]. To summarize, oxidative stresses lead to the aggravation of the
disease, and their downregulation may lead to relevant therapeutic options (Figure 14) [109].
Thus, compounds with antioxidant properties or aimed to interfere with ROS production
have been proposed as potential treatments for patients with AMD.
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3.4.1. Small Molecules

OT-551

OT-551 (Table 4), developed by Othera Pharmaceuticals (Exton, PA, USA), is a deriva-
tive of the well-known radicals’ quencher TEMPO. OT-551 is namely a lipophilic prodrug
of tempol (TP). Delivered topically by eye drops, OT-551 has the remarkable capacity to
penetrate the cornea towards the posterior segment of the eye to reach the macula. The
surrounding esterases then convert OT-551 into its corresponding alcohol TP-H (Scheme 2)
making it an interesting candidate for AMD treatment [110]. A non-direct mechanism of
action of OT-551 consists of downregulating the Nuclear factor E2-related factor (Nrf-2),
overexpressed in inflammatory diseases. In consequence, OT-551 may act as an antioxidant
and anti-inflammatory factor [110].
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A phase 2 study (NCT00306488, 2006–2011) [111], with 11 participants, reported an
improvement in BCVA for patients treated with OT-511 (0.45% concentration eye drops, three
times a day, for 24 months). In addition, the prodrug seemed to be well-tolerated by patients.
However, these positive results have been counterbalanced by the absence of improvements
for other AMD markers (lesions size, retinal sensitivity and drusen area) [112]. Moreover,
a larger phase 2 study (OMEGA, NCT00485394, 2007–2010) [113], did not confirm the VA
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improvement (198 participants, 18 months, same dose and administration mode) [114]. These
discrepant studies may suggest that OT-551 is not an adequate treatment.

Risuteganib

Risuteganib (ALG-1001, Luminate®) (Table 4), developed by Allegro Ophthalmics (San
Juan Capistrano, CA, USA), is a small pseudo peptide targeting the integrin heterodimers
(αVβ3, αVβ5, α5β1 and αMβ2) involved in angiogenesis, vascular leakage and inflammation.
A phase 2 study (NCT03626636, 2018–2019) [115] evaluated the safety profile and the
efficacy of risuteganib in atrophic AMD patients. It concluded to an improvement in BCVA,
characterized by a gain of Early Treatment Diabetic Retinopathy Study (ETDRS) letters;
however, no longer-term studies have been reported [116].

Table 4. Drugs targeting oxidative stress.

Drugs Structure Target Clinic or Research Formulation Ref.

OT-551
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3.4.2. Nutritional Supplements

Changes in lifestyle and nutritional supplements have also been proposed to slow
down AMD progression [117]. Thus, two studies dealing with the use of nutritional sup-
plements (vitamins C, β-carotene and minerals such as zinc and copper) have been carried
out by Bausch and Lomb, Inc. (Laval, QC, Canada): Age-Related Eye Disease Study 1
(AREDS1) [118] and Age-Related Eye Disease Study 2 (AREDS2) [119]. These nutrients
downregulate AMD progression (20% with antioxidant vs. 28% without) and vision impair-
ment (19%) after 5 years [120]. Another study (TOZTAL, 2007) consisting in giving taurine,
omega-3 fatty acids, zinc and lutein supplements (Table 5) showed no changes in VA [121].
Other dietary supplements, such as curcumin [122–124] or resveratrol [125], have also been
studied, but no conclusive results have been reported yet (Table 5). However, by comparing
several epidemiological studies, a risk reduction in developing the AMD late form has been
observed by taking carotenoids (lutein, zeaxanthin, and meso-zeaxanthin) (Table 5) [126].
Thanks to their antioxidant activity and anti-inflammatory position, the carotenoids act as
a neuroprotector and their use may thereby be considered as a nutraceutical strategy to
prevent AMD aggravation. To conclude, nutrient supplementation is a part of research in
the prevention of AMD, but further studies are needed to demonstrate their efficacy [127].

3.4.3. Neuroprotection

Neuroprotective factors protect RPE and photoreceptors cells from the oxidative stress
damages [39].

CNTF



Molecules 2022, 27, 5089 17 of 64

The ciliary neurotrophic factor (CNTF) (Table 6), developed by Neurotech Pharma-
ceuticals (Cumberland, RI, USA), is an IL-6 type cytokine. In a set of neurodegenerative
disorders, CNTF is reported to delay the symptoms’ aggravation. In the specific case of
ocular diseases, it improves photoreceptors and RPE cells survival. In animals suffering
retinitis pigmentosa, CNTF proved to slow down the retinal degeneration [128,129]. In
humans, CNTF is secreted by modified human retinal pigment epithelium cells, trapped in
a polymer implant (NT-501) which is surgically grafted into the vitreous body [130]. For
patients suffering from atrophic AMD, a phase 2 study (NCT00447954, 2007–2016) [131]
evaluated the safety and efficacy of CNTF in this implant. The encapsulated cells remain
active after 24 months, and positive pharmacokinetic results with continuous delivery of
CNTF have been observed.

Table 5. Supplement drugs.

Drugs Structure

Lutein
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Tandospirone 
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Brimonidine tartrate (Alphagan®) (Table 6), developed by Allergan, Inc. (Dublin, Ire-
land), is a small-sized α2-adrenergic receptor agonist [78], used for the treatment of ocular
hypertension and glaucoma (FDA approved in 1996) [132,133]. Brimonidine is reported
to reduce intraocular pressure (IOP) [134]. This drug prevents RPE and photoreceptors’
apoptosis, by allowing the release of neutrophins such as brain-derived neurotrophic factor
(BDNF), CNTF and basic fibroblast growth factor (b-FGF) [135].

This molecule was administered to patients as an intravitreal biodegradable implant for
clinical studies. Allergan performed two phase 2 studies (NCT00658619, 2008–2018; BEACON,
NCT02087085, 2014–2019) [136,137] to evaluate its safety and efficacy. Thus, injecting 200 or
400 µg of brimonidine for 24 months demonstrated a change in the size of the lesions (smaller
GA lesions), especially for patients with the largest ones [138]. In the BEACON study, an
intravitreal implant of brimonidine (400 µg) has been applicated every three months up to the
21st month, showing a reduction in the GA lesions after 30 months [139].

Tandospirone

Tandospirone (AL-8309B, Sediel®) (Table 6), developed by Alcon Laboratories, Inc.
(Geneva, Switzerland), is a 1A serotonin agonist [39] used as antioxidant and anti-depressant.
In the external retina, this molecule slows down the activation of microglia and the de-
position of different complement proteins such as C3, factor B, factor H and MAC [140].
It preserves RPE cells and photoreceptors from oxidative stress and prevents retinal cell
apoptosis [78,140]. Tandospirone can be administrated through eye drops.

A phase 3 study (GATE, NCT00890097, 2009–2014) [141] did not point out any safety
concerns for its clinical use, but no change in the GA lesion’s growth was reported compared
to untreated patients [142].
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Table 6. Drugs targeting neuroprotection.

Drugs Structure Target Clinic or Research Formulation Ref.

CNTF Protein Photo and RPE cells 2 intravitreal injections
(Implant: NT-501) NCT00447954 [131]

Brimonidine
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3.5. Inflammatory Pathways

Many daily stressors, such as UV radiation, oxidation and infection result in a chronic
low-grade inflammation, which is a relevant parameter for several age-related degenerative
diseases [145,146], including AMD [147]. In AMD, chronic inflammation may induce
endothelial dysfunction in choroidal vessels, development of basal deposit and drusens as
well as degeneration of Bruch’s membrane. In addition, AMD is associated with an increase
in the vessel wall’s permeability, a leakage into the surrounded interstitial tissue and edema,
an activation of blood-borne inflammatory cells and an involvement of the complement
system, which all are conventional inflammation hallmarks [148]. Thus, various drugs have
been studied to target inflammation (Table 7).

3.5.1. Complement Cascade

The complement system is a group of proteins which stimulate inflammation and
opsonization during the immune response. Three distinct biochemical pathways leading to
cell swelling [149] exist: classical, alternative and lectin pathway (Figure 15). The terminal
cell lysis is induced by the formation of the membrane attack complex (MAC). MAC also
acts at the level of the CC loss and, possibly, for drusens formation [150]. In atrophic AMD,
the alternative pathway of the complement cascade may be therefore targeted.

Lampalizumab

Lampalizumab (FCFD4514S) developed by Genentech, Inc. (South San Francisco, CA,
USA) from Hoffmann-LaRoche (Basel, Switzerland) is an antigen-binding fragment (Fab)
from monoclonal antibody with an anti-inflammatory activity that targets the factor D. Two
phase 2 studies (MAHALO, NCT01229215, 2010–2016; NCT02288559, 2014–2019) [151,152]
evaluated its safety: the drug was given by intravitreal injection during 18 months and
24 weeks at a 10 mg dose. Great benefits for patients have been reported, with a 20%
average reduction in the lesion’s progression, which reached 44% with a subgroup of CFI
risk-allele carriers [153]. In addition, the lesions of treated patients suffering from outer
retinal tubulation (ORT) grow slower compared to untreated patients [154]. An exten-
sion of the precedent studies (NCT01602120, 2012–2019) [155] was performed but it was
terminated prematurely because of a lack of efficacy. In addition, phase 3 clinical trial stud-
ies (CHROMA, NCT02247479, 2014–2019; SPECTRI, NCT02247531, 2014–2019) [156,157]
were performed to evaluate the efficacy and safety of intravitreal lampalizumab injection
(10 mg) for 96 weeks. An extension of the phase 3 study (OMASPECT, NCT02745119,
2016–2019) [158] was terminated in 2019 and tarnished the former results since no signifi-
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cant reduction in geographic atrophy has been observed in comparison to a placebo group.
Therefore, Roche, announced the end of the study in 2017 [159].
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Figure 15. The complement cascade. MBL: mannose binding lectin; MASP: MBL-associated serine
protease; MAC: Membrane attack complex. Alternative pathway: linkage of Factor B with the
hydrolyzed C3, then cleavage by the Factor D to form the C3 convertase. C3 convertase cleaves
and actives the complement C3 for C3a and C3b conversion. Properdin is a positive complement to
stabilize C3 and C5 convertases. Factor H intervenes over the C3/C5 dissociation and the Factor I
inactives C3b. C5 convertase cleaves and actives the complement C5 for C5a and C5b conversion.
C5b, C6, C7, C8 and C9 allow the MAC formation [149].

Danicopan

Danicopan (ACH-4471, ACH-044471, ALXN2040) is an oral factor D inhibitor
(IC50 = 5.8 nM), preventing alternative pathway C3 convertase formation [160]. Initially,
danicopan was used to block the alternative pathway for paroxysmal nocturnal hemoglobin-
uria. Thanks to factor D, the intravascular hemolysis was controlled, and the extravas-
cular hemolysis mediated by C3 was anticipated [161]. A phase 2 study (NCT05019521,
2021–2025) [162] has been initiated to evaluate the safety, efficacy and pharmacokinetics of
danicopan with multiple doses on 330 participants with GA AMD.

