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Spike-based neuromorphic hardware has great potential for low-energy brain-machine

interfaces, leading to a novel paradigm for neuroprosthetics where spiking neurons in

silicon read out and control activity of brain circuits. Neuromorphic processors can

receive rich information about brain activity from both spikes and local field potentials

(LFPs) recorded by implanted neural probes. However, it was unclear whether spiking

neural networks (SNNs) implemented on such devices can effectively process that

information. Here, we demonstrate that SNNs can be trained to classify whisker

deflections of different amplitudes from evoked responses in a single barrel of the rat

somatosensory cortex. We show that the classification performance is comparable or

even superior to state-of-the-art machine learning approaches. We find that SNNs are

rather insensitive to recorded signal type: both multi-unit spiking activity and LFPs yield

similar results, where LFPs from cortical layers III and IV seem better suited than those of

deep layers. In addition, no hand-crafted features need to be extracted from the data—

multi-unit activity can directly be fed into these networks and a simple event-encoding

of LFPs is sufficient for good performance. Furthermore, we find that the performance

of SNNs is insensitive to the network state—their performance is similar during UP and

DOWN states.

Keywords: biomarker, artificial intelligence, computing, spiking neural network, neural coding, neural decoding,

cortical microcircuits, liquid state machine

1. INTRODUCTION

Brain-computer interfaces (BCI) typically rely on personal computers to process brain signals.
In the perspective of neuroprosthetics or other neurological applications such as adaptive
neuromodulation, miniaturization of the processing unit is crucial to the engineering of minimally
invasive implantable devices. Neuromorphic (a.k.a. brain-inspired) computing architectures
represent an interesting option which may be advantageous in terms of power efficiency and
adaptability to intrinsically variable and noisy brain signals (Vassanelli and Mahmud, 2016;
Osborn et al., 2018; Buccelli et al., 2019; George et al., 2020; Serb et al., 2020; Zeng et al.,
2021). Among neuromorphic systems, artificial networks of spiking neurons share with biological
neurons the spike-based language and synaptic processing rules (Mead, 2020). They inherit
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from their biological counterparts their energy-efficiency and
inherent temporal processing capabilities (Davies et al., 2021). As
such, in a long-term vision, they represent the ideal replacement
or rehabilitation support for native brain circuits affected by
neurological deficits. With invasive interfaces, brain signals are
sensed intracranially and fall into two categories: local field
potentials (LFPs) and extracellular spikes (Buzsáki et al., 2012).
Both convey information on neural activity, but with different
nuances, and both have been proved effective in the realm of
neuroprosthetics and adaptive brain stimulation [e.g., to control
a prosthetic limb (Leuthardt et al., 2006) or for adaptive DBS
in Parkinson’s patients (Priori et al., 2013)]. LFPs originate from
neural populations and are commonly bandpass filtered with an
upper cutoff frequency of about 300 Hz. Extracellular spikes are
faster signals (typically between 300 and 3,000 Hz) and represent
signatures of single neurons. When the sensing electrode collects
multiple, overlapping spikes from a small neuronal population,
the signal is named multi-unit-activity (i.e., MUA) in contrast to
well-isolated spikes from single neurons that are called single-
units. A crucial open question is whether spikes or LFPs are
preferable for BCI-based applications. Extracellular spikes are
easier to interpret given their single-neuron origin. Moreover,
they are “binary” events that can be detected and sorted, which
makes decoding more tractable (Quiroga and Panzeri, 2009). On
the other hand, they may represent a minority of the neurons
involved in a given processing task. In addition, extracellular
spikes tend to fade away leading to signal loss in chronic
implants, mainly because of gliosis that heavily affects single
neuron-microelectrode interfacing (Szostak et al., 2017). LFPs
are more robust over time in chronic conditions (Abosch et al.,
2012) and may be preferable in clinic for long term implants
(Jackson and Hall, 2017; Tekriwal et al., 2019). However, it is
more difficult to relate them to the underlying neural activity
and to devise decoding strategies (Buzsáki et al., 2012; Einevoll
et al., 2013). Whether LFPs convey more or less information with
respect to spikes remains debated. As a lumped representation
of the neuronal population, the LFP signal is likely missing
information from “key-player” single neurons, but it may capture
a more complete picture reflecting collective processing of the
network. In general, the scenario may change depending on
the targeted brain structure and compromises may have to be
found which vary from case to case. An additional fundamental
aspect when dealing with evoked responses is their dependence
on basal brain activity (Petersen et al., 2003), which may pose
different challenges for LFPs or spikes. Solutions for online-
processing spikes and LFPs that are or may become suitable
for brain implants have been proposed based on analog and
digital processors (Tambaro et al., 2021). Only a minority have
explored neuromorphic architectures and a few of them spiking
neural networks (SNNs) (Boi et al., 2016; Werner et al., 2016;
Mukhopadhyay et al., 2021; Sharifshazileh et al., 2021).

In this work, we investigate the problem of brain signal
classification with SNNs, focusing on evoked sensory responses
in the rat barrel cortex. This system has the advantage of
a one-to-one mapping of the sensory organ (the whisker)
to a single cortical column (Diamond et al., 2008) which is
experimentally accessible through an implanted shank-shaped

multi-electrode array across cortical layers. Moreover, in the
anesthetized animal, single whisker deflection can be operated
by a piezoelectric device which allows for a tight control and
fine tuning of the sensory input (Mariani et al., 2021). This
experimental arrangement enabled us to investigate the capability
of SNNs to classify whisker deflections of different amplitudes.
We compared the classification performance when the network
input was based on MUA and LFPs, and during UP and DOWN
states of spontaneous brain activity. SNNs have been shown to
achieve state-of-the art performance on a variety of temporal
classification tasks (Bellec et al., 2018b; Salaj et al., 2021).
However, these models were trained with complex learning
algorithms that cannot readily be implemented in neuromorphic
hardware. We therefore focused in this work on the liquid
state machine (LSM) model (Maass et al., 2002), which is well-
suited for neuromorphic implementation and achieves good
performance on less demanding tasks (Verstraeten et al., 2005;
Maass, 2011). We found that the LSM approach performs better
or on par with various machine learning methods including
artificial neural networks and SNNs fully trained with advanced
training methods. Furthermore, our results indicate that no
sophisticated feature extraction from the raw signals is necessary
to achieve good performance. This suggests that classification of
whisker stimulation intensities based on LFP signals as well as
multi-unit activity (MUA) recorded in rat barrel cortex is viable
using neuromorphic hardware.

2. RESULTS

2.1. Experimental Protocol and Signal
Preprocessing
Using a neural probe with 32 microelectrodes (27 of them
spanning across the cortex), we recorded stimulus-evoked
responses from the barrel cortex in terms of both LFPs and
spikes, mostly within MUA events (see Figure 1A and Section
4 for details on animal preparation, surgical implantation,
whisker stimulation and data acquisition). In brief, the whisker
corresponding to a recorded barrel column was deflected using a
closed-loop controlled piezoelectric bender (Mariani et al., 2021)
by administering 5 ms voltage pulses with a 10 s inter-stimulus
interval to avoid adaptation phenomena in the somatosensory
neural pathway. Deflections of different amplitudes (large,
medium and small) were delivered corresponding, respectively,
to voltage pulses of 2.8, 2.0, and 1.6 V at the input of the
piezoelectric control system. In the representative experiment
reported below, the number of trials was 61 for the large, 63
for the medium, and 61 for the small amplitude stimulus. In
total, there were 185 stimulation trials in the dataset. LFPs and
spikes were measured in all six cortical layers of the single
barrel simultaneously (see Figure 1A for a schematic of the
neural probe inserted in the barrel column and spanning all
cortical layers).

LFP signals were extracted by bandpass filtering raw traces
between 0.1 and 300 Hz. Figure 1B illustrates examples of
responses for the three different stimulation intensities. As
reported previously (Civillico and Contreras, 2012), responses
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FIGURE 1 | (A) Schematic representation of the neural probe with thirty-two recording microelectrodes implanted in the somatosensory barrel cortex. Twenty-seven

out of thirty-two microelectrodes span the six cortical layers, while five recording sites are protruding within the grounded recording solution bathing the brain. Barrel

fields at the level of the fourth layer are approximately indicated by rounded boxes. Adapted from Zhang and Deschênes (1997). Copyright 1997 Society for

Neuroscience. (B,C) Examples of local field potentials and multi-unit activity in response to whisker stimulation at time 0 (10 trials shown). (B) Comparison of LFP

signals from layer IV per stimulation intensity and global network state; different colors correspond to different stimulation trials (units in µV). The dashed line indicates

stimulation onset, the solid thick line shows the mean LFP signal. (C) Multi-unit activity recorded from electrode 18 in layer IV. Each row shows the response to one

stimulation of the given amplitude during UP or DOWN states.

were conditioned by the current network state, i.e., by whether
the stimulus was delivered during an epoch of high (UP) or
low (DOWN) spontaneous activity. The traces show a clear
response to the stimulus approximately 25ms after whisker
stimulation. DOWN states usually favored responses of larger
amplitude, particularly for what concerns the negative peak
(which is supposedly reflecting excitatory input currents to
the cortical neurons), see also Section 2.2. Noteworthy, for
the analysis reported in the following paragraphs we mainly
focused on LFPs recorded in layer IV, unless stated otherwise.
Indeed, this cortical input layer of the whisker somatosensory
pathway is characterized by a strong response to sensory
stimulation and classifiers trained on LFPs recorded from this
layer performed best (see Section 2.3.4 for details). Importantly
for our classification study, and in agreement with earlier studies
(Petersen et al., 2003; Temereanca and Simons, 2003), the
amplitude of the stimulus-evoked response clearly correlates with
stimulation intensity, albeit with a significant variability across
trials (Figure 1B).