POT-4 and APL-2

POT-4 or AL-78898A, developed by Potentia Pharmaceuticals (Crestwood, KY, USA),
is a 13 amino acids cyclic peptide derived from compstatin, a C3-targeted complement
inhibitor. This molecule has been reported to inhibit the conversion of C3 to C3a and C3b,
preventing in turn MAC formation [163]. A phase 2 study (NCT01603043, 2012–2014) [164]
reported the formation of product’s deposits for four patients among seven (57.4%) due to
its poor solubility [165]. APL-2 (pegcetacoplan) is a synthetic cyclic peptide conjugated to a
PEG polymer developed by Apellis Pharmaceuticals (Waltham, MA, USA). This molecule
has been developed to counteract solubility concerns, and it corresponds to a 40000 Da
PEGylated conjugate of POT-4, which is also able to block the C3 complement protein [166].
A phase 2 study (FILLY, NCT02503332, 2015–2019) [167] was completed to evaluate the
safety and tolerability of APL-2 and to demonstrate the relevance of multiple intravitreal
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injections (every month or every two months). This study evidenced a reduction in the
growth of GA lesions [166,168]. Other studies are currently ongoing: a phase 1 study
(NCT03777332, 2018–2021) [169] and three phase 3 studies (OAKS, NCT03525600, DERBY,
NCT03525613, 2018–2023; GALE, NCT04770545, 2021–2025) [170–172]. The OAKS study
showed a significant reduction in the GA lesion growth (22 and 16%) after 12 months but, for
the DERBY study, the reduction was less important with 11 and 12% after 12 months [173].
Moreover, both studies demonstrated a favorable safety profile which highlights APL-2 as
very promising treatment for geographic AMD. Finally, the GALE study is an extension
of FILLY, OAKS and DERBY studies on the participants who have completed them. This
36-months study aims to evaluate the efficacy of APL-2 in geographic atrophy secondary
to AMD subjects.

Eculizumab

Eculizumab (Soliris®), developed by Alexion Pharmaceuticals (Boston, MA, USA), is a
monoclonal antibody that targets the C5 complement protein and prevents its conversion
into C5a and C5b. Eculizumab has been approved by FDA in 2007 to treat atypical hemolytic
uremic syndrome and paroxysmal nocturnal hemoglobinuria [174]. A phase 2 study
(COMPLETE, NCT00935883, 2009–2017) [175–177] evaluated the effects of intravenous
injection of eculizumab against atrophic AMD (600 mg or 900 mg). Normal-luminance and
low-luminance visual acuities were analyzed through this study, without observing any
significant results on the GA’s growth rates or on the drusen volume reduction.

Tesidolumab

Tesidolumab (LFG316) is a fully human IgG1 antibody developed by Novartis (Basel,
Switzerland), that targets the complement protein C5 [166]. A phase 1 study (NCT01255462,
2010–2012) [178] showed the safety and tolerability of tesidolumab (doses up to 5 mg)
in patients suffering of advanced AMDs. Next, two phase 2 studies (NCT01527500,
2012–2019; NCT02515942, 2015–2019) [179,180] evaluated tesidolumab multiple-dose intrav-
itreal injections (12 injections every 28 days). The second phase 2 study was in combination
with CLG561, an antibody complements pathway inhibitor. However, a little gain was
observed in VA but no improvement in GA lesion size was reported.

CLG561

CLG561 is a fully human antibody Fab properdin inhibitor. Properdin is a plasma
glycoprotein acting as a positive regulator of the alternative pathway allowing C3a/C3b
formation then C5a/C5b formation [181]. In addition to a phase 2 study (NCT02515942,
2015–2019) [180], a phase 1 study (NCT01835015, 2013–2014) [182] showed the safety and
tolerability of CLG561 in AMD patients after 84 days for different doses administered by in-
travitreal injection. In 2016, a multicenter study with single dose (10 mg) of CLG561 showed
a safety profile on neovascular AMD patients (31 participants), but without complement
inhibition [183].

Avacincaptad pegol or ARC1905 or Zimura®

Avacincaptad pegol (ARC-1905, Zimura®), a 40 kDa PEG-conjugated aptamer [184],
is another inhibitor of C5 complement protein developed by Ophthotech (New York,
NY, USA) which can be used in both AMD forms (atrophic and exudative). A phase 1
study (NCT00950638, 2009–2017) [185] proved the safety of avacincaptad pegol up to a
dose of 2 mg. Recently (fall 2020), after completion of a phase 2 study (NCT02686658,
2016–2020) [186] evaluating the safety and tolerability of intravitreal injections of avacincap-
tad, a phase 3 study has been initiated (NCT04435366, 2020–2023) [187] in GA secondary
atrophic AMD patients.

AAV5-VMD2-CR2-fH

AAV5-VMD2-CR2-fH (AAV5-VMD2-mCherry) is an adeno-associated virus gene
coding for a C3a inhibitor. In 2018, a study on a mouse model identified a secretion of
CR2-fH in RPE cells after injection of AAV5-VMD2-CR2-fH. Moreover, a reduction in the
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production of C3a associated with CNV was observed. This study shows the potential role
of the alternative pathway of complement in the treatment of AMD [188].

AAVCAGsCD59 or HMR59

AAVCAGsCD59 is an adeno-associated viral vector serotype 2 developed by Hemera
Biosciences (Newton, MA, USA), which expresses the soluble form of the complement regu-
latory protein CD59 (sCD59). AAVCAGsCD59 allows normal retinal cells to increase
the sCD59 expression, which protects the retinal cells of central vision by inhibiting
MAC, complement-mediated cell lysis terminal step. A phase 1 study (NCT03144999,
2017–2021) [189] has been performed to measure intraocular inflammation, evaluate VA,
observe GA zone change and its growth rate, the drusen volume in atrophic AMD patient’s
eyes and finally the incidence of the conversion of dry AMD to wet AMD. This study
showed a well-tolerated profile without serious toxicity and no conversion in neovascular
AMD was observed in patients [190].

IONIS-FB-LRX

IONIS-FB-LRX is a ligand-conjugated (LICA) antisense inhibitor of the factor B, a
component of the alternative pathway produced in the liver that circulates to the chori-
ocapillaries. A phase 1 study (ACTRN12616000335493, 2020) [191] was performed on
54 volunteers at single and multiple doses of IONIS-FB-LRX. A significant reduction in
factor B levels in the plasma was observed (56% for 10 mg and 72% for 20 mg at 36 days)
without any safety concerns [191]. Two phase 2 studies (NCT03446144, 2018; GOLDEN,
NCT03815825, 2019–2022) [192,193] have been initiated to evaluate the safety and efficacy of
IONIS-FB-LRX in multiple doses on GA AMD participants. Even if the first was withdrawn
rapidly (business issues), the second is currently recruiting. This study will allow the
evaluation of the GA area size on 330 patients measured by fundus autofluorescence (FAF).

GT005

GT005 is a recombinant non-replicating adeno-associated viral (AAV) vector encoding
a human complement factor I. Three phases 1 or 2 studies (FocuS, NCT03846193, 2019–2026;
EXPLORE, NCT04437368, 2020–2024; HORIZON, NCT04566445, 2020–2025) [194–196]
are ongoing to evaluate the safety, the dose-response, and efficacy of several doses (low,
medium, or high) of GT005 administered as a subretinal injection in dry AMD patients.

GEM103

GEM103 is a full-length human recombinant complement factor H protein. A phase
1 study (NCT04246866, 2019–2020) [197] on 12 participants with GA secondary AMD
showed a good safety and tolerability profile. Two phase 2 studies (ReGAtta, NCT04643886,
NCT04684394, and 2020–2022) [198,199] evaluated GEM103 at multiple doses for geo-
graphic and neovascular AMD, respectively. ReGAtta study showed a reduction in biomark-
ers of complement activation. In addition, supraphysiological levels of factor H have been
maintained thanks to GEM103 in both studies while being well-tolerated.

3.5.2. Other Inflammatory Targets

Sirolimus

Sirolimus (rapamycin, Rapamune®) is a well-known natural macrocycle exhibit-
ing several therapeutic activities. This inhibitor of the mammalian target of rapamycin
(mTOR) [200] was initially used as an immunosuppressor to prevent graft rejections (first
agreement by FDA in 1999, given in the case of renal transplantation) [201]. In AMD-
treatment, Sirolimus was given in association with Lidocaine (Phase 2, NCT01675947, 2012–
2015) [202], but this trial was stopped due to safety concerns. A phase 1/2 study (SIRGA,
NCT0071249, 2008–2013) [203], complemented by another phase 1/2 study (SIRGA2,
NCT01445548, 2011–2019) [204], evaluated the safety and efficacy of sirolimus formu-
lation; unfortunately, side effects of retinal atrophy and RPE disorders were observed
without beneficial effects for patients [205]. Thus, its use remains highly questionable for
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AMD treatment, and additional studies are required. Recently, in 2021, a study showed
a promising subconjunctival delivery profile using sirolimus-loaded PLGA nanoparticles
(SIR-PLGA-NP) and chitosan-grafted nanoparticles (SIR-CH-PLGA-NP) in order to achieve
a slow release of Sirolimus by ex-vivo scleral penetration [206].

Glatiramer acetate

Glatiramer acetate (Copaxone®), developed by Teva Pharmaceutical (Tel Aviv, Israel),
is a four amino acid (Glu-Ala-Tyr-Lys) polymer mimicking myelin that is currently used
in multiple sclerosis (FDA approved in 1996) [207]. Glatiramer acetate suppresses the
inflammatory response, as the pro-inflammatory T cells are feigned into Th2 cytokines
(anti-inflammatory or regulatory cells). However, the precise mode of action remains
elusive [208,209]. In 2007, a phase 2/3 study (NCT00466076, unknown statue) [210] and
a phase 1 study (NCT00541333, 2007–2013) [211] assessed glatiramer acetate efficacy and
safety for its use as a preventive treatment that blocks the conversion of dry AMD to wet
AMD; at the endpoint, both studies highlighted a decrease in drusens’ area [212].

Fluocinolone acetonide

Fluocinolone Acetonide (Iluvien®), is a lipophilic corticosteroïd developed by Alimera
Sciences (Alpharetta, GA, USA) [213], FDA approved in 1963 for the treatment of diabetic
macular oedema (DME) [214]. In a phase 2 study (NCT00695318, 2008–2015) [215] fluoci-
nolone acetonide (0.2 or 0.5 µg/day) demonstrated a slight improvement in the size of GA
after 24 months.

Table 7. Drugs targeting inflammation.

Drugs Structure Target Clinic or
Research Formulation Ref.

Lampalizumab antigen-binding (Fab) fragment
from monoclonal antibody Factor D 3 Intravitreal injection NCT01602120 [155]

NCT02288559 [152]

Danicopan
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C3 2 Intravitreal injection
NCT02503332 [167]
NCT03777332 [169]
NCT03525600 [170]

Eculizumab monoclonal antibody C5 2 Intravenous NCT00935883 [175]

Tesidolumab fully human IgG1, monoclonal
antibody C5 2 Intravitreal injection

NCT01255462 [178]
NCT01527500 [179]
NCT02515942 [180]

CLG56 Human antibody Properdin 1
2 Intravitreal injection

NCT01835015 [182]
NCT02515942

[180,183]

Avacincaptad pegol PEGylated nucleic
acid aptamer C5

1
2
3

Intravitreal injection
NCT00950638 [185]
NCT02686658 [186]
NCT04435366 [187]

AAV5-VMD2-CR2-fH ocular gene
therapy product Factor H R Intravitreal injection [188]
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Table 7. Cont.

Drugs Structure Target Clinic or Research Formulation Ref.

AAVCAGsCD59 ocular gene
therapy product MAC 1 Intravitreal injection NCT03144999 [189]

IONIS-FB-LRX
ligand-conjugated
(LICA) antisense Factor B 1

2 Subcutaneously

ACTRN12616000335493
[191]

NCT03446144 [192]
NCT03815825 [193]

GT005 AAV2 Factor I 1/2 Subretinal injection
NCT03846193 [194]
NCT04437368 [195]
NCT04566445 [196]

GEM103 Recombinant protein Factor H 1
2 Intravitreal injection NCT04246866 [197]

NCT04643886 [198]

Sirolimus
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3.6. RPE and Photoreceptors’ Loss: Stem Cells Curative Strategy

The discovery of stem cells (SC) and their implication in tissues’ regeneration led
to the emergence of new therapeutic strategies to restore damaged tissues in numerous
diseases (curative strategy vs. symptomatic approach). In the case of the atrophic AMD,
three subtypes of stem cells have been studied to regenerate the RPE cells and to produce
choriocapillaris and retina maintenance promoting cells [216]: SC may be issued from
fibroblasts (iPSC), SC from the central nervous system (HuCNS) and embryonic stem cells
(hESC) (Figure 16).

Human-induced pluripotent stem cells (iPSC)

Human-induced pluripotent stem cells (iPSC) (Table 8) are obtained from adult human
fibroblasts, resulting from the activation of a set of transcription factors including Oct3/4,
Sox2, c-Myc and Klf4 [217]. They share similarities with native RPE cells such as close
membrane potential, polarized secretion of VEGF and a comparable gene expression
pattern [218,219]. iPSCs can be used to generate pigmented epithelial cells in the outer
retina to replace or regenerate the defective ones. Moreover, these cells can produce growth
factors and cytokines (brain-derived neurotrophic factor for supportive paracrine effect in
the macula) [218]. The iPSC may be sub-retinaly grafted, and a transplantation study in
rodent has been carried out on a model of hereditary degenerative retina (RCS rat) [220]. A
more recent in vitro study (2016) has been carried out against atrophic AMD to understand
its mechanisms. This study relies on models allowing the iPSCs generation from RPE
of AMD donors (AMD RPE-iPSC-RPE and AMD Skin-iPSC-RPE) compared to normal
RPE-iPSC-RPE. The two AMD-derived models show a different disease phenotype as
compared to normal RPE-iPSC-RPE as well as higher ROS formation under oxidative stress.
Among others, the SIRT1/PGC-1α pathway seems to play a key role [221], in another trial
(NCT02464956, 2015–2019) [222] thereupon. Last, for a better understanding of the cell
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therapy relevance in AMD, a bank of samples differentiable into ocular cells (transformation
of skin, blood into iPSCs) was built (NCT03372746, 2017–2019) [223].
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Human embryonic stem cells (hESC)

The transplantation of human embryonic stem cells (hESC) (Table 8) has also been
tested in atrophic AMD to replace damaged RPEs (MA09-hRPE model, hESC-RPE cell line).
Once grafted, the SC proliferated without senescence nor apoptosis [224,225]. A phase 1/2
study (NCT01344993, 2011–2017) [226] demonstrated the survival of the transplant after
12 months, without abnormal proliferation nor side effects for the patients [224,225]. A
recent study (NCT02463344, 2015–2020) [227] was led to evaluate the long-term (5 years)
safety and tolerability of MA09-hRPE in atrophic AMD patients. Its conclusions have not
been published yet.

CPCB-RPE1 is a subretinal human implant, composed of hESC-RPEs precultured on
a biocompatible, mesh-supported submicron parylene C membrane [228]. Their use was
assayed in vivo, on Yucatán mini pigs’ eyes, in 2016 and the safety of the subretinal implan-
tation has been proved [228]. A phase 1/2 study (NCT02590692, 2015–2023) [229] is cur-
rently ongoing to evaluate the damages of CPCB-RPE1 implant to the RPE/photoreceptor
complex in atrophic AMD patients.

Human central nervous system (HuCNS-SC)

The stem cells issued from the human central nervous system (HuCNS-SC) (Table 8)
have been used to prevent degeneration of photoreceptors in Royal College of Surgeons
rats, animals known for inherited retinal degeneration [230]. The HuCNS-SCs survived
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over a minimum of eight months after their transplantation into the subretinal space. They
minimized long-term vision loss and preserved photoreceptors [231,232]. In humans, the
safety profile of HuCNS-SC transplant has been proved by a phase 1/2 study (NCT01632527,
2012–2015) [233]. Another phase 2 study (RADIANT, NCT02467634, 2015–2016) [234] has
been implemented by StemCells, Inc to assess potential benefits for AMD patients. The
authors concluded that these grafts prevented the aggravation of the symptoms. In some
cases, this strategy allowed an improvement in BCVA and in contrast sensitivity (CS), an
increase in the central subfield thickness and of the macular volume was also observed.
Finally, it showed a decrease in the growth rate of GA in the treated eye compared to the
control eye [235]. A study evaluating the long-term safety and possible benefits for patients
(NCT02137915, 2014–2016) [236] was terminated prematurely due to financial reasons,
despite no safety issues were observed.

Table 8. Stem cells therapies against atrophic AMD.

Drugs Origin Goal Clinic or Research Formulation Ref.

iPSC Human fibroblast RPE cells regeneration - Transplantation NCT02464956 [222]

hESC Central nervous Replace RPE cells 1/2 Transplantation
NCT01344993 [226]
NCT02463344 [227]
NCT02590692 [229]

HuCNS-SC Fertilization Photoreceptors
regeneration 2 Transplantation

NCT01632527 [233]
NCT02467634 [234]
NCT02137915 [236]

Conclusion on treatments for atrophic AMD

Despite intensive research towards the treatment of atrophic AMD, no robust ther-
apeutic options (either symptomatic or curative) have emerged yet. To date, only four
molecules reached phase 3 clinical trials (ALK-001, trimetazidine, tandospirone, and lam-
palizumab). The strategy consisting in targeting amyloid β accumulation with monoclonal
antibodies (RN6G and GSK933776) showed no beneficial effect. Last, there are no sufficient
and convergent results yet, to consider the use of SC in replacing or regenerating damaged
cells. Today, only lifestyle improvement is advised to delay disease progression and to
prevent its evolution to the exudative form of AMD. It is worthy to note that this evolution
is much more detrimental for the life quality of patients. Indeed, the precise mechanism
of the atrophic AMD remains poorly understood, which impedes the emergence of new
standards for care.

4. Ongoing Research and Clinical Trials for the Treatment of Exudative AMD
(Wet-AMD)

Exudative AMD has been reported for the first time in the 1850s. This advanced AMD
form is more aggressive than the atrophic one, as it may lead to blindness in few months
only. The exudative form affects approximately 15% to 20% of AMD patients [47], but is
responsible for a large majority of blindness cases. Therefore, finding efficient treatments is
an urgent need for public health.

The first treatment was proposed in the 1980s; it concerned laser photocoagulation,
which induced severe side-effects [237]. Fortunately, since the beginning of the 21st century,
the discovery of new molecular targets and the validation of new drugs are constantly
accelerating (Figure 17). From those, only one therapeutic option has been pursued, so far,
in wet AMD care: the anti-angiogenic treatments [238,239].
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Like atrophic treatments, drug formulation is a real challenge and must be anticipated.
Currently, all drugs on the market are administered by intravitreal injections, that are
invasive and sometimes stressful for patients. To counter this, eye drop formulations are
currently being developed for upcoming drugs.

4.1. Phototherapies

Laser photocoagulation

Laser photocoagulation, developed in the late 1980s, was the first therapeutic option
against exudative AMD [237]. This treatment aims to preserve VA after the appearance of
new choroidal vessels in the juxtafoveolar or extrafoveolar regions. It is a non-selective
treatment that destroys the new vasculature responsible for both fibroglial scar formation
of a and the surrounding neuroretin. Practically, a laser beam is focalized on the RPE; it
generates locally an increase in temperature, inducing the destruction of the neo-vessels
(Figure 18). Different types of lasers were clinically used, including Argon Blue-green and
Argon Green only, Krypton Red and Yellow, and the tuneable Dye Laser [237].
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Figure 18. Laser photocoagulation mode of action.

The Macular Photocoagulation Studies (MPS, NCT00000158) [240], a phase 3 clinical
trial, initiated in the 1970s with a 5-year follow-up for patients with extrafoveal choroidal
neovascularization, demonstrated significant effectiveness of the treatment with the Argon
Blue-Green Laser Photocoagulation method. However, a visual decompensation and a loss
of VA were observed. In addition, some immediate or delayed side effects, such as scar
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enlargement or scotoma, were observed [241]. This therapy is no longer used today due to
severe neovessels and retina damages.

Photodynamic therapy (PDT)

Photodynamic therapy (PDT) has been originally used to treat cancers [242]. It consists
in intravenous administration of photosensitizing agents to patients, followed by their
local activation by a laser beam. This results in the formation of ROS inducing localized
chemical damages to surrounding biomolecules (proteins, membranes and nucleic acids),
leading to cell death. Novartis Pharma S.A.S. extended the PDT scope to the treatment of
the choroidal neovascular membrane in the 2000s, and developed verteporfin (Visudyne®).
This photosensitizing agent is able to induce radicals close to the retro-foveal neovessels.
Visudyne® is administered by intravenous infusion (over 10 min at a dose of 6 mg/m2 of
body surface area), followed by an activation by 15 min laser beam during. This treatment
allows to target a specific vessels’ area without affecting the surrounding tissues [243].

Verteporfin is a monoacid derivative of benzoporphyrin (BPD-MA, chlorin type)
that exists as a mixture of two regioisomers (BPD-MAC and BPD-MAD, Figure 19). The
drug lifetime has a half-life of t1/2 = 5–6 h in humans and does not present inherent
cytotoxicity [243–245]. Once activated by a non-thermal red light at 689 nm (diode laser),
this drug allows singlet oxygen generation (Figure 20). For many years, this treatment has
been studied through various clinical cases [246].
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T1: triplet excited state; Abs: absorption; Fl: fluorescence; Ph: phosphorescence; IC: internal conver-
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Two studies were performed to evaluate the verteporfin/PDT effects on lesions and
VA in patients with exudative AMD: Treatment of Age-related Macular Degeneration
with Photodynamic Therapy (TAP) and Verteporfin In Photodynamic Therapy (VIP). Both
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studies showed that small lesions respond better to this treatment than larger ones. In
addition, this treatment allowed a relative maintenance in VA [247]. Visudyne® was
approved by FDA in 2002 [248] (approved by French HAS in 2000 [249]) for its use against
choroidal exudative AMD. An extension was obtained from French HAS in 2002 for occult
retrofoveolar choroidal neovascularization [250].