In order to obtain spiking activity, the recorded signal was
bandpass filtered in the frequency range between 300 and 3,000
Hz. Spiking activity in each of the 27 electrodes was detected
by simple thresholding, but no spike-sorting was applied to the
MUA data. As reported below, for our spiking classifiers, these
spike events were directly provided as inputs to the networks.
Figure 1C shows example MUA traces from one recording
electrode in both UP and DOWN state conditions. Note the
variability of the response in particular for stimulations during
an UP state.

2.2. Statistical Analysis of Features
Extracted From Evoked Responses
In order to understand what components of LFPs and MUAs
carry relevant information about whisker stimulation intensity,
we first performed a statistical analysis on features of the signals
that were selected based on our own experimental experience and
on previous work (Wang et al., 2018).
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FIGURE 2 | Statistical results for four features extracted from the evoked LFPs. Each table shows the results referring to one specific feature for all the six investigated

layers. Each table is consisting of six blocks, each one corresponding to one layer as indicated on the top left of the block. The statistics was performed by comparing

between the three different stimulation intensities (i.e., large, medium, and small) as well as between the UP and DOWN state condition. The number of asterisks

indicate the strength of statistical significance (i.e., *, **, ***, **** correspond, respectively, to p ≤ 0.05, p ≤ 0.01, p ≤ 0.001, p ≪ 0.001). The asterisks reported in

cells of the main diagonal of each layer block compare the feature values between the UP and DOWN state condition for each stimulation intensity separately. The

asterisks outside the main diagonal compare the values of each feature for the UP (upper right triangle) and DOWN state (lower left triangle) conditions separately,

comparing between pairs of different stimulation intensities, at each layer. Red and blue asterisks indicate, respectively, a significant increase and decrease of values of

a row against the corresponding column.

2.2.1. Statistical Results on Features Extracted From

Evoked LFPs
We extracted four characteristic features from the evoked
LFPs. These features were the Negative Peak Amplitude (NPA),
the Positive Rebound Amplitude (PRA), the Response Onset
Latency (ROL), and the time-normalized LFP (tLFP). Our
aim was to investigate from a statistical perspective whether
and how basal activity affects stimulus-evoked responses, and
whether different stimulation intensities elicit responses with
distinguishable features.

The tables shown in Figure 2 summarize the results
obtained for all the above cited investigated features. We first
asked whether the values of these features differ significantly
between UP and DOWN states. In brief, we found significant
differences for the NPA feature within all investigated layers,
and, in particular, the responses’ negative peak amplitude was
significantly larger when the whisker stimulus was falling during
the DOWN than during the UP state. Also the tLFP feature
within the more superficial and middle layers (i.e., layers II, III,
IV, and Va), was following a similar trend. Instead, the PRA

feature in superficial and middle cortical layers (i.e., layers II, III,
IV, and Va), was characterized by a larger amplitude during the
UP state.

Concerning the three different stimulation intensities, strong
differences were observed for the NPA feature within the more
superficial layers (i.e., layers II, III), and this for both DOWNand,
more weakly, UP states. In practice, in these superficial layers,
the negative peak amplitudes were significantly different between
all three levels of stimulus intensity, a trend that was “inherited”
also by tLFP. In deeper layers, instead, the statistical difference
wasmaintained only between large and small stimulus intensities,
and vanishing in layer VI for tLFP. The responses’ onset latency
(ROL) was significantly higher after a small intensity stimulus
compared to both a large and a medium stimulus, which is
reflected in the table. The cortical state was influencing the
latency, with the UP state delaying the response onset with
respect to the DOWN state at small stimulus intensity and, on the
contrary, anticipating it for large intensity stimulation. Finally,
PRA was rather invariant across intensities. Intriguingly, features
of layer IV, where the LFP response is typically larger, seemed to
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FIGURE 3 | Tables reporting the statistical results for the features extracted

from the evoked MUAs. Same as in Figure 2, but referring to the two features

extracted from MUAs.

be slightly less informative compared to layers II and III, with
respect to stimulus intensity discrimination.

Overall, these results suggest that selected LFP features,
taken collectively across layers, carried sufficient information to
discriminate between stimulus intensities and whether they were
occurring during UP or DOWN states. Responses in superficial
layers and, among features, the amplitude of the negative peak
appeared to be the most effective.

2.2.2. Statistical Analysis of Features Extracted From

Evoked Spike Responses
We extracted three features from the evoked MUA (see Section 4
and Figure 7A). These features were: The evoked MUA latency,
the evoked MUA duration, and the evoked MUA firing rate.
As for the features extracted from evoked LFPs, the aim was to
investigate whether and how basal activity (i.e., UP or DOWN

state condition at stimulation occurrence) affects stimulus-
evoked MUAs, and whether different stimulation intensities
induce responses with clearly discernible features. Indeed, the
stimulation protocol was very effective in always inducing a
supra-threshold response, i.e., a single MUA observed within
the first 100 ms from stimulation delivery. This aspect allowed
to effectively investigate differences observed in the features
extracted from evoked MUAs elicited after stimuli delivered
during UP and DOWN states.

The tables shown in Figure 3 summarize the results obtained
for the investigated features. The MUA duration is not included
in this summary. It appeared to be not informative since no
significant differences have emerged from the statistical analysis.
Contrary to the results obtained for LFP features, the MUA
latency is the only informative feature. Indeed, it is able to
discriminate on the one hand between UP and DOWN state
conditions, with latency values significantly higher for stimuli
occurring in a DOWN state, and, on the other hand, between
responses following higher intensity stimulations (i.e., large and
medium) and responses following a low intensity one (i.e., small).
In the latter case, the significant difference is only observed
following stimuli delivered during a DOWN state condition,
with response latency values being significantly higher after small
intensity stimuli compared to both medium and large intensities,
also in accordance with what was observed for the ROL feature.
These trends were found across all investigated layers.

Regarding the MUA firing rate, instead, the only significant
differences are observed within the middle layers (i.e., layers III
and IV), with evoked MUA firing rate values significantly higher
when stimulating with a large compared to a small intensity, in
both UP and DOWN state conditions.

2.3. Stimulation Intensity Classification
With Spiking Neural Networks
Due to its power efficiency, neuromorphic hardware that
implements SNNs is a promising candidate for the on-line
processing of brain-derived signals, in particular if self-contained
wearable or implantable setups are considered. In order to
evaluate whether SNNs can rival traditional approaches also
in terms of classification accuracy, we trained SNN models on
the data set described above. The goal of the training was to
classify whether large, medium, or small amplitude whisker
deflections were applied based on the recorded signals. Since on-
line supervised training of SNNs in neuromorphic hardware is
challenging, we first considered the liquid state machine (LSM)
approach (Maass et al., 2002). In this approach, a recurrent SNN
(the “liquid”) with fixed connectivity and weights responds to
incoming stimuli according to its internal dynamics. The high-
dimensional dynamics of the liquid acts on the input signal as a
highly nonlinear fading memory filter and projects the signal to a
high-dimensional space. By adapting the weights of connections
from the liquid to a set of non-spiking readout neurons, the
system can then be trained for a specific desired functionality
(see Figure 4A for the network structure). One advantage of
this approach is that only the weights to the readout neurons
are adapted, which significantly simplifies the training procedure
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FIGURE 4 | (A) General connectivity scheme of the recurrent spiking neural networks used in simulation. (B) Example of multi-unit activity (top) and the corresponding

LFP trace (bottom) in response to a large whisker stimulation at time 0. Performance comparison of classifiers using LFP data from layer IV (C) and MUA data (D).