Phototherapy is not used anymore as a treatment in AMD patients, due to the signifi-
cant higher efficacy of anti-VEGF drugs.

4.2. Anti-VEGF Drugs

Angiogenesis is one of the major key markers of the progression to wet AMD. The
breakthrough discovery of anti-VEGF drugs brought real improvement for patients with
both cancer and angiogenic eye diseases [251]. Thus, new therapeutic options for wet
AMD emerged in the 1990s. A particular emphasis has been dedicated to research on the
Vascular Endothelial Growth Factor A (VEGF-A), which is one of the major key players in
pathological angiogenesis [238,239]. However, different VEGF-A isoforms exist: some of
them exerting pro-angiogenic effects (VEGF-A206, VEGF-A189, VEGF-A165, and VEGF-A121),
while others are considered as less angiogenic or anti-angiogenic (VEGF-A186b, BEGF-A165b,
and VEGF-A121b). In homology with cancers and retinopathies, the most active isoform in
AMD is the overexpressed pro-angiogenic VEGF-A165. The main drawback of anti-VEGF
drugs lies in the fact that these therapeutic agents remain symptomatic, not curative, and
they do not induce regeneration in VA. Secondary limitations may occur due to long term
intravitreal injections treatments such as the occurrence of retina atrophy [252]. Despite
these disadvantages, these drugs bring indisputable benefits for responder patients and
remain the standard wet AMD care.

4.2.1. Marketed Drugs

Currently, five molecules have been approved for the symptomatic treatment of wet
AMD, all of them being large size biologics.

Pegaptanib sodium (Macugen®)

Pegaptanib sodium (Macugen®, developed by Pfizer, New York, NY, USA) is a
short (28-base) RNA oligonucleotide PEGylated aptamer, which specifically targets VEGF-
A165 [253] (IC50 = 750–1400 pM) [254]. The key study VISION (VEGF Inhibition Study
in Ocular Neovascularization) explored the intravitreal use of pegaptanib sodium (0.3; 1;
or 3 mg every six weeks) for VEGF inhibition in subfoveal CNV [255]. These treatments
resulted in patients’ VA improvement. Thus, the drug was approved by the FDA in 2004
as 0.3 mg injectable solution [256] and was marketed in France in 2006 to treat wet AMD.
Nevertheless, this drug was discontinued due to its lack of efficacy compared to other
anti-VEGF.

Ranibizumab (Lucentis®)

Ranibizumab (Lucentis®), also called rhuFab V2, was developed by Novartis Pharma
(Basel, Switzerland). This recombinant humanized monoclonal antibody of 48 kDa targets
all the VEGF-A isoforms (IC50 ranging between 88 pM and 1140 pM) [254]. The most
relevant study is a phase 3 clinical trial (MARINA, NCT00056836, 2003–2014; NCT01442064,
2011–2012; NCT00379795, 2006–2017) exploring its use by intravitreal injection (0.5 mg
monthly) [257–259]. This 2-years study demonstrated (i) a prevention of vision loss,
(ii) an average VA improvement, and (iii) a reduction in angiographic lesions. Minor
side effects have been reported (intraocular inflammation for 8–14.6%, phakic eyes for
5.1–7.2% patients, and endophthalmitis for 1%, were among the most relevant) [260].

The ANCHOR study (NCT00061594, 2003–2014) [261] compared the use of ranibizumab
with verteporfin use for photodynamic therapy (PDT) with verteporfin. This study undoubt-
edly established that ranibizumab improves VA of 1 year in average, and exhibits superior
beneficial effects than PDT. Few low ocular adverse effects were observed (intraocular
inflammation for 8–9.3%, rhegmatogenous retinal detachment for 0.7%, endophthalmitis for
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0.7%) [262]. The long-term (7–8 years) prognosis of these treatments has been summarized
by the SEVEN-UP study, which concluded that one-third of the patients demonstrated
good visual outcomes, whereas another third had poor outcomes [263]. Afterwards, dif-
ferent drug administration protocols have been studied for 0.5 mg: HARBOR (13.5 mean
number injections showing an improvement in BCVA) [264] and TREX-AMD (13 and
10.1 mean number injections showing visual gain) [265]. Moreover, a delivery system has
been designed based on magnetic nanoparticles loaded with PEG-PLGA copolymer matrix.
This study showed an inhibition of tube formation highlighting the promising profile of
nanoparticles for neovascular AMD [266]. A port delivery system (PDS) has been studied
for ranibizumab, based on eye implant allowing the continuously delivery over several
months to reduce the number of intravitreal injections [267].

Ranibizumab was FDA-approved in 2006 and marketed in 2007 in France for the treat-
ment of wet AMD under the brand name Lucentis® (injectable solutions of 0.5 mg/month).
Importantly, this drug is also used to treat neovascularization secondary choroid for high
myopia (MF), diabetic macular edema (MDG), macular edema secondary to retinal vein
branch occlusion (OBVR), or central retinal vein (OVCR) [268].

Aflibercept (Eylea®)

Aflibercept was developed by Bayer HealthCare (Leverkusen, Germany) under the
brand name Eylea®. This is a dimeric recombinant fusion glycoprotein, composed by frag-
ments of the VEGF receptors 1 and 2 extracellular domains with an IC50 of 16–90 pM [254].
These domains are fused thanks to the Fc fusion protein (115 kDa) region of human im-
munoglobulin gamma 1 (IgG1) [269].

Phase 3 studies comparing ranibizumab and aflibercept (VIEW1/2, NCT00509795,
2007–2012; NCT00637377, 2008–2014) [270,271] proved that aflibercept intravitreal doses
(0.5 mg to 2 mg) administered every 2 months (after 3 initial monthly doses) show similar
efficacy and safety than monthly ranibizumab (0.5 mg) treatment. This lower injection
frequency brought indisputable improvements for the patients (better tolerance after suc-
cessive injections, less side effects in the eyes) [269].

Aflibercept was FDA-approved in 2011 and marketed in France in 2012 to treat wet
AMD (injectable solution of 2 mg/month). Interestingly, aflibercept is also used in oncology
(Zaltrap®), to treat adults with metastatic colorectal cancer (in combination with fluoropy-
rimidine, MA in 2005) or metastatic breast cancer (in combination with paclitaxel, MA in
2007) [250]. Moreover, it has been used as treatment for macular edema following retinal
vein occlusion (RVO), macular edema (DME), and diabetic retinopathy (DR) in patients
with DME [272].

Bevacizumab (Avastin®)

Bevacizumab or rhumAb was developed by Roche (Basel, Switzerland). This is a
recombinant humanized full-length 149 kDa monoclonal antibody directed toward all
VEGF-A isoform [273] with an IC50 of 500–1476 pM [254]. This mAb has been marketed
in 2004 (Avastin®) for the treatment of metastatic colorectal cancer and other neoplastic
diseases [274].

Five years of study of CATT (comparison of age-related macular degeneration treat-
ments trials), comparing the use of ranibizumab vs. bevacizumab, showed that these
drugs have similar effects on VA [275,276]. A phase 3 study (GEFAL, NCT01170767,
2010–2019) [277,278] compared ranibizumab and bevacizumab to evaluate the efficacy in
clinical terms on the VA in exudative AMD patients [277,278]. These results led to its clinical
use for the treatment of exudative AMD, either off-label or via a temporary authorization
in France (2015) because of market competition concerns with Lucentis®. It is available
as intravitreal administration like other anti-VEGFs, contrary to its intravenous use for
colorectal metastatic or angiogenic cancers [279].

Brolucizumab (ESBA 1008, RTH 258, Beovu®)
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Brolucizumab (Beovu®) was developed by Novartis (Basel, Switzerland). This is a
relatively low molecular weight (26 kDa) humanized single-chain antibody fragment, that
inhibits all isoforms of VEGF-A (IC50 = 0.49 nM) [280,281].

Recently, four clinical trials (one phase 2 trial in 2018: NCT02507388 and three phases
3 trials in 2019 and 2020: NCT03930641, NCT03954626, NCT03386474) [282–285] were
completed and showed the safety of 6 mg of brolucizumab in exudative AMD patients.
Moreover, the two phases 3 trials HAWK (NCT02307682, 2019) [286] and HARRIER
(NCT02434328, 2019) [287] compared the effects of brolucizumab to aflibercept [288]. These
studies differ in the administered intravitreal doses: two doses of brolucizumab (3 mg and
6 mg) and a dose of 2 mg aflibercept for HAWK; 6 mg of brolucizumab vs. a dose of 2 mg of
aflibercept for HARRIER. Overall, these studies demonstrated that at 6 mg brolucizumab
is an interesting anti-VEGF drug with efficacy, safety and solubility that can be compared
to the 3 other anti-VEGF that are currently in use for wet AMD treatment (ranibizumab,
aflibercept, and bevacizumab). Moreover, HAWK and HARRIER show that brolucizumab
may be a more durable agent compared to other anti-VEGF, which allows high molar doses,
and thus fewer injections for patients. Several phase 3 or 4 clinical trials have been recruited
in 2021 to assess the effects of brolucizumab on patients with exudative AMD.

Brolucizumab was recently approved in US (FDA) and Europe for the treatment of
exudative AMD (2019); however, without possibility of reimbursement. For this reason,
combined with inflammatory side-effects and retinal vascularity sometimes occlusive, its
clinical use remains very limited [289].

To summarize, among the five anti-VEGF agents which have been approved for the
treatment of wet-AMD from 2006 to 2019, four are marketed (Table 9). All these drugs
are administered by intravitreal injection, which allows a focused action. However, these
treatments might be traumatic for some patients [290] and are not curative, since they can
only slow down or pause the progression of the disease. Last, ranibizumab and bevacizumab
have similar effects on VA after 1/2 years and similar side effects [275,291]. Injection price
discrepancies are nevertheless of note, bevacizumab being significantly more economical.

Table 9. Marked anti-VEGF drugs.

Drugs Structure Target Visual Acuity
Efficiency in Phase 3 Formulation Prices (US; France) Ref.

Pegaptanib Aptamer (50 kDa) VEGF-A 165 - Intravitreal injections
(0.3 mg/6 weeks) $5300 per 5 doses VISION [255]

Ranibizumab
Monoclonal

Antibody, Fab
Fragment (48 kDa)

All isoforms of
VEGF-A + Intravitreal injections

(0.5 mg/month)
$2023 per dose;

738 euros/monthly dose

NCT00056836 [257]
NCT01442064 [258]
NCT00379795 [259]
NCT00061594 [261]

Aflibercept Fusion Protein
(115 kDa)

All isoforms of
VEGF-A + PIGF + Intravitreal injections

(2 mg/month)
$1940.90 per dose;

730 euros/monthly dose
NCT00509795 [270]
NCT00637377 [271]

Bevacizumab Monoclonal
Antibody (149 kDa)

All isoforms of
VEGF-A + Intravitreal injections

(1.25 mg)
$55 per dose;

100 euros per dose NCT01170767 [277]

Brolucizumab Monoclonal
Antibody (26 kDa)

All isoforms of
VEGF-A +

Intravitreal injections
(6 mg/month for the

first three doses,
followed by

6 mg/8–12 weeks)

$1940.90 per dose

NCT02507388 [282]
NCT03930641 [283]
NCT03954626 [284]
NCT03386474 [285]
NCT02307682 [286]
NCT02434328 [287]

4.2.2. Future Trends

In addition to the currently marketed anti-VEGF treatments, several drugs were
clinically tested and are depicted below.

Proteins drugs

Conbercept (Lumitin®)

Conbercept (Lumitin®, also called KH-902) is developed by Chengdu Kanghong
Biotech Co., Ltd. (Chengdu, China). This is a recombinant fusion protein similar to
aflibercept, with a larger VEGF2 domain 4 [292]. It is composed of the second Ig domain
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of VEGFR-1, the third and fourth Ig domains of VEGFR-2, and the constant region (Fc) of
human IgG1. Like aflibercept, conbercept blocks all isoforms of VEGF A, VEGF B, and
PIGF but with a higher affinity than bevacizumab and ranibizumab (IC50 = 7–15 pM) [293].
Moreover, this mAbs exerts doubly superior bioactivity for VEGF inhibition compared to
ranibizumab [294].

After in vivo studies (rats and mice) [293], conbercept has been evaluated in sev-
eral clinical studies in phase 1 (HOPE, NCT01242254, 2010–2014) [292,295], 2 (AURORA,
NCT01157715, 2010–2014) [296,297], 3 (PHOENIX, NCT01436864, 2011–2014) [298], and
4 (RELIANCE, NCT02577107, 2015–2017) [299]. However, the phase 3 dose-ranging tri-
als, PANDA (NCT03577899, NCT03630952, 2018–2021) [300,301] were recently stopped
(2021) since the primary endpoints have not been reached (only 40% of the recorded cases
followed the dosing regimen).

This drug was approved by the China Food and Drug Administration in 2013 but not
marketed in the United States nor in France because worldwide clinical studies have not
been provided yet [273,294,302].

Abicipar pegol

Abicipar pegol (or AGN-150998) is a recombinant protein of the DARPin family
(Designed Ankyrin Repeat Protein) developed by Allergan (Dublin, Ireland). It is a small
34 kDa protein formed by a repeated ankyrin structures. This recombinant protein has a
greater affinity, for all the VEGF-A isoforms, than ranibizumab (Kd = 2 pM vs. 46 pM) [303].
In 2018, Allergan demonstrated that abicipar pegol has also a longer duration of action
than ranibizumab and bevacizumab [304].

Phase 1 studies (NCT02859766, 2016–2018; PINE, NCT03335852, 2017–2018) [305,306]
evaluated the safety and pharmacokinetics of abicipar pegol in exudative AMD, the re-
sults have not been released yet. Phase 2 studies (CYPRESS, NCT02181517, 2014–2016;
BAMBOO, NCT02181504, 2014–2017) [307,308] has been implemented in Japan and in the
US to compare the effects of three monthly intravitreal injections of abicipar (1 or 2 mg)
or five monthly intravitreal injections of ranibizumab (0.5 mg). This study established
that abicipar pegol not only induces an improvement in VA but also a decrease in the
thickness of the retina [303]. In addition, a phase 2 stage 3 study (REACH, NCT01397409,
2011–2019) [309], demonstrated that abicipar pegol reduces the number of the injection
compared to ranibizumab treatment (3 against 5), while improving the BCVA and the
thickness of the central retina (CRT). In addition, no serious side effects have been re-
ported [310]. Finally, two phases 3 studies conducted with a larger dose of abicipar pegol
(2 mg) at different injection times, showed an enhancement and stability of VA with a lower
administration dose of abicipar pegol compared to ranibizumab (CEDER, NCT02462928,
2015–2019; SEQUOIA, NCT02462486, 2015–2019) [311,312]. Even if the incidence of intraoc-
ular inflammation (IOI) is higher with abicipar pegol, this drug allows quarterly injections
while ranibizumab is administered monthly [313]. Moreover, a 28-week phase 2 study
(MAPLE, NCT03539549, 2018–2020) [314] has been recently completed, highlighting a lower
IOI incidence than phase 3 in abicipar-treated patients. Nevertheless, these studies were
stopped by Allergan due to a number of intraocular inflammatory adverse events.

OPT-302

All the above-mentioned drugs target mainly VEGF-A, however AMD is also charac-
terized by abnormally elevated levels of other endothelial growth factors, such as VEGF-C
and VEGF-D (and their corresponding receptors VEGFR-2 and VEGFR-3), that are also key
players of hyper neo-vascularization. Moreover, VEGF-C is reported as a potent inducer
of vascular permeability or leakage. Thus, blocking simultaneously VEGF-A, C and D
could stop the angiogenesis and the vascular leakage occurring in wet AMD. In line with
these considerations, OPT-302 has been developed by Opthea (Melbourne, Australia). This
is a soluble form of VEGFR-3 (the transmembrane receptor for VEGF-C and VEGF-D),
including the 1–3 extracellular domains of VEGFR 3 and the Fc fragment of human IgG1.
OPT-302 is designed to bind and consequently neutralize the activity of VEGF-C and D. The
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safety, pharmacokinetics, and pharmacodynamics of OPT-302 have been evaluated via a
phase 1 trial (NCT02543229, 2015–2017) [315,316] with an intravitreal injection given
at a 2 mg dose, alone or in combination with ranibizumab (0.5 mg). Then, a phase 2
study (NCT03345082, 2017–2020) [317] was carried out to compare two doses of OPT-302
(2 mg and 0.5 mg) in combination with ranibizumab (0.5 mg). This trial revealed that
the combined therapy induces a better VA, a decrease in macular thickness with OP-302-
ranibizumab association compared to the use of ranibizumab alone. Moreover, this strategy
allows a longer delay between two successive injections (every 4 weeks).

Small-sized molecules

Another anti-angiogenic strategy consists in targeting growth factor receptors with
small-sized molecules. Indeed, these receptors exert intracellular tyrosine kinase inhibiting
activities on several substrates and are involved in numerous signaling pathways. This
results in proliferation, cell growth, apoptosis, angiogenesis, and cellular motricity. These
growth factors receptors have been extensively studied for more than two decades as
relevant targets in oncology for the development of “targeted therapies”.

Sorafenib

Sorafenib (BAY 43-9006, Nexavar®), is a polyspecific kinases inhibitor of Raf, PDGF,
VEGF receptors, and c-Kit, developed by Bayer (Leverkusen, Germany) with low nanomolar
IC50 (26, 90, and 20 nM for VEGFR-1, -2, and -3, respectively) [318]. This molecule has been
initially approved by the FDA in 2005 for its use against hepatocellular carcinoma, renal
cell carcinoma, and thyroid carcinoma [319]. In France, this drug has been marketed for the
treatment of hepatocellular carcinoma and renal cell carcinoma in 2006 [320].

In ocular diseases, an in vitro study was performed to determine the effects of a
simultaneous blockade of VEGF, PlGF, and PDGF. By treating RPE cells with sorafenib
and exposing them to white light, the levels in these abovementioned growth factors are
reduced. In contrast, with the same conditions, the absence of sorafenib led to an increase
in VEGF, PIGF, and PDGF. This result highlights the potential benefits of sorafenib in
AMD [321].

Moreover, some studies have been performed on isolated cases, consisting of the
use of sorafenib in association with other anti-VEGF; a study was implemented in 2008
to monitor the effects of a treatment combining sorafenib (200 mg, 3 times a week, for
5 weeks) and ranibizumab. This study showed that, in combination or alone, sorafenib
allows VA improvement and a resolution of the intraretinal fluid without serious adverse
effects. Another study on a single case was performed in 2008 to evaluate the effect of a
bevacizumab injection (1.25 mg twice) in combination with oral sorafenib (400 mg twice
daily). A VA improvement and a decrease in the retina thickness were observed. A longer-
term study would be required for sorafenib use [322]. However, to unambiguously validate
these results, another clinical study would be necessary with a larger recruitment of AMD
patients [323].

Pazopanib

Pazopanib (Votrient®) is another small-sized inhibitor that targets VEGFR-1, -2, and -3
(IC50 = 7, 15, 2 nM), platelet-derived growth factor (PDGFR-α, -β; IC50 = 73, 215 nM) [324],
and stem cell growth factor (c-Kit). This molecule has been developed by GlaxoSmithKline
(GSK, Brentford, UK) and has been approved by the FDA in 2009 for the treatment of the re-
nal cell carcinoma and of the soft tissue sarcoma (in combination with chemotherapy) [325].

GSK led several studies on the oral administration of pazopanib to evaluate its
safety, tolerability, efficacy, absorption, pharmacodynamics or pharmacokinetics for
exudative AMD: phase 1 studies (NCT00463320, 2007–2012; NCT00659555, 2008–2017;
NCT01154062, 2010–2017; NCT01051700, 2010–2017; NCT01072214, 2010–2017) [326–330]
and phase 2 studies (NCT00612456, 2008–2017; NCT00733304, 2008–2017; NCT01134055,
2010–2018) [331–333], (NCT01362348, 2011–2017) [334]. These trials showed that pa-
zopanib is well tolerated with improvement in BCVA, central retinal lesion thickness,
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and central retinal thickness [335]. However, a phase 2 study [334] was stopped because
of a lack of efficacy [336]. Finally, another phase 2 study [333] compared the effects of
pazopanib given in eye drops versus intravitreal injections of ranibizumab. This study
reveals that pazopanib drops are well tolerated; however, after using pazopanib drops
for one year, no greater therapeutic improvement has been observed and the number of
intravitreal injections of ranibizumab could not be reduced [337].

Axitinib

Axitinib (Inlyta®) is a small-sized inhibitor of VEGFR, PDGFR and fibroblast growth
factor receptor (FGFR), colony-stimulating factor receptor developed by Pfizer (New York,
NY, USA). This molecule demonstrates a higher inhibiting potency of kinases compared
to some reference compounds such as pazopanib and sorafenib. Indeed, axitinib inhibits
VEGFR-1, -2, and -3 with IC50 ranging between 0.1 nM to 0.3 nM, and inhibits PDFG-R,
FGFR with IC50 ranging between 1.6 nM to more than 1000 nM for PDGF, FGFR, colony-
stimulating factor [338]. The FDA approved its use in 2012 to treat renal cell carcinoma [339].
In vitro and in vivo studies on a mouse model of AMD demonstrated that oral adminis-
tration of axitinib enables 70.1% inhibition of choroidal neovascularization (CNV) lesions
and significant regression of established CNV [340,341]. Axitinib could be used in com-
bination with other anti-VEGFs in the treatment of exudative AMD but more results are
needed to determine its safety, the dose or long-term outcomes of such treatment [341]. A
recent phase 1/2 was initiated in 2020 (OASIS, NCT04626128, 2020–2022; NCT05131646,
2021–2022) [342,343] to evaluate the safety and tolerability of a suprachoroidally formula-
tion of axitinib in AMD patients, whom have been treated with anti-VEGF drug. Moreover,
in order to evaluate another formulation with sustained release, Ocular Therapeutix has
been recently started a phase 1 study based of a dried polyethylene glycol-based hydrogel
fiber containing axitinib: OTX-TKI (NCT04989699, 2021–2022) [344].