LSM, Liquid state machine; FF, feed-forward neural network; LSTM, long short-term memory network; HC+RF, handcrafted features with random forest classifier;

LSM HW, liquid state machine with hardware constraints; SNN BP, recurrent spiking neural network trained with backpropagation through time; RF, random forest. (E)

Dynamics of a recurrent spiking network after training with BPTT when multi-unit activity was presented. From top to bottom: raster plot of MUA input, response of

regular spiking neurons, and activation of readout units for large, medium and small whisker deflection amplitudes. Shown is multi-unit activity and network response

relative to stimulus onset starting at 300 ms before stimulus onset. Note the prominent spontaneous events which induce significant but temporally decaying

responses in the SNN.

that has to be implemented in hardware. From the experimental
setup, two types of signals were available: first, the LFP signal
which is an analog low-dimensional signal, and second, the MUA
which is high-dimensional and event-based. Figure 4B shows a

typical MUA (top) and the corresponding LFP (bottom) trace
recorded across all cortical layers over a 1 s time-window with
a whisker stimulation applied in the middle of the window. An
evoked response spanning all layers appears slightly after the
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stimulus delivery in both MUA and LFP plots. For all classifiers,
we used 80% of the data for training and the remaining 20% of
the data for testing. In the following sections, we evaluate the
classification of stimulus intensity based on each of these two
signals separately.

2.3.1. Stimulus Intensity Classification Based on

Local Field Potentials
We used a LSM consisting of leaky integrate-and-fire neurons to
classify the stimulus intensity into three categories corresponding
to large, medium, and small amplitude whisker deflections. In
principle, the analog LFP signal can be injected as currents into
spiking neurons of the liquid in order to provide input to the
network. However, spike-based neuromorphic hardware usually
only accepts spiking inputs in the form of an address event
representation (Davies et al., 2018;Moradi et al., 2018). Therefore
we encoded the analog LFP signal (recorded from layer IV, see
Figure 1B) as spike events and presented these events to the
SNN as input. To that end, we adopted a simple threshold-
crossing encoding approach: The input to the network consisted
of 2Nthresh spiking channels, with Nthresh = 50. Channels i =
1, . . . ,Nthresh emitted a spike when the analog signal rose above
threshold ϑi in a rising phase of the LFP. Channels i = Nthresh +
1, . . . , 2Nthresh had the same thresholds, but spiked when the
signal fell below threshold ϑi in a falling phase of the LFP. The
thresholds were uniformly spaced over the signal range. The
number of thresholds for the encoding was determined via cross-
validation. In fact, while a finer granularity of the encoding (i.e.,
more thresholds) increases the information available to the SNN,
it also increases the input dimensionality which can negatively
impact network generalization, see Supplementary Figure 1.
Noteworthy, compared to conversion approaches based on
inhomogeneous Poisson point processes, this approach produces
a much sparser representation of the signal. The spike-encoded
LFP signal was fed into a subset of the LSM neuron population.
This setup achieved a mean test accuracy of 81.6 ± 4.1% (mean
± standard deviation). The average network dynamics after
stimulation onset for the three different stimulation amplitudes
is shown in Supplementary Figure 2.

While LSMs can solve complex tasks with randomly chosen
synaptic connections and trained linear readout units, ideas from
deep learning may further boost the performance of recurrent
spiking neural networks. Backpropagation through time (BPTT)
is a powerful optimization method that can adapt network
weights while instilling desirable properties such as network
sparsity or low firing activity into a network. Bellec et al.
(2018b) have shown that recurrent spiking neural networks can
successfully be trained with BPTT to achieve performances on
temporal computing tasks that approach those of state-of-the-
art artificial recurrent neural networks. We therefore wondered
whether full training of SNNs with BPTT can improve their
stimulus classification performance. To this end, we trained
SNNs with BPTT in the same setup, which achieved a mean
test accuracy of 69.8 ± 8.9%. This shows that the simple LSM
approach outperforms the much more complex BPTT training
algorithm which adapts all network weights. We suspect that the

inferior performance of BPTT is due to the small training set size,
which can lead to severe overfitting. This occurred despite the
use of weight regularization during training. We found a similar
performance gap when classification was based on multi-unit
activity, see further discussion in the following subsection.

We compared the SNN performance to traditional non-
spiking machine learning methods such as feed-forward neural
networks, long short-term memory networks (LSTMs), and
random forests. The results are summarized in Figure 4C. We
first trained feed-forward neural networks with one hidden layer
which received the values of the LFP during the first 50 ms after
stimulus onset as input, where the LFP signal was sampled at
1 kHz. Hence, for each training example, the networks received a
50-dimensional input vector. This setup achieved a classification
performance comparably to LSMs (FF, 80.1 ± 8.6%). The feed-
forward network exhibited a higher variance compared to LSMs
and required a more complex training method (L-BFGS) to
achieve this result. Next, we trained LSTMs which received the
LFP signal in the same input window, but in sequential order
through a single input neuron. The performance of LSTMs
was considerably worse (LSTM, 68.9 ± 6.5%). Previous studies
(Temereanca and Simons, 2003; Mahmud et al., 2016; Wang
et al., 2018) relied on engineered features that were extracted
from the LFP signal. We wondered whether such hand-crafted
features could improve classification performance. We therefore
extracted features as proposed in these studies from the LFP
signal and trained a random forest classifier (Breiman, 2001) on
these features (see Section 4.6.2 for the list of extracted features).
However, we found that this approach performed worse than
our LSM trained on the spike-based input or the neural network
trained directly on the LFP (HC-RF: 66.4± 6.6%).

In summary, we found that LSMs performed slightly better
than traditional machine learning approaches and outperformed
LSTMs. Their performance was superior to SNNs trained with
the more complex BPTT training algorithm. We also found that
for LSMs, spiking input is viable. A simple threshold encoding
of the LFP signal is sufficient. Note that while the threshold
encoding can also be seen as a kind of feature extraction
from the LFP signal, it is qualitatively different from the
handcrafted features we considered above:While the handcrafted
features have been designed based on the knowledge about LFP
signal characteristics, the threshold encoding is a more general
approach that can be applied to any continuous signal without
domain-specific knowledge.

2.3.2. Stimulus Intensity Classification Based on

Multi-Unit Activity
In addition to LFPs, MUA in the frequency range between 300
and 3,000 Hz was considered. Spikes were extracted from MUAs
by a threshold approach (see Section 4) and no spike-sorting
was applied. Since neural responses of single cortical neurons are
known to be very noisy and the number of electrodes per layer
was very limited in our data set, the signal-to-noise ratio of spike
trains of individual layers was low. Therefore, for our spiking
classifiers, thresholded spike events from all 27 electrodes were
directly provided as inputs to the networks. MUA data from rat
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FIGURE 5 | Peristimulus time histogram (PSTH) for MUA inputs and the excitatory population activity of the LSM for the three different stimulation amplitudes. Layers

III, IV, and Va exhibit a particularly high firing rate depending on the amplitude of the stimulation. The bottom row shows the mean predicted class probability (Large,

Medium, and Small stimulation amplitude) for the corresponding examples in the test set. See Section 4 for details.

barrel cortex includes channels that exhibit a strong response to
whisker stimulation (see Figure 4B for a comparison between the
MUA and LFP response to the same stimulus).

The general network architecture and setup for classifying
MUA closely followed the LSM approach described above that
used (encoded) LFP signals. While the general connectivity
scheme remains the same, the main difference lies in the way
the input is provided to the LSM. By nature, recurrent SNNs are
well suited for processing bio-signals in form ofMUA. Hence, the
MUA activity was directly used as input to the LSM. Using this
setup, we achieved a mean test accuracy of 79.3 ± 6.5%, which is
comparable to the classification performance with LFP input. The
average network dynamics after stimulation onset for the three
different stimulation amplitudes is reported in Figure 5.

As with the classification based on LFPs, we asked whether
full SNN training with BPTT could improve performance. To
this end, we trained SNNs on MUA inputs similarly to the
setup with LFP input. Figure 4E reports an example of the
network dynamics evolving after MUA delivery to the SNN. We
found that SNNs trained with BPTT did not show improved
classification accuracy compared to LSMs. In this scenario, we
achieved a classification performance of 76.2 ± 4.5% on the
test set. In order to see whether this inferior performance
was caused by overfitting on the rather small training set,
we trained both LSMs and SNNs on reduced training set
sizes (see Supplementary Figure 3). Indeed, we found that the
test performance of SNNs trained with BPTT declined more
rapidly when training set size was decreased, suggesting that the
performance gap is caused by the limited number of training
examples.

For comparison with a standard non-spiking machine
learning technique, we trained a random forest (RF) classifier

using decision trees. Since MUA activity cannot directly be used
as input to RFs, we converted MUA data into real-valued vectors
in the following way: The spike trains were low-pass filtered with
an exponential kernel and the filter output at classification time
was used as input for the classifier. The mean test accuracy with
RFs was 73.8± 7.6% (see Figure 4D for a visual comparison).

The classification experiments described above were
performed with an ideal LSM. Ultimately, the goal is to perform
classification on low-power neuromorphic hardware which is
typically constrained and exhibits hardware mismatch. In order
to evaluate whether the approach is viable in this scenario, we
performed additional experiments with such constraints. As a
test system we chose the DYNAP-SE neuromorphic processor,
a mixed-signal chip with analog neurons and a very favorable
energy budget (Moradi et al., 2018). We simulated properties
of the DYNAP-SE neuromorphic processor such as hardware
mismatch, limited fan-in and quantized weights (see Section 4
for details). With those limitations implemented in simulation,
we found that the classification accuracy with an equivalent LSM
setup decreased slightly to 75.1± 5.1% test accuracy.

2.3.3. Influence of Global Network State on

Classification
Certain types of anesthesia such as urethane and
ketamine/xylazine have been observed to induce slow and
synchronized sleep-like oscillations (Steriade et al., 1993;
Sanchez-Vives and McCormick, 2000; Destexhe et al., 2007).
It is known that during phases dominated by such slow
oscillations, cortical neurons synchronously switch between
strongly hyperpolarized (DOWN state) and depolarized (UP
state) membrane potential regimes. Petersen et al. (2003) suggest
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that most of the trial-to-trial variability, leading, e.g., to reduced
amplitude, and duration of the stimulus-evoked response can be
attributed to coincidence with different phases of spontaneous
activity in barrel cortex. Figure 1B shows the mean and single-
trial evoked responses to whisker stimulation corresponding to
large amplitude whisker deflection during UP/DOWN states.
It is evident that the signal exhibits more variability during
UP states than during DOWN states. Supplementary Figure 4

shows the mean LFP signal for large, medium and small
amplitude stimulation intensities across all layers grouped by
global network state at the time of stimulus delivery.

In order to investigate the effect of UP and DOWN states
on classification accuracy, we reconsidered whisker-stimulation
classification. To this end, we trained classifiers on both UP
and DOWN state data and tested on UP state data and
DOWN state data separately; we split the test data set into
subsets consisting only of UP or DOWN states, respectively
(see Section 4 for details on detecting UP and DOWN states).
While the experimental design ensured an overall balanced class
distribution, the distribution of UP and DOWN states during
stimulus delivery could not be controlled. Overall, 58.3% of
stimuli were delivered during an UP state and 41.7% during a
DOWN state.

We first investigated the effect of UP and DOWN states on
classifiers trained on MUA data. We evaluated whether standard
machine learning approaches would be sensitive to the dynamical
state of the biological network using a random forest classifier as
an example. The random forest classifier trained on the combined
UP+DOWN state data achieved a mean accuracy of 72.7 ±
10.9% on the UP state test set and 73.8 ± 9.3% on the DOWN
state test set. A LSM trained on MUA data achieved a mean
accuracy of 78.4 ± 6.6% on the UP state test set and 80.6
± 9.6% on the DOWN state test set. This indicates that the
MUA-based classifiers are not susceptible to the influence of the
network state.

Next, we investigated the effect of UP and DOWN states on
classifiers trained on LFP data. Following the same procedure
as described above, we first evaluated random forests using the
hand-crafted features extracted from the LFP. The random forest
achieved a mean accuracy of 59.1 ± 9.1% on the UP state test set
and 76.8 ± 10.0% on the DOWN state test set. A LSM trained
on threshold-crossing encoded LFP data achieved a mean test
accuracy of 81.4 ± 4.5% on the UP state test set and 81.7 ±
7.3% on the DOWN state test set. This indicates that classifiers
trained on hand-crafted features are more affected by the global
network state.

2.3.4. Influence of Electrode Depth on Classification

Accuracy
While the interaction and connectivity structure between cortical
columns and layers has been studied in great detail (Feldmeyer
et al., 2013), the decodability of neuronal responses after
whisker stimulation with respect to the function of individual
cortical layers remains unclear. Figure 6A shows that LFPs
differ significantly in different layers during a single stimulation
trial. For example, the responses in layer III and layer IV are
more pronounced than in layer VI; see Supplementary Figure 4

for a comparison of mean LFP signals across all layers.
This observation motivated an analysis that compares the
classification accuracies of LSMs using LFP data from different
cortical layers. Layers III and IV performed best (77.8 ± 5.1%
and 81.7 ± 4.1%, respectively) whereas layers Va, Vb, and VI
exhibited a decrease in performance (64.6 ± 7.0%, 56.4 ± 8.4%,
and 53.7± 6.5%, respectively); see Figure 6B. This may be due to
the fact that the ventroposterior medial nucleus mainly projects
thalamic inputs onto layer IV of rat barrel cortex (Lübke and
Feldmeyer, 2007), designating it as one of the most informative
recording sites for our experiments.We did not perform the same
analysis for multi-unit activity as the small number of electrodes
per layer would result in very low classification accuracies.

FIGURE 6 | (A) LFPs in layer IV (top) and layer VI (bottom) after delivering a single stimulus for each whisker deflection amplitude (same color corresponds to same

stimulation trial, units in µV ). The response of these layers to the same stimulation differs significantly; the thin black line shows the mean signal per layer and

stimulation intensity. (B) Classification accuracy of a liquid state machine grouped by layer.
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3. DISCUSSION

One important step toward the use of spike-based neuromorphic
hardware in neuroprosthetic applications is to demonstrate
that SNNs are capable of extracting useful information from a
brain activity readout. To this end, we relied on the whisker
somatosensory system in this work, a well defined cortical
circuit whose inputs can be tightly controlled. Specifically,
the unique somatotopic organization of the somatosensory
barrel cortex is such that tactile receptors of a single whisker
map to a single barrel column of the somatosensory cortex
(Diamond et al., 2008). Thus, whisker displacements evoke in
the corresponding cortical column responses that can be read
out using a penetrating array of microelectrodes (Figure 1A).
Moreover, single whisker movements can be controlled in
the anesthetized animal with high accuracy, e.g., in our case,
through a piezoelectric closed-loop system, thereby enabling a
fine tuning of the sensory input. Leveraging this experimental
setting, we investigated whether whisker displacements of
different amplitudes could be classified by an SNN from the
electrophysiological readout within the barrel column. We
explored both spikes and LFP responses, as both were good
candidates to carry relevant information about the sensory
input for the SNN to perform the classification task. Spikes
are known to convey information about whisker deflection,
especially through their timing (Panzeri and Diamond, 2010).
Information carried by LFPs is debated and more challenging
to relate to underlying neural activity owing to the lumped
nature of the signal. However, it is recognized that they do carry
information (Quiroga and Panzeri, 2009; Einevoll et al., 2013)
such that, for this reason, they are also used in clinical practice
for neuromodulation and neurosurgery purposes (Tekriwal et al.,
2019). An additional important aspect is the reliability of the
classification performance taking into account that the cortical
evoked responses are deeply influenced by the underlying
spontaneous brain activity (Panzeri et al., 2016). Under our
anesthesia conditions (urethane) the resting state is dominated
by the low frequency (approximately 1 Hz) alternation of UP
and DOWN states, which are signatures of high and low cortical
network activity, respectively. It was therefore insightful to
investigate the evoked sensory responses and SNN classification
performances under these two “polarities” of cortical activity.

Our results indicate that classification of whisker stimulation
intensity works well with a liquid state machine approach that is

suitable for hardware implementation. Interestingly, this rather
simple approach outperformedmore sophisticated methods such

as LSTMs or SNNs trained with BPTT. We hypothesize that due

to their increased complexity, these latter approaches tend to
overfit the training data. We note that these results were obtained

using an extensive parameter sweep including regularization
methods to avoid overfitting (see Section 4). Hence, inferiority
of these approaches is not likely to be a result of insufficient
parameter tuning. One possibility to improve classification
results would be to increase the training set size. However,
it is expected that neuroprosthetic devices need to be tuned
individually per subject, which may preclude the generation of
large data sets. Another finding of our study is that SNNs do

not necessitate elaborate data preprocessing.We found that using
either multi-unit activity directly or a simple threshold encoding
of LFPs as input to the LSM leads to good performance. This is in
contrast to the standard approach where specifically engineered
features are extracted from the raw signal. Interestingly, we
found that random forests—a state-of-the art classifier—applied
on features that were previously proposed (Temereanca and
Simons, 2003; Mahmud et al., 2016;Wang et al., 2018) performed
clearly worse than a LSM trained directly on MUA or LFP
input. Although our statistical analysis showed that standard
features—in particular those extracted from the LFP—do carry
information about the stimulus, this indicates that SNNs can
utilize information in the signal that is hidden when such features
are considered. It is possible to perform the threshold encoding
of LFPs in an on-line fashion. For example, a microcontroller
can encode the LFPs at a high frequency since this method
is computationally inexpensive and requires minimal memory.
Other solutions using special purpose hardware that encodes the
events asynchronously—very similar to spiking neurons—could
be implemented as well. From the perspective of brain-computer
interfacing, LFP signals are preferable as they aremore robust and
reliable over time with respect to MUA (and spikes) in chronic
conditions. Thus, our results in the somatosensory barrel cortex
would favor the use of LFP in future applications. However, this
may not be true for other brain areas. Sensory areas are at an early
stage in the brain processing chain and the sensory stimulus is
probably mapped with a high degree of redundancy across the
neuronal population. This ensures that LFP (typically reflecting
population activity) are effective. In other regions, such as in
high-order processing (i.e., associative) areas, the representation
of complex features may generate neuronal specialization. In this
case, single or a few neurons, detected as spikes or MUA, may
turn out to be more informative.