Acrizanib

Acrizanib (LHA510) is a small-molecule VEGFR-2 inhibitor (IC50 = 17.4 nM, BaF3-
VEGFR-2) which inhibits CNV in mouse (99%) and rat (94%) models [345]. Moreover, an
exposition over one eye of rabbits for 7 days of acrizanib (2% suspension, 30 µL) showed
an encouraging ocular pharmacokinetics profile [345]. A phase 1 study (NCT02076919,
2014) [346] and a phase 2 study (NCT02355028, 2015–2016) [347] have evaluated the topical
administration compared to invitreal injection. The results were not satisfying with adverse
events such as primarily corneal haze and/or edema [348].

Regorafenib

Regorafenib (Stivarga®) is a small-sized kinases inhibitor developed by Bayer (Lev-
erkusen, Germany), which remarkably inhibits VEGFR-1, -2, -3 (IC50 = 13, 4, 46 nM) and
PDGFR (IC50 = 22 nM) [349]. This drug has been approved by the FDA for the treatment of
metastatic colorectal cancer (CRC), of gastrointestinal stromal tumor (GIST) in 2012, and of
hepatocellular carcinoma (HCC) in 2017 [350]. In the case of AMD, a phase 2 clinical trial
(DREAM, NCT02222207, 2014–2016) [351] evaluated its use as eye drops. However, this
study was prematurely terminated due to a lack of efficacy compared to current treatments,
potentially due to an unsatisfactory diffusion of the molecule in the posterior segment of
the eye [352].

SH-11037

SH-11037 is a synthetic derivative of the antiangiogenic homoisoflavonoid cremastra-
none, which inhibits ocular angiogenesis in zebrafish larvae at 10 µM (40% reduction in
hyaloid vessel) [353]. In the mouse laser-induced-CNV model, the CNV lesion has been
reduced thanks to SH-11037 at 1 and 10 µM (42% and 55% of reduction respectively) with
reduced leakiness of CNV lesions. Moreover, SH-11037 presents a safe and effective profile
without toxicity issues (up to 100 µM, 14 days) [353]. In 2018, a study showed an epoxy
fatty acid metabolism enzyme as a new target for neovascular AMD: the soluble epoxide
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hydrolase (sHE). SH-11037 binds almost the entire active site of sHE in hydrolase domain
and inhibits its activity in vitro (IC50 > 10 µM) and in vivo this enzyme in CNV mouse
model (at 10 µM). sHE is expressed in human neovascular AMD, in consequence, it may
constitute a relevant target to counter the disease [354].

PAN-90806

PAN-90806, is a VEGF-R2 inhibitor (IC50 = 1.27 nM) developed by PanOptica, Inc.
(Mount Arlington, NJ, USA) for the treatment of exudative AMD and other neovascular
eye diseases, exerting an antiangiogenic effect [355]. PAN-90806 is an interesting molecule
due to its topical administration by eye drops [356]. A phase 1 study (NCT02022540,
2013–2016) [357] has been completed in 2016 to evaluate the safety and tolerability of
PAN-90806, as monotherapy or in association with ranibizumab. It showed a biological
positive response for 45–50% of patients. After this phase 1 outcomes, a recent phase
1/2 (NCT03479372, 2018–2019) [358] has been launched to determine the optimal dose of
PAN-90806 to be orally administered. Thus, for a once-daily administration at 2, 6, and
10 mg/mL concentrations, PAN-90806 is safe and well-tolerated.

Vorolanib

Vorolanib (X82 or CM-082) is a kinase inhibitor derived from sunitinib, with anti-
VEGFR (IC50 = 0.052 µM) and anti-PDGFR (IC50 = 0.26 µM) activities [359,360]. Tyrogenex,
Inc. initiated two trials: a phase 1/2 study (NCT01674569, 2012–2018) [361] to evalu-
ate the use of vorolanib in combination therapy with ranibizumab, and a phase 2 study
(NCT02348359, 2015–2018) [217] in which vorolanib was given in combination with one
of the three anti-VEGF approved in AMD treatment (ranibizumab, aflibercept and be-
vacizumab). For the patients who completed these studies (25 participants, 71%), the
authors reported a maintenance or an improvement in VA, as well as a reduction in the
average thickness of the central subfield (SD), except in one case. Unfortunately, these
positive results are counterbalanced by undesirable side effects including diarrhea, nau-
sea, fatigue, and transaminase increase, which led to the discontinuation of the treatment
for some patients (17%). Thus, additional studies are needed to evaluate the balance be-
tween safety and efficacy [359]. In 2021, EyePoint Pharmaceuticals started a phase 1 study
(NCT04747197, 2021–2022) [362] to evaluate EYP-1901 solution (440, 2060 and 3090 µg)
consisting in vorolanib delivery in a Durasert bioerodible TKI.

Moreover, another drug was developed by Graybug Vision (Baltimore, MD, USA):
GB-102, a poly lactic-co-glycolic acid microparticles containing sunitinib. Two studies
in phases 1 and 2 respectively (NCT03249740, 2017–2019; ALTISSIMO, NCT03953079,
2019–2022) [363,364] showed a potent and 6-month durable safety profile. In the AL-
TISSIMO study, GB-102 was injected by intravitreal injection every 6 months
(1 and 2 mg) in comparison with aflibercept (2 mg). Despite the absence of side effects
(inflammation, intraocular pressure), a diminution of VA (decrease of 9 ETDRS letters
in the assay) upon treatment with GB-102. A 6-month prolongation is ongoing [365].

Lenvatinib

Lenvatinib (E7080 or Lenvima®) is developed by Eisai Inc. (Tokyo, Japan) and was
approved by FDA in 2015 for differentiated thyroid cancer (DTC), renal cell carcinoma
(RCC), and hepatocellular carcinoma (HCC) [366]. This is a kinase inhibitor [367] that
targets VEGFR-1, -2, and -3, fibroblast growth factor receptor (FGFR1), and platelet-derived
growth factor receptor (PDGFR) with an IC50 in the 20 µM range [368]. This drug is
interesting due to its ability to cross the blood–retina barrier. Thanks to an in vivo zebrafish
model, it has been reported that lenvatinib (5 µM or 10 µM) inhibits angiogenesis without
toxicity after 48 h [369]. Finally, lenvatinib also stops CNV in a neovascular AMD mouse
model (10 mg/day), confirming its interest in exudative AMD treatment.

Brivanib

Brivanib alaninate (BMS-582664) is an orally available inhibitor of FGFR and VEGFR
(IC50 = 34 nM) [370], with a marked specificity against VEGFR2 and FGFR1 [371], developed
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initially by Bristol–Myers Squibb to treat hepatocellular carcinoma. Studies on mouse and
zebrafish models have shown that brivanib is also an inhibitor of proliferation, migration,
tubule formation of choroidal microvascular endothelial cells and angiogenesis as observed
with lenvatinib [372]. These recent results require more in-depth studies such as the analysis
of brivanib metabolism in the mouse body, the mechanisms of CNV reduction by brivanib
or the monitoring of its effects against others VEGFR/FGFR.

Squalamine lactate (Evizon, OHR-102, MSI-1256F)

Squalamine, developed by Genaera Corporation (Plymouth Meeting, PA USA) and
Ohr Pharmaceutical (New York, NY, USA), is a small natural steroid with a steroid-
polyamine motive [373], isolated from the liver of sharks (genus Squalus). This drug
binds calmodulin once absorbed in the cell, which blocks VEGF signal transduction (an-
tiangiogenic action). This aminosterol is positively charged on the amine functions, which
allows electrostatic binding to the negatively charged cell membrane. As a result, the cell
migration process is blocked and consequently angiogenesis [374].

Three phase 2 studies (NCT00089830, 2004–2007; NCT00333476, 2006–2007; NCT00094120,
2004–2008) [375–377] and a phase 3 study (NCT00139282, 2005–2007) [378] were completed.
These studies evaluated the safety and the efficacy of squalamine lactate (40 mg/infusion/week
for 4 weeks), but they were stopped because no vision improvement has been reported as
quickly as with other treatments.

A phase 2 study (IMPACT, NCT01678963, 2012–2015) [379] compared the use of
squalamine (0.2% ophthalmic solution) given in combination with ranibizumab vs. the use
of ranibizumab alone. The combination therapy allowed a VA improvement for 42% of
patients, compared to 28% for patients receiving ranibizumab alone. This improvement was
dependent on the size and type of lesions [380]. A phase 3 study (MAKO, NCT02727881,
2016–2017) [381] was initiated with a 0.2% ophthalmic solution of squalamine injected
twice a day, in combination with a monthly injection of ranibizumab. This study showed a
lack of effectiveness of VA gain after nine months [382].

siRNA target

Another antiangiogenic strategy consists in the blockade of VEGF-A production thanks
to small interfering RNAs (siRNA), which may induce the inhibition of genes coding for
this growth factor. However, these agents block the synthesis of new VEGF but do not
eliminate pre-existing VEGF, rendering the combinational use of a conventional anti-VEGF
agent necessary [383].

Bevasiranib

Bevasiranib, developed by OPKO Health, Inc. (Miami, FL, USA), is a siRNA-based
anti-angiogenic agent targeting VEGF-A [383]. Bevasiranib showed interesting safety
and efficacy profiles with intravitreal injections in pre-clinical mouse models and clinical
studies (phase 1 and 2, without the literature data). Thus, the first siRNA tested in phase
3, was assayed against exudative AMD in association with ranibizumab in a phase 3 trial
(COBALT, NCT00499590, 2017–2019) [384]; nevertheless, this clinical trial was interrupted
due to a lack of efficacy for this combination therapy.

siRNA-027 or AGN211745

siRNA-027 or AGN211745 has been developed by Allergan (Dublin, Ireland) to sup-
press CNV and retinal neovascularization by reducing the levels of VEGF-R1-mRNA
(IC50 = 50 pM) [385].

Two clinical trials have been completed in 2008 (phase 1/2, NCT00363714) [386] and
2015 (phase 2, NCT00395057) [387]. In the first study, single intravitreal injections were
given to patients while the second trial studied its co-administration in combination with
ranibizumab. These studies were terminated prematurely due to a lack of efficacy in phase
2 without safety issues [388].

Gene therapies
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OXB-201 or RetinoStat®

OXB-201 (RetinoStat®), developed by Oxford BioMedica (Oxford, UK), corresponds
to a lentiviral vector. The infection by a lentivirus (equine infectious anemia virus, EIAV)
leads to the expression of two 20-kDa proteins, whose C-terminal fragments are derived
from type XVIII collagen (endostatin) for the first and from plasminogen for the second
(angiostatin). These two proteins exert an anti-angiogenic action by blocking endothelial
cell proliferation and migration. Moreover, endostatin and angiostatin induce endothelial
cell apoptosis and cell cycle arrest. No dose-limiting effects were observed, probably due
to the topic subretinal administration. Endostatin and angiostatin expressions in the eye
may reduce fluorescein angiographic leakage. However, in the context of exudative AMD,
subretinal and/or intraretinal fluid was not removed reliably [389]. This treatment is also
used in cancers, diabetic retinopathy in addition to macular degeneration.

A phase 1 study (GEM, NCT01301443) [390], completed in 2017, aimed at the identifi-
cation of the maximally tolerated dose (MTD) of RetinoStat® when administrated by single
subretinal injection. This study showed that the EIAV subretinal injections were safe and
well-tolerated, and they were reproducible, and sustained transgene expression. Moreover,
endostatin and angiostatin allowed the fluorescein angiographic leakage reduction but,
subretinal/intraretinal fluid was not eliminated in patients with exudative AMD [389].

CRISPR-Cas9 ribonucleoproteins (RNPs)

Cas9 (clustered, regularly interspaced, short palindromic repeat)/Cas (CRISPR-associated))
ribonucleoproteins (RNPs) can be delivered to human stem and primary cells, as well as to
mice to modify target genes [391,392]. RNP Cas9 was administered in an in vivo study (2017)
by subretinal injection into RPE cells in adult mice for a potential local treatment of AMD [393].
The first results showed that CNV is reduced in treated animals and that in RPE, the target site,
underwent mutagenesis. However, other studies on other species are required to verify the
initial theories supported by this study.

rAAV.sFlt-1

rAAV.sFlt-1 is a recombinant adeno-associated virus (rAAV2) vector encoded with
a naturally occurring VEGF inhibitor known as soluble VEGFR1 receptor or sFLT-1. A
phase 1/2 study (NCT01494805) [394] was completed in 2017 by Lions Eye Institute,
Perth, Western Australia and Adverum Biotechnologies, Inc., in which rAAV.sFlt-1 was
administrated by subretinal injection at low or high dose (1 × 1010 or 1 × 1011 vector
genomes of rAAV.sFlt-1). This study showed a good tolerance for this treatment and
demonstrated a favorable safety profile [395].

AAV.sFLT-01

AAV.sFLT-01 is an adeno-associated viral (AAV) vector similar to rAAV.sFlt-1, with
parts of sFLT1 grafted onto an Fc fragment. A phase 1 study (NCT01024998) [396], was
completed in 2018 by Genzyme, in which AAV.sFLT-01 was administrated by intravit-
real injection. The treatment seemed safe and well-tolerated at all tested doses (2 × 108,
2 × 109, 6 × 109 and 2 × 1010 vector genomes AAV2-sFLT01) [397]. However, expression
variability and anti-permeability activity were reported, and more detailed studies must be
developed to identify their causes. In addition, the potential effect of the basic anti-AAV2
serum antibodies should be studied.

ADVM-022

ADVM-022 (AAV.7m8-aflibercept) is a novel recombinant adeno-associated virus
(AAV) developed explicitly for exudative AMD. This gene therapy is based on the utiliza-
tion of AAV2.7m8 capsid and intravitreal injections allowing the retinal transduction to
deliver aflibercept [398]. ADVM-022 is being currently studied through a phase 1 clinical
study (OPTIC, NCT03748784, 2018–2022) [399] developed by Adverum Biotechnologies
(Redwood City, CA, USA). Two doses are administrated to compare central vision (BCVA)
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improvement or maintenance, and the injection frequencies. However, severe toxicity side
effects have been recently noted with acute retinal necrosis and inflammation [400].

RGX-314

RGX-314 is a recombinant adeno-associated virus (AAV8) comprising a gene encoding
for a monoclonal antibody fragment similar to ranibizumab. Regenxbio Inc. explored this
AAV8 anti-VEGF in clinical trials with different administration modes: a suprachoroidally
phase 1 (AAVIATE, NCT04514653, 2020–2023) [401], and a subretinally phase 2/3 (ATMO-
SPHERE, NCT04704921, 2021–2024) [402]. These two studies will evaluate the efficacy and
safety of RGX-314 in patients with exudative AMD.

4.3. Anti-PDGFs

Several studies pointed out that PDGF (platelet-derived growth factor) is upregulated
in response to anti-VEGF therapy. This up-regulation induces the formation of a protective
layer of pericytes to cover the neovascular complex, promoting in turn a resistance to
anti-VEGF therapies [403]. Hence, it may be important to consider pretreatment with
an anti-PDGF to avoid anti-VEGF resistance to these therapies. This strategy generally
improves visual outcomes [404].

Pegleranib or E10030 (Fovista® )

Pegleranib is a 29-nucleotides modified DNA PEGylated aptamer of 40 kDa sub-
stituted by 2′-fluoro- and 2′-O-methyl- [184], developed by Ophthotech (New York, NY,
USA). This PDGF antagonist blocks the interaction with its receptor, the PDGFR-β [405].
Several trials have been performed to study its use in combination with ranibizumab.
The phase 1 study (NCT00569140, 2007–2010) [406] and the phase 2 study (NCT01089517,
2010–2017) [407] demonstrated an improvement in BCVA. However, the phase 3 clinical
studies (NCT01940900, 2013–2018; NCT01944839, 2013–2018; NCT01940887,
2013–2020) [184,408–410] did not conclude to benefits in VA after 12 months compared to
the use of aflibercept or bevacizumab alone.

Rinucumab or REGN2176-3

Rinucumab is a monoclonal antibody developed by Regeneron (Tarrytown, NY,
USA) directed towards PDGF. A phase 1 study (NCT02061865, 2014–2015) [411] demon-
strated a VA maintenance without serious adverse effects. Then in a subsequent phase
2 study, rinucumab was assayed in combination with aflibercept (CAPELLA, NCT02418754,
2015–2017) [408]; however, this trial showed no benefit of the combination compared to a
monotherapy of aflibercept.

4.4. Angiopoietin 2 Inhibitors

Angiopoietin-2 (Ang-2) is a cytokine involved in angiogenesis and inflammatory
processes, whose Tie-2 receptor- is expressed by endothelial cells and fibroblasts [409].
In adult tissues, this pathway controls vascular permeability, inflammation, and mainly
pathological angiogenic responses [410]. Moreover, in association with VEGF, Ang-2 leads
to vascular sprouting [409]. Therefore, the deregulation of angiopoietin contributes to the
pathogenicity of several diseases, including cancer and AMD.

Faricimab or RG7716

Faricimab, or RG7716, is a related human monoclonal antibody developed by Roche
(Basel, Switzerland). This dimeric molecule is composed of an anti-VEGF and an anti-Ang-2
domains. In a mouse model, intravitreal injections of faricimab showed an effectiveness
of this dual targeting in CNV [412]. A phase 1 study (NCT01941082, 2013–2016) [413] and
phase 2 study (AVENUE, NCT02484690, 2015–2019) [414] have already demonstrated a VA
improvement with this mAb. Recently, three phase 3 studies (LUCERNE, NCT03823300;
TENAYA, NCT03823287; AVONELLE-X, NCT04777201, 2021) [415–417] were initiated to
compare combination treatments with aflibercept. Significant gain of VA has been observed
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for faricimab, similar to aflibercept [418]. Moreover a low rate of intraocular inflammation
IOI has been noted without retinal vasculitis or vascular occlusion [415,416,418]. Overall, this
compound seems to be particularly promising and could be marketed in the next future.

Nesvacumab or REGN910-3

Nesvacumab, or REGN910-3, is a monoclonal antibody developed by Regeneron
Pharmaceuticals (Tarrytown, NY, USA), which specifically targets Ang-2. A phase 1 study
(NCT01997164, 2013–2016) [419] has been completed to evaluate its efficacy and safety
when administrated in combination with aflibercept against exudative AMD and Diabetic
Macular Edema (DME). A phase 2 study (ONYX, NCT02713204, 2016–2019) [420] was
performed to compare the therapeutic effects of nesvacumab vs. aflibercept intravitreal
injections, but showed inconclusive results.

4.5. Miscellaneous Targets

Besides angiogenesis, several other targets have been explored to tackle hallmarks of
wet AMD, summarized in Table 10. This includes mainly PPAR and integrin receptors,
and anti-immune or anti-inflammatory pathways (e.g., mTOR, TNF-α, complement cas-
cade) [421]. Various small molecules and monoclonal antibodies have been studied for both
types of advanced AMD. However, most of these drugs did not go beyond phase 2 clinical
trials because of lack of efficacy or tolerance problems for healthy patients, at the exception
of anecortave acetate studied in a phase 3 clinical trial in 2012 [422].

Table 10. Non antiangiogenic treatments studied for exudative AMD.

Drugs Structure Target Clinic Formulation Ref.

Triple combination
therapy Verteporfin-Ranibizumab-Dexamethasone Multiple components 2 PDT, Intravitreal

injections NCT02287298 [423]

PPAR inhibitors Nuclear transcription factors PPAR receptors R - [424–426]

ALG-1001
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4.6. Stem Cell Transplant

Human-induced pluripotent stem cells (iPSC)

iPSC was tested in in vivo assays (mice and rats) to evaluate the tumorigenic potential
of hiPSC-derived RPE in exudative AMD. This study showed no tumors’ appearance during
6–12 months of monitoring [453]. iPSC was first subretinally transplanted in patients with
exudative AMD in 2014 by Riken (Kobe, Japan) [454], to replace or regenerate dead or
dying RPE. No side effects were observed, and the vision loss was stabilized [218].

Human embryonic stem cells (hESC)

The implantation of PF-05206388 (retinal pigment epithelium-derived from human
embryonic stem cells) to replace RPE in patients suffering wet AMD has been recently
studied through a phase 1 study (NCT01691261, 2012–2019) [455] and a safety follow-
up study (NCT03102138, 2017–2020) [456] developed by Moorfields Eye Hospital NHS
Foundation Trust. The results have not been posted yet.

Conclusions on treatments for exudative AMD

Exudative AMD is currently one of the major causes of blindness and is globally respon-
sible for 90% of vision loss; this disease is a worldwide serious problem of public health [457].
The anti-VEGF therapies, based on humanized monoclonal antibodies (mAbs) including
ranibizumab, bevacizumab, brolucizumab, or dimeric recombinant fusion glycoprotein as
aflibercept and combercept, give indisputable benefits for approx. 30% of the patients. How-
ever, the lack of predictive factors for the patient’s response, the traumatic effect of repeated
intraocular injections, and the long terms side effects, mainly atrophy of the retina [252], render
these therapeutic options suboptimal. In line with these considerations, new treatments must
emerge in the coming years to offer better care to patients. These future trends may tackle
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other hallmarks of the disease, such as the inflammatory and immune components as well
as the integrin pathways. Other curative strategies, including the use of stem cells, should
give a perspective for vision recovery of the vision, and may be a complete cure if used in
combination with other treatments. The following table (Table 11) summarizes the current
investigated drugs in clinical trials for the treatment of exudative AMD.

Table 11. Summary of drugs developed against exudative AMD.

Drugs Structure Target Clinic Formulation Ref.

Conbercept Recombinant fusion protein all isoforms of VEGF A, +
VEGF B + PIGF

1

Intravitreal injections

NCT01242254 [295]
2 NCT01157715 [296]
3 NCT01436864 [298]

NCT03577899 [300]
NCT03630952 [301]

4 NCT02577107 [299]

Abicipar pegol DARpin VEGF

1

Intravitreal injections

NCT02859766 [305]
NCT03335852 [306]

2 NCT02181517 [307]
NCT02181504 [308]
NCT01397409 [309]

3 NCT02462928 [311]
NCT02462486 [312]

2 NCT03539549 [314]

OPT-302 soluble form of VEGFR-3 VEGF C and D 2b Intravitreal injections NCT02543229 [315]
NCT03345082 [317]

Sorafenib
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Table 11. Cont.