Our proposed LSM approach has the advantage that only the
weights to the readout neurons are adapted, which significantly
simplifies the training procedure. While network dynamics of
a LSM can easily be implemented with available neuromorphic
hardware, there is currently no integrated solution to train
readout units using support vector machine training or other
methods such as linear least squares. These training steps could
be performed efficiently on a microcontroller. Note that in
all our experiments, we were using a linear support vector
machine as the readout, which can be trained efficiently using
a simple gradient descent scheme on the output weights using
the hinge loss. Alternatively, a softmax output layer with a cross-
entropy loss could be used as well. In both cases, training can
be performed in an on-line fashion. Alternatively, there exist a
number of methods to train spiking readouts such as ReSuMe
(Ponulak and Kasiński, 2010), the tempotron learning rule
(Gütig and Sompolinsky, 2006), or standard surrogate gradient
training (Bellec et al., 2018b). However, in this case, specific
on-chip learning capabilities have to be considered when the
neuromorphic hardware is designed. The neuron parameters in
our simulations have been chosen such that the network can be
ported to the DYNAP-SE processor (Moradi et al., 2018). We
found that taking further hardware constraints into account leads
to only a slight decrease of classification performance which is
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still on par with traditional machine learning approaches. In
summary, our results indicate that low-power signal processing
with spike-based neuromorphic hardware is a viable alternative
to traditional approaches based on standard computers, leading
to a novel paradigm for neuroprosthetics where spiking neurons
in silicon read out and control activity of biological spiking
neural networks.

4. METHODS

4.1. Ethics Statement
All the experimental procedures were approved by the Animal
Care Committee of the University of Padova (O.P.B.A.) and the
Italian Ministry of Health (authorization number 522/2018-PR).

4.2. Surgical Procedures
Wistar rats were maintained in the animal research facility of
the Department of Biomedical Sciences, University of Padova.
Young adult rats aged 35–45 days (P35–P45; 175–230 g)
were anesthetized with an intra-peritoneal induction mixture
of Tiletamine-Xylazine (2 mg and 1.4 g/100 g body weight,
respectively), followed every hour by additional doses (0.5mg
and 0.5 g/100 g body weight). The absence of eye and hind-
limb reflexes and whiskers’ spontaneous movements indicated
a good anesthesia level. The rat was laid on a heating pad
which maintained the body temperature at 37 ◦C through a rectal
probe, and fixed on a stereotaxic apparatus by teeth and ear
bars. A window on the exposed skull was drilled over the right
somatosensory barrel cortex S1 at stereotaxic coordinates −1 to
−4 AP, +4 to +8 ML referred to bregma (Swanson, 2004). The
brain was constantly bathed in Krebs’ solution (in mM: NaCl 120,
KCl 1.99, NaHCO3 25.56, KH2PO4 136.09, CaCl2 2, MgSO4 1.2,
glucose 11).

4.3. Whisker Stimulation and Extracellular
MUAs and LFPs Recordings
Contralateral whiskers were trimmed at 10 mm from the
mystacial pad.Whiskers were individually inserted into a cannula
glued to a piezoelectric bender with integrated strain gauges
[P-871.122; Physik Instrumente (PI) GmbH & Co. KG], driven
by a home-made closed-loop control system and connected
to a dedicated amplifier [E-650.00 LVPZT-amplifier; Physik
Instrumente (PI) GmbH & Co. KG]. A 5 ms voltage pulse
stimulus with 100 µs rise/fall time and 2.8 V amplitude
(upper limit, which corresponds to final 60 V) was applied
to the bender through a waveform generator (Agilent 33250A
80 MHz, Agilent Technologies Inc.). The whisker providing
the maximum amplitude of evoked LFP (“principal whisker”)
was selected for the recording session, which consisted of
random and/or sequence pulse stimulations with 5 ms duration
and variable amplitude provided with 10 s interval between
subsequent stimuli. Each stimulation trial in a recording session
was preceded and followed by 5 min of rest. Intracortical
signals were recorded by a linear 32-electrodes-silicon probe
(E32+R-65-S1-L6-NT; 65 µm spaced Iridium Oxide (IrOx)
microelectrodes with a mean impedance of 0.28 M� in Krebs’
solution at 1 KHz; ATLAS Neuroengineering, Belgium). For

signal amplification and acquisition, the probe was connected to
a 32-channels head stage (RHD2000, Intan Technologies) and
to the Open Ephys acquisition system (OEps Tech, Portugal),
and then data stored in a PC. Raw traces were bandpass filtered
offline at 0.1–300 and 300–3,000 Hz for MUAs and LFPs,
respectively. An I/O board connected to the Open Ephys system
with a HDMI cable was used to synchronize the piezoelectric
stimulation with signal acquisition. The probe was inserted
in the somatosensory cortex, through a slit in the meninges,
with a PatchStar micromanipulator (Scientifica Ltd) following
a direction orthogonal to the brain surface at coordinates −2.5
AP, +6 ML. The depth was set at 0 µm when the electrode
proximal to the chip tip touched the cortical surface. The array
was covering all the six cortical layers (from 0 to −1,800 µm).
An Ag/AgCl electrode bathed in Krebs’ solution was used as
reference. Raw signals were visualized, recorded and digitalized
at 25 kHz through the Graphic User Interface software supplied
with the Open Ephys acquisition system.

4.4. Extraction of Multi Unit Activity
Spikes were detected using the WaveClus algorithm (Quiroga
et al., 2004), an unsupervised and fast method which has
been tested and validated on both in vitro and in vivo
electrophysiological data and for real-time applications. In
particular, spike detection was performed by setting an automatic
amplitude thresholding after the raw recordings were filtered
between 300 and 3,000 Hz using a digital elliptic filter. The
threshold (Thr) was automatically set to:

Thr = 3σn,

where σn is an estimate of the standard deviation of the
background noise. Indeed, taking the standard deviation of the
entire signal (i.e., including spikes) could lead to very high
threshold values, especially in cases with high firing rates and
large spike amplitudes, with a consequent increase of false
negative detection. The adopted spike detection method allowed
to identify both isolated spikes and the so-called Multi-Unit
Activity (MUA) events, i.e., packed spiking events originated
by the quasi-simultaneous activity of a population of neurons
located nearby each electrode. Specifically, a (MUA) was defined
as a set of spikes occurring less than 20 ms one to each other.

4.5. Distinction Between Stimuli Delivered
During a DOWN State and an UP State
One of the objective of this work consisted in understanding
how ongoing basal activity affects evoked responses, making it
necessary to distinguish between two different dynamical states,
i.e., the DOWN and the UP state, indicating, respectively, a
system being in a quiescent and in a dynamically active period.

To this aim, the Instantaneous Firing Rate (IFR) was
computed for each electrode as the average number of spikes
present within sliding windows of arbitrary width. For this
application, a moving window of 10 ms and a sliding temporal
step of 1 ms were adopted in order to depict the fast dynamics
characterizing MUA events.
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Successively, the cumulative IFR profile was obtained by
summing all electrodes’ IFR, in order to extract the dynamics
at network level. The adoption of this parameter allowed us
to distinguish between the two dynamical states by setting
the global average of the cumulative IFR profile as threshold.
So, the detected network events, identifying UP states, are the
result of the superimposition of MUA events observed across
all electrodes. Finally, in order to distinguish between stimuli
occurring during a DOWN or during an UP state period, a fixed
investigation window of 50 ms was set before each stimulus’
occurrence. Specifically, a stimulus was classified as occurring
during an UP state if an UP state was identified within the
investigation window.

4.6. Details to: Statistical Analysis of
Features Extracted From Evoked
Responses
4.6.1. Feature Extraction From Stimulus-Evoked

Spiking Dynamics
Depending on whether the stimulus is delivered during a DOWN
or during an UP state, the system can exhibit different dynamical
behaviors which have to be investigated in the perspectives of
developing an automatic activity pattern recognition approach.
To this aim, three characteristic spiking features were extracted
from the evoked responses at the level of single cortical layer:
MUA latency, MUA duration, and MUA firing rate. The MUA
evoked within each investigated layer was computed by summing
all spikes detected at the level of single electrodes belonging to
each layer.

Specifically, the evoked MUA latency was computed as the
temporal instant at which the first spike occurred after each
stimulus (denoted as t1—Figure 7A). The evoked MUA end,
indicated as t2, instead, corresponds to the time instant at which
the last spike of the evoked MUA occurred. So, its duration T
was computed as the difference between t2 and t1 (Figure 7A).
Finally, the evoked MUA firing rate was computed as the ratio
between the number of spikes belonging to the MUAs evoked
within each layer and its duration T.

4.6.2. Feature Extraction From Stimulus-Evoked LFPs
LFP signals were extracted by bandpass filtering raw traces
between 0.1 and 300 Hz using a digital elliptic filter.
Subsequently, in order to lighten the computational cost, LFPs
were downsampled in order to obtain a final sampling frequency
of 2,500 Hz. Subsequently, an investigation window of 3 s was
selected, starting from stimulus occurrence, for all delivered
stimuli in order to isolate and characterize the evoked responses.

Four features were extracted per each stimulation intensity
and by discriminating between stimuli delivered during a
DOWN state and stimuli delivered during an UP state.
Specifically, the examined features are the following: i) Response
Peak Amplitude (RPA), ii) Positive Rebound (PR), iii) Response
Onset Latency (ROL); and iv) time-normalized LFP (tLFP).
Representative features, extracted from layer IV, are shown in
Figure 7B.

To this aim, LFPs were averaged across all electrodes
belonging to each layer in order to remove noisy components
that could compromise features’ extraction. Furthermore, the
average signals’ first derivative was computed within the first
20 ms from stimulus’ occurrence, and the (ROL) was extracted
by computing the instant at which the absolute value of the
derivative overcomes a specific threshold, which was set as
follows:

thrlatency = meanbas′ + 3σbas′

where bas′ indicates the first derivative of the baseline activity
extracted from a 10 s window preceding each stimulus.

The RPA was extracted from the portion of signal starting at
the onset latency instant till the following 50 ms, by detecting
the response peak (RP). Then, the RPA was computed as the
sum in voltage of the RP and the response’s amplitude at the
previously computed onset latency. Due to the slower dynamic
characterizing the second part of the evoked LFP response, the
PR, where present, was computed as the maximum positive
value in voltage detected within the 100 ms following the main
response peak, as described in Wang et al. (2018).

Finally, tLFP was computed as follows:

tLFP =
AUC

RD

where AUC and RD are, respectively, the area under the main
response peak and the response duration, as shown in Figure 7B

for layer IV.

4.6.3. Statistical Analysis
The performed statistical analysis aimed at comparing, per each
stimulation intensity, the investigated features extracted from
responses following both a DOWN state and an UP state. To this
aim, the non-parametricWilcoxon rank-sum test was performed.

A multiple comparison among the three different stimulation
intensities (i.e., 2.8, 2, 1.6 V) was also performed by adopting the
non-parametric Kruskal–Wallis test and by applying the Dunn’s
test (a non-parametric pairwise multiple-comparison procedure)
when the Kruskal–Wallis test was rejected.

4.7. Stimulation Classification
4.7.1. Liquid State Machines
Liquid state machines (Maass et al., 2002) have been shown to
work well on the current generation of neuromorphic processors
despite hardware limitations: The concept of recurrent spiking
neural networks with static and randomly drawn connection
weights lends itself to implementations on neuromorphic
hardware. Liquid state machines (LSMs) in form of such circuits
integrate temporal information so that linear readouts trained
on the network activity can solve complex computational tasks.
We used a recurrent spiking neural network with leaky integrate-
and-fire (LIF) neurons with exponential shaped postsynaptic
currents and static synapses. Neuron parameters have been
adapted from Maass et al. (2002) with some modifications to
the connectivity scheme. Simulations have been carried out in
NEST 2.18 (Gewaltig and Diesmann, 2007). The neural circuit
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FIGURE 7 | (A) A cumulative spike train obtained by summing spikes detected from all electrodes belonging to layer IV. Time instant zero indicates stimulation’s

occurrence. The evoked MUA is highlighted by a dotted rectangle, whose start and end are indicated as t1 and t2. The duration, T is also reported. (B) A

representative evoked LFP obtained by averaging all evoked responses observed within layer IV. The corresponding extracted features are reported, i.e., ROL, RPA,

and PR. AUC and RD are the parameters necessary to compute the last investigated LFPs’ feature, i.e., tLFP.

was composed of excitatory neurons and inhibitory neurons.
Each neuron received input from a fixed number of excitatory
and inhibitory neurons chosen at random. Synaptic weights
depended on whether the pre- and postsynaptic neuron were
excitatory (E) or inhibitory (I). Network weights have been scaled
to produce a mean firing rate below 50Hz while maintaining
good classification accuracy. Each input was projected onto
a subset the excitatory population. The spike trains of the
excitatory population were low-pass filtered with an exponential
kernel. This trace of integrated information was then fed into a
linear support vector machine. Finally, the linear classifier was
trained to distinguish different whisker stimulation intensities.

4.7.2. SNN Trained With BPTT
The main characteristic of liquid state machines is that only
the synaptic weights to the readout neurons are adapted while
the other weights are fixed and chosen at random. Conversely,
Bellec et al. (2018b) have shown that a variant of backpropagation
through time can be used to train recurrent networks of
leaky integrate-and-fire neurons end-to-end. LIF neurons are
simulated in discrete time with a timestep of δt = 1ms. The
membrane potential Vj(t) of a LIF neuron j evolves as follows:

Vj(t + δt) = αjVj(t)+ (1− αj)RmIj(t),

where the decay αj = exp
(

− δt
τj

)

is defined using the membrane

time constant τj, Rm is the membrane resistance and Ij(t) is
the weighted sum of incoming spikes. After crossing the firing
threshold bj, neuron j emits a spike zj(t) = 1

δt , the membrane

potential is reset by subtracting the threshold value and zj(t) is
fixed to zero in the following refractory period. Due to the non-
differentiable nature of the firing event of spikikng neurons, the
derivative of a spike with respect to the normalized membrane

potential vj(t) = Vj(t)−bj
bj

is replaced with a dampened pseudo-

derivative

∂zj(t)

∂vj(t)
= γ max

{

0, 1− |vj(t)|
}

,

where γ = 0.3 is a dampening factor. In all simulations, the
membrane time constant τj = 20ms, the resistance Rm = 1G�

and the threshold bj = 0.01.

4.8. Details on Models and Training
Both the LFP and MUA datasets were split into training (80% of
dataset) and test dataset (20% of dataset). The hyperparameters of
all classifiers were cross-validated using grid search on a separate
validation dataset (20% of training dataset). Due to the small
overall dataset size (185 examples in total), the specific split
into training and test set significantly affects the performance
of a classifier. This necessitates an averaging of the performance
metrics of classifiers over many independent runs with different
splits. Therefore, for each classifier, we performed 20 independent
evaluations where initial parameters and training/validation/test
splits were randomly chosen for each evaluation. In each such
evaluation, we performed a grid search over the considered
hyperparameter values and used that values with the best
validation accuracy to determine the test error of that run. The
average test error was then computed as the mean over those
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TABLE 1 | Parameters of leaky integrate-and-fire neuron model with

exponential-shaped postsynaptic currents using the NEST simulator.

Parameter Value Unit

Resting membrane potential 0.0 mV

Capacity of the membrane 30.0 pF

Membrane time constant 30.0 ms

Exponential decay time constant of excitatory synaptic current 3.0 ms

Exponential decay time constant of inhibitory synaptic current 2.0 ms

Duration of refractory period 2.0 ms

Membrane potential −70.0 mV

Spike threshold 15.0 mV

Reset membrane potential after a spike 13.8 mV

Constant input current 7.0 pA

Incoming excitatory connections 2

Incoming inhibitory connections 1

errors. All models trained using backpropagation (through time)
used the categorical cross entropy loss.

4.8.1. Details to: Stimulus Intensity Classification

Based on Local Field Potentials
All classifiers were trained using LFP data acquired in layer IV
of barrel cortex. To this end, LFP signals were downsampled to
1 kHz and bandpass-filtered between 0.1 and 300 Hz. Then, the
signals recorded from all electrodes in layer IV were averaged to
obtain a single averaged LFP for layer IV.

LSM: We used a liquid state machine with 330 excitatory
and 80 inhibitory leaky integrate-and-fire neurons with
exponentially-shaped postsynaptic currents inspired by Kaiser
et al. (2017). The LFP signal was converted into a set of 100 spike
trains according to the threshold encoding approach described
above which were provided as input to the LSM. The spikes
of each channel were randomly projected onto four excitatory
neurons using static synapses with weights drawn from a
uniform distribution U(250, 750) pA. The delays were drawn
from a normal distribution with mean 10ms, standard deviation
20ms, and clipped to [3, 200]ms. Recurrent connections in the
LSM exhibited short-term plasticity according to (Tsodyks and
Markram, 1997; Fuhrmann et al., 2002). Excitatory weights,
inhibitory weights and synaptic delays were constrained to
[0,∞), (−∞, 0] and [3, 200], respectively. See Tables 1, 2 for an
overview of neuron and synapse parameters, respectively. The
spike trains of the excitatory population were low-pass filtered
with an exponential kernel with a time constant of 5ms. This
trace of integrated information was read out 45ms after stimulus
onset and fed into a support vector machine with a linear kernel.