Drugs Structure Target Clinic Formulation Ref.
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5. Perspectives

AMD became a real public health concern in the middle of the 20th century due to
the increase in life expectancy. This is a complex and poorly understood multi-factorial
pathology. Moreover, its two late stages, the dry and wet forms, share the same “AMD”
acronym but can be considered as two distinct diseases due to their strong divergences in
their own physiopathology (Table 12).
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Table 12. The late AMD stages: divergences and convergences in physiopathology, current therapies,
and future trends.

Atrophic AMD Exudative AMD

Characteristics and specificities

• Represents 85% of AMD patients
• May evaluate to wet AMD
• Drusens accumulation
• Chronic inflammation

• Represents 15% of AMD patients
• Causes 90% of acute blindness
• Neovascularization and fluid accumulation
• Chronic inflammation

Approved treatments No current treatment

• Anti-VEGF drugs by intravitreal injection:

# Ranibizumab, mAb, targets all VEGF-A
isoforms, FDA approved in 2007

# Aflibercept, Fusion Protein, targets all
VEGF-A isoforms, FDA approved in 2011

# Bevacizumab, mAb, targets all VEGF-A
isoforms, in use for AMD treatment since
2015

# Brolucizumab, mAb, targets all VEGF-A
isoforms, FDA approved in 2019

Future trends

• Visual cycle targeting drugs, e.g., Fenretinide,
targets RBP4, phase II

• β-Amyloids targeting drugs, e.g., GSK933776,
phase I/II

• Choriocapillaries atrophy targeting drugs, e.g.,
Moxaverine, phosphodiesterase inhibitor,
phase II/III

• Other Anti-VEGF drugs, e.g.,

# Abicipar pegol, targets all VEGF-A
isoforms, phase I/II/III

# Squalamine, targets VEGF and PDGF,
phase III

# Bevasiranib, targets siRNA, phase III
# RGX-314, encodes for anti-VEGF mAb,

phase I/II/III

• Oxidative stress targeting drugs, e.g.,

# Risuteganib, targets integrin
heterodimers, phase II

# Tandospirone, 1A serotonin agonist,
phase III

• Anti-PDGF drugs, e.g., Pegleranib, targets
PDGFR-β, phase III

• Angiopoietin 2 inhibitors, e.g., Faricimab, phase III

• Inflammatory pathways targeting drugs, e.g.,

# Lampalizumab, targets factor D, phase
III

# Avacincaptad pegol, targets C5
complement protein, phase I/II/III

• Miscellaneous targets inhibiting drugs, e.g.,

# Sirolimus, targets mTOR, phase II
# Anecortave acetate, targets inflammation,

phase III
# POT-4/APL-2, targets C3, phase III

• Stem cells curative strategy, e.g., Human
embryonic stem cells (hESC), replace damaged
RPE, phase I/II

• Stem cells transplants, e.g., Human embryonic stem
cells (hESC), replace damaged RPE, phase I

A common feature for the wet and dry AMD forms, remains that all past and current
clinically approved treatments are not curative. Due to the “cancer heritage” (the anti-
angiogenic therapies in oncology), the only therapeutic option currently available consists
in targeting the neovascularization of the disease’s exudative form. This therapy slows
down or even stop, in some cases, the invasion of the Bruch’s membrane/RPE complex and
the retina by new vessels. In consequence, it reduces the liquid accumulation into the retina
and the degeneration of the photoreceptor cells. Therefore, anti-angiogenic treatments
are to date still the only treatment, despite limited response rates in patients and possible
inconvenience due to the inevitable intravitreal administration.

In general, the emergence of treatments against multi-factorial diseases is a real challenge
for clinicians and researchers, due to the complexity of their evolution and the redundant
origins of their pathogenicity. In the case of AMD, the challenge for ophthalmologists is
greater, as invasive retinal analyses such as biopsies of the different eye segments cannot
be performed. This is an obstacle to understanding the mechanisms of ocular diseases and,
consequently, to the development of specific and effective therapies against AMD.

To date, the pathogenesis of AMD remains largely unclear. Only risks factors, in-
cluding genetic background and environmental conditions, have been pointed out. The
reasons of its evolution towards its late stages and the causes leading, in some cases, to
the switch from the dry to the wet form are still unknown. In addition, the pathogenicity
of the neovascularization, which is targeted by the current clinical treatments, remains in
some cases questionable. Indeed, during AMD early stages, vessels invasion is restricted
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to the choroid and neovascularization may contribute to delay the disease progression
by providing better oxygen and nutrients supply to the Bruch’s membrane, the RPE and
the photoreceptor cells. This supply also balances the stress induced by growing drusens
and eventually brings benefits by delaying cell death. Therefore, the precise timing of the
anti-angiogenic therapies should be carefully studied to optimize the use of these symp-
tomatic treatments. In summary, a better understanding of AMD pathogenicity associated
with an extensive research work is absolutely needed to identify potent future treatments.
Those may potentially include drugs directed towards new other targets and/or AMD
mechanisms. In particular, the search for an efficient treatment against the dry AMD form
explores many options, as illustrated in Table 12. For example, the targeting of drusens
appears as an appealing pathway to target as it is a common feature of AMD early stages.
Other axes than the regulation of visual cycle, which showed limited efficacy in clinical
trials, would be beneficial to investigate. To this end, a precise comprehension of drusens
origin and formation may greatly help to develop agents that counteract their accumulation
in the retinal and the subretinal spaces. The high levels of pro-inflammatory factors and
ROS species seem to be other key factors involved in the pathogenicity of both the atrophic
and exudative stages, that could be attenuated by specific therapeutic agents. However, the
drugs available until now have only shown limited efficacy in clinical trials. Overall, the
clinical treatment of AMD remains essentially based on the use of anti-VEGF drugs, alone
or in combination. Gene therapy is also focusing on the expression of anti-VEGF factors. A
real challenge remains for the treatment of dry AMD, for which few effective therapeutic
options exist. However, the alternative pathway complement seems the most appealing
with successful phase 3 clinical trials obtained with APL-2. This validates the relevance of
targeting the complement pathway in AMD and the development of new improved drugs
interfering with this pathway would be of high interest.

Advanced forms of AMD induce irreversible photoreceptors’ death, underlying
the relevance of an early detection of this pathology. Whenever a potent future symp-
tomatic treatment would be found, it may only stop or drastically slow down the disease
progression, but it will not lead to the central vision recovery and to a complete cure
for patients. Communication and information campaigns directed towards the aged
public may lead to early AMD diagnosis, particularly because some tests (Amsler Grid)
may be self-performed at home. The exudative AMD form, if untreated, progresses
rapidly to blindness and the rapid management of an efficient symptomatic treatment
by ophthalmologists is mandatory to keep central vision at an acceptable level for the
patient’s daily activities.

Of course, the complete AMD cure implies vision’s recovery, and therefore the total or
partial regeneration of atrophied cells. Even though first gene therapy strategies failed to
cure AMD, recent progresses in the clinical use of implants containing stem cells may pave
the way to a curative regeneration of retina. Several trials dealing with the use of human
pluripotent, embryonic or CNS stem cell transplants are currently ongoing for the treatment
of atrophic and exudative AMD (Table 12). The first results of their safety and stability,
listed in this review, appear very encouraging. However, most of these trials are not fully
completed, and long-term outcomes and benefits for patients should be determined in a
near future.

In ocular pathologies, another key factor is the drug formulation, which is partic-
ularly challenging. Most clinically evaluated drugs are administered by intravitreal
injections. Those make possible to reach the posterior fragment of the eye without the
need to cross membranes that are quite impermeable to therapeutic agents. In addi-
tion, the injection allows precise delivery of the therapeutic agent into a specific eye
compartment, and as a result a better control of the administered dose. Therefore, even
though these injections are sometimes traumatic for patients, and costly because they can
exclusively be performed by an ophthalmologist, the intravitreal administration remains
the standard for current ocular anti-neovascularization drugs. Systemic formulations
have been less explored for evident concerns of active drug concentration in the eye and
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minimization of side effects. Yet, it has been used in trials for drugs targeting the visual
cycle turn-over (oral capsules for fenretinide and emixustat), or for drugs counteracting
β-amyloid formation (intravenous injections of monoclonal antibody). Optimal ocular
formulation would be topical administration via eye drops or eye ointments, as those
can be by patients used at home, without intervention of a specialist. Nevertheless, it
is very challenging to deliver a therapeutic agent into the posterior segment of the eye
via this topical administration because contrarily to the hydrophilic ocular fluid of the
eye’s anterior segment, the posterior segment is highly hydrophobic. This change may
induce severe solubility concerns for the therapeutic agent. Second, the formulation
agents’ options and concentrations are limited in the case of eye drops, and many rely on
micro emulsions. Moreover, the diffusion of the drug from the anterior to the posterior
segment must be quick and efficient since the ocular fluid of the anterior segment is
constantly washed and entirely renewed every 30 min. Under these conditions, a large
fraction of the therapeutic agent is evacuated by the aqueous humor before entering
the posterior segment and makes it difficult to dose the drug in the targeted ocular
compartment. However, these challenges have been met with some small molecules,
such as the kinase inhibitors sorafenib, pazopanib, and axitinib, which have been tested
in trials as eye drops. More research devoted to the drug formulation and delivery to the
eye would be very beneficial.

Over the past decade, remarkable efforts have been made in research on AMD by
academics and industrialists to better understand its origin and evolution to propose new
therapies. Nevertheless, since the validation of the first treatment against its exudative form
in 1982 (by laser beam photocoagulation), relatively few drugs have been marketed and all
of them are directed toward the retina’s neovascularization. However, drugs targeting the
complement pathway appear very promising in the next future after the validation of this
mechanism in AMD treatment, as well as combined therapies with anti-VEGFs that would be
very relevant to study. In any case, parallel biological research towards a better understanding
of the AMD mechanisms is necessary and will undoubtedly contribute to the emergence of
new active molecules and biomolecules. Last, drugs’ formulation should be considered to
overcome current intravitreal administrations and improve patient’s benefits.

6. Conclusions

AMD is a real concern for public health due to the increase in life expectancy. It
leads to two distinct diseases, the atrophic (dry) AMD and the exudative (wet) AMD.
These two forms are multifactorial, and their physiopathology remain poorly understood.
Therefore, to date neither curative nor palliative treatments emerged. Very few therapeutic
options exist. In the specific case of the exudative form, anti-VEGF drugs, able to counteract
neovascularization, can be proposed to patients. However, this strategy remains very
questionable, since it suffers from serious drawbacks including long term side effects and
traumatic administration. Overall, the success of the anti-angiogenic treatment is not
guaranteed for all treated patients.

In this context strong efforts are made worldwide to reach a better understanding of
the AMD pathological processes. The efforts aim also to provide a better understanding of
the patient’s response to the different assayed drugs, paving thus the way to a personalized
anti-AMD medicine. Last, in this specific case of an ophthalmic disease, drug formulation
is of utmost importance for treatment compliance and efficacy (Figure 21).

Due to the recent advances described in this review, one can assume that the emergence
of a potential curative treatments for the two AMD forms is no more a chimer but surely
requires still strong efforts.
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