The LSM received data starting at 1 s before stimulation onset
in order to simulate the effects of spontaneous activity on the
dynamics of the LSM. The hyperparameters that were tuned in
the above mentioned grid search were the scaling coefficients of
input, excitatory, and inhibitory weights as well as the support
vector machine readout regularization parameter C.

Recurrent Spiking Neural Network with BPTT (SNN BP): The
recurrent spiking neural network trained with backpropagation
through time was designed to match the structure of the LSM

TABLE 2 | Parameters of network connections.

Parameter Distribution Unit

Weight of EE connection N (100, 70) pA

Weight of EI connection N (500, 350) pA

Weight of IE connection N (−400, 280) pA

Weight of II connection N (−400, 280) pA

Weight of noise connection N (2, 1) pA

Delay of connections N (10, 20) ms

An XY connection is a connection from a neuron in population type X to a neuron in

population type Y, where X and Y can be E (exciatatory) or I (inhibitory). Here, N (µ, σ )

denotes a normal distribution with mean µ and standard deviation σ .

network. Unlike the LSM, the SNN used static synapses instead of
dynamic synapses. The SNN was trained with threshold-crossing
encoded LFP data within a 50ms window after stimulation
onset and stochastic gradient descent using over 500 epochs.
The learning rate was reduced by a factor of two once training
stalled for more than 10 epochs. Since the network structure
based on the LSM was sparse, we employed a variant of Deep
Rewiring (Bellec et al., 2018a) to dynamically rewire connections
during the course of training and L1-norm regularization of the
weights. Unlike Deep Rewiring, the target connectivity was set
to match the connectivity scheme of the LSM instead of a fixed
global connectivity level. The learning rate, batch size, rewiring
temperature and L1-norm regularization coefficient were tuned
using grid search as described above.

Feed-forward neural network (FF): We used a single-layer
feed-forward neural network with 80 hidden units and ReLU
nonlinearity. The input to the network was the LFP signal within
a 50ms window after stimulation onset, i.e., its input contained
the LFP values for each sampled time tonset, tonset + 1ms, tonset +
2ms, . . . , tonset + 49ms where tonset is the whisker stimulation
time. Each input feature to the network was standardized to
zero mean and unit standard deviation over the dataset. The
network was trained using L-BFGS (Liu and Nocedal, 1989) with
a learning rate of 0.001 for 50 epochs. We used early stopping
in the sense that the parameters at the epoch that yielded the
highest validation accuracy were used for testing. The weights

were initialized from U(−
√
k,
√
k) where k = 1

in_features
and the

biases were initialized to 0. The weights were regularized using L2
regularization with a regularization coefficient of 0.001.

LSTM: We used a long short-term memory recurrent neural
network with 64 LSTM units. The LFP signal was standardized to
zero mean and unit standard deviation over time. The network
received input from one input neuron, where the LFP values in a
50ms window after stimulus onset were provided sequentially. It
was trained with stochastic gradient descent with a learning rate
of 0.1 over 250 epochs, a momentum factor of 0.9 and a batch size
of 32. We used early stopping as described above. The weights

were initialized from U(−
√
k,
√
k) where k = 1

in_features
and the

biases were initialized to 0.
Random forest on hand-crafted features (HC+RF): Here we

used a random forest with 100 individual decision tree classifiers
as the classifier (Breiman, 2001), where we used hand-crafted
features extracted from the LFP signal as input. These features
were the response peak amplitude (RPA), positive rebound (PR),
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response onset latency (ROL) and time-normalized LFP (tLFP)
as well as and the mean and standard deviation of the LFPs signal
in considered window (50ms after stimulus onset as above). The
number of features per tree, the minimum number of samples
required to split an internal node, and the criterion to measure
split quality (Gini impurity or information gain) were tuned in
the grid search mentioned above.

4.8.2. Details to: Stimulus Intensity Classification

Based on Multi-Unit Activity
LSM:We used a liquid state machine with 100 excitatory (E) and
25 inhibitory (I) leaky integrate-and-fire neurons as described
in Section 4.8.1. The spike trains from each of the 27 input
channels were projected onto four excitatory neurons using static
synapses with weights drawn from U(15, 45) pA. Delays were
drawn from a normal distribution with mean 10ms, standard
deviation 20ms, and clipped to [3, 200]ms. The LSM received
data starting at 1 s before stimulation onset in order to simulate
the effects of spontaneous activity on the dynamics of the LSM.
The parameters of the liquid state machine (scaling coefficients
of input, excitatory and inhibitory weights) as well as the linear
support vector machine readout (regularization parameter C)
were tuned using cross-validated grid search.

Hardware-constrained LSM (LSM HW): In order to test
a hardware-constrained LSM, we considered the DYNAP-SE
neuromorphic processor (Moradi et al., 2018) as a test bed.
The LSM with hardware constraints had the same network
structure as the regular LSM. However, in line with the hardware
constraints, the network used static synapses with discretized
weights matching the fan-in constraints of the DYNAP-SE
neuromorphic processor. The DYNAP-SE processor has a fan-in
limit of 64 connections per neuron. Each connection between two
neurons has one of four possible types: slow or fast excitatory and
slow or fast inhibitory. Each DYNAP-SE processor has four chips
with four cores each containing 256 neurons; all synapses with
the same type on the same core have the same weight. In order
to achieve different connection strengths, multiple connections
between two neurons can be established, as long as the fan-in
constraint is fulfilled. In addition, there were no synaptic delays in
the network. Since the DYNAP-SE processor has analog neurons,
there aremany sources of noise in the system. In order to simulate
such parameter variations, parameters of individual neurons
were varied around their defined values with a coefficient of
variation of 20% clipped at two standard deviations. For example,
if themembrane time constant of the neurons is set to 20ms, each
individual neuron’s membrane time constant was drawn from a
Gaussian distribution with 20ms mean and standard deviation
of 4ms and clipped within the interval [12, 28]ms. The varied
parameters were the membrane time constant, the threshold, the
reset potential and the membrane capacitance.

Recurrent Spiking Neural Network with BPTT (SNN BP): The
recurrent spiking neural network trained with backpropagation
through time was designed to match the structure of the LSM
network and trained as described in Section 4.8.1. The SNN was
trained with MUA data within a 50ms window after stimulation
onset. and stochastic gradient descent over 500 epochs. The
learning rate was reduced by a factor of two once training stalled
for more than 10 epochs.

Random forest (RF): The spike trains were low-pass filtered
with an exponential kernel with a time constant of 16ms and
read out 30ms after stimulation onset. These features were then
passed into a random forest with 100 decision trees. The number
of features per tree, the minimum number of samples required
to split an internal node and the criterion to measure split
quality (Gini impurity or information gain) were tuned using grid
search.

4.8.3. Details to: LSM Population Response Figures
For Figure 5 and Supplementary Figure 2, the PSTH was
computed for each of the MUA and threshold-encoded LFP
channels as well as the excitatory population of the LSM
with a bin size of 4 ms. For each stimulation amplitude,
we show the mean predicted class probability for the
corresponding examples in the test dataset over time.
Since SVMs do not assign class membership probabilities
by default, we resort to the method proposed by Wu
et al. (2004) to estimate class probabilities using pairwise
coupling.
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Ponulak, F., and Kasiński, A. (2010). Supervised learning in spiking neural

networks with ReSuMe: sequence learning, classification, and spike shifting.

Neural Comput. 22, 467–510. doi: 10.1162/neco.2009.11-08-901

Priori, A., Foffani, G., Rossi, L., and Marceglia, S. (2013). Adaptive deep brain

stimulation (ADBS) controlled by local field potential oscillations. Exp. Neurol.

245, 77–86. doi: 10.1016/j.expneurol.2012.09.013

Quiroga, R. Q., and Panzeri, S. (2009). Extracting information from neuronal

populations: information theory and decoding approaches. Nat. Rev. Neurosci.

10, 173–185. doi: 10.1038/nrn2578

Quiroga, R. Q., Zoltan, N., and Yoram, B.-S. (2004). Unsupervised spike detection

and sorting with wavelets and superparamagnetic clustering. Neural Comput.

16, 1661–1687. doi: 10.1162/089976604774201631

Salaj, D., Subramoney, A., Kraisnikovic, C., Bellec, G., Legenstein, R., and

Maass, W. (2021). Spike frequency adaptation supports network computations

on temporally dispersed information. eLife 10, e65459. doi: 10.7554/eLife.

65459

Sanchez-Vives, M. V., and McCormick, D. A. (2000). Cellular and network

mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3,

1027–1034. doi: 10.1038/79848

Frontiers in Neuroscience | www.frontiersin.org 16 April 2022 | Volume 16 | Article 838054

https://doi.org/10.1227/NEU.0b013e3182676b91
https://doi.org/10.48550/ARXIV.1711.05136
https://doi.org/10.3389/fnins.2016.00563
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.isci.2019.07.046
https://doi.org/10.1038/nrn3241
https://doi.org/10.3389/fnsys.2012.00025
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1016/j.tins.2007.04.006
https://doi.org/10.1038/nrn2411
https://doi.org/10.1038/nrn3599
https://doi.org/10.1016/j.pneurobio.2012.11.002
https://doi.org/10.1152/jn.00258.2001
https://doi.org/10.1016/j.isci.2020.101589
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1038/nn1643
https://doi.org/10.1109/TNSRE.2016.2612001
https://doi.org/10.1088/1748-3190/aa7663
https://doi.org/10.1227/01.NEU.0000221506.06947.AC
https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/s00429-007-0144-2
https://doi.org/10.1142/9781848162778_0008
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1007/s12559-016-9399-3
https://doi.org/10.3389/fnsys.2021.709677
https://doi.org/10.1038/s41928-020-0448-2
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1145/3432814
https://doi.org/10.1126/scirobotics.aat3818
https://doi.org/10.3389/fnsyn.2010.00017
https://doi.org/10.3389/fnins.2016.00165
https://doi.org/10.1073/pnas.2235811100
https://doi.org/10.1162/neco.2009.11-08-901
https://doi.org/10.1016/j.expneurol.2012.09.013
https://doi.org/10.1038/nrn2578
https://doi.org/10.1162/089976604774201631
https://doi.org/10.7554/eLife.65459
https://doi.org/10.1038/79848
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Petschenig et al. Whisker Deflection Classification With SNNs

Serb, A., Corna, A., George, R., Khiat, A., Rocchi, F., Reato, M., et al. (2020).

Memristive synapses connect brain and silicon spiking neurons. Sci. Rep. 10,

2590. doi: 10.1038/s41598-020-58831-9

Sharifshazileh, M., Burelo, K., Sarnthein, J., and Indiveri, G. (2021).

An electronic neuromorphic system for real-time detection of high

frequency oscillations (HFO) in intracranial EEG. Nat. Commun. 12, 3095.

doi: 10.1038/s41467-021-23342-2

Steriade, M., Nunez, A., and Amzica, F. (1993). A novel slow (<1 Hz) oscillation

of neocortical neurons in vivo: depolarizing and hyperpolarizing components.

J. Neurosci. 13, 3252–3265. doi: 10.1523/JNEUROSCI.13-08-03252.1993

Swanson, L. (2004). Brain Maps: Structure of the Rat Brain, 3rd Edn. San Diego,

CA: Academic Press.

Szostak, K. M., Grand, L., and Constandinou, T. G. (2017). Neural interfaces for

intracortical recording: requirements, fabrication methods, and characteristics.

Front. Neurosci. 11, 665. doi: 10.3389/fnins.2017.00665

Tambaro, M., Bisio, M., Maschietto, M., Leparulo, A., and Vassanelli, S.

(2021). FPGA design integration of a 32-microelectrodes low-latency spike

detector in a commercial system for intracortical recordings. Digital 1, 34–53.

doi: 10.3390/digital1010003

Tekriwal, A., Afshar, N. M., Santiago-Moreno, J., Kuijper, F. M., Kern, D.

S., Halpern, C. H., et al. (2019). Neural circuit and clinical insights from

intraoperative recordings during deep brain stimulation surgery. Brain Sci. 9,

173. doi: 10.3390/brainsci9070173

Temereanca, S., and Simons, D. J. (2003). Local field potentials and the encoding

of whisker deflections by population firing synchrony in thalamic barreloids. J.

Neurophysiol. 89, 2137–2145. doi: 10.1152/jn.00582.2002

Tsodyks, M. V., and Markram, H. (1997). The neural code between neocortical

pyramidal neurons depends on neurotransmitter release probability. Proc. Natl.

Acad. Sci. U.S.A. 94, 719–723. doi: 10.1073/pnas.94.2.719

Vassanelli, S., and Mahmud, M. (2016). Trends and challenges in

neuroengineering: toward “intelligent” neuroprostheses through brain-

“brain inspired systems” communication. Front. Neurosci. 10, 438.

doi: 10.3389/fnins.2016.00438

Verstraeten, D., Schrauwen, B., Stroobandt, D., and Van Campenhout,

J. (2005). Isolated word recognition with the liquid state machine: a

case study. Inform. Process. Lett. 95, 521–528. doi: 10.1016/j.ipl.2005.

05.019

Wang, X., Magno, M., Cavigelli, L., Mahmud, M., Cecchetto, C., Vassanelli,

S., et al. (2018). “Embedded classification of local field potentials recorded

from rat barrel cortex with implanted multi-electrode array,” in 2018

IEEE Biomedical Circuits and Systems Conference (BioCAS), Ohio, LE, 1–4.

doi: 10.1109/BIOCAS.2018.8584830

Werner, T., Vianello, E., Bichler, O., Garbin, D., Cattaert, D., Yvert, B., et al. (2016).

Spiking neural networks based on OxRAM synapses for real-time unsupervised

spike sorting. Front. Neurosci. 10, 474. doi: 10.3389/fnins.2016.00474

Wu, T.-F., Lin, C.-J., and Weng, R. (2004). “Probability estimates for multi-

class classification by pairwise coupling,” in Advances in Neural Information

Processing Systems, eds S. Thrun and L. Saul and B. Schölkopf (Vancouver: MIT

Press), Vol. 16, 529–536.

Zeng, M., He, Y., Zhang, C., andWan, Q. (2021). Neuromorphic devices for bionic

sensing and perception. Front. Neurosci. 15:805. doi: 10.3389/fnins.2021.690950

Zhang, Z.-W., and Deschênes, M. (1997). Intracortical axonal

projections of lamina vi cells of the primary somatosensory cortex

in the rat: a single-cell labeling study. J. Neurosci. 17, 6365–6379.

doi: 10.1523/JNEUROSCI.17-16-06365.1997

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Petschenig, Bisio, Maschietto, Leparulo, Legenstein and Vassanelli.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 17 April 2022 | Volume 16 | Article 838054

https://doi.org/10.1038/s41598-020-58831-9
https://doi.org/10.1038/s41467-021-23342-2
https://doi.org/10.1523/JNEUROSCI.13-08-03252.1993
https://doi.org/10.3389/fnins.2017.00665
https://doi.org/10.3390/digital1010003
https://doi.org/10.3390/brainsci9070173
https://doi.org/10.1152/jn.00582.2002
https://doi.org/10.1073/pnas.94.2.719
https://doi.org/10.3389/fnins.2016.00438
https://doi.org/10.1016/j.ipl.2005.05.019
https://doi.org/10.1109/BIOCAS.2018.8584830
https://doi.org/10.3389/fnins.2016.00474
https://doi.org/10.3389/fnins.2021.690950
https://doi.org/10.1523/JNEUROSCI.17-16-06365.1997
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Classification of Whisker Deflections From Evoked Responses in the Somatosensory Barrel Cortex With Spiking Neural Networks
	1. Introduction
	2. Results
	2.1. Experimental Protocol and Signal Preprocessing 
	2.2. Statistical Analysis of Features Extracted From Evoked Responses
	2.2.1. Statistical Results on Features Extracted From Evoked LFPs
	2.2.2. Statistical Analysis of Features Extracted From Evoked Spike Responses

	2.3. Stimulation Intensity Classification With Spiking Neural Networks
	2.3.1. Stimulus Intensity Classification Based on Local Field Potentials
	2.3.2. Stimulus Intensity Classification Based on Multi-Unit Activity
	2.3.3. Influence of Global Network State on Classification
	2.3.4. Influence of Electrode Depth on Classification Accuracy


	3. Discussion
	4. Methods
	4.1. Ethics Statement
	4.2. Surgical Procedures
	4.3. Whisker Stimulation and Extracellular MUAs and LFPs Recordings
	4.4. Extraction of Multi Unit Activity
	4.5. Distinction Between Stimuli Delivered During a DOWN State and an UP State
	4.6. Details to: Statistical Analysis of Features Extracted From Evoked Responses
	4.6.1. Feature Extraction From Stimulus-Evoked Spiking Dynamics
	4.6.2. Feature Extraction From Stimulus-Evoked LFPs
	4.6.3. Statistical Analysis

	4.7. Stimulation Classification
	4.7.1. Liquid State Machines
	4.7.2. SNN Trained With BPTT

	4.8. Details on Models and Training
	4.8.1. Details to: Stimulus Intensity Classification Based on Local Field Potentials
	4.8.2. Details to: Stimulus Intensity Classification Based on Multi-Unit Activity
	4.8.3. Details to: LSM Population Response Figures


	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


