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Abstract

Motivation: As a highly heterogeneous disease, the progression of tumor is not only achieved by

unlimited growth of the tumor cells, but also supported, stimulated, and nurtured by the micro-

environment around it. However, traditional qualitative and/or semi-quantitative parameters ob-

tained by pathologist’s visual examination have very limited capability to capture this interaction

between tumor and its microenvironment. With the advent of digital pathology, computerized

image analysis may provide a better tumor characterization and give new insights into this

problem.

Results: We propose a novel bioimage informatics pipeline for automatically characterizing the

topological organization of different cell patterns in the tumor microenvironment. We apply this

pipeline to the only publicly available large histopathology image dataset for a cohort of 190 pa-

tients with papillary renal cell carcinoma obtained from The Cancer Genome Atlas project.

Experimental results show that the proposed topological features can successfully stratify early-

and middle-stage patients with distinct survival, and show superior performance to traditional

clinical features and cellular morphological and intensity features. The proposed features not only

provide new insights into the topological organizations of cancers, but also can be integrated with

genomic data in future studies to develop new integrative biomarkers.

Availability and implementation: https://github.com/chengjun583/KIRP-topological-features

Contact: 1271992826@qq.com or kunhuang@iu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancers are highly heterogeneous diseases. Even for a specific type

of cancer, there are often different subtypes conferring different clin-

ical outcomes including different prognoses (i.e. survival times) and

responses to treatments. For instance, according to the International

Union Against Cancer and the American Joint Committee on

Cancer, renal cell carcinoma (RCC, also called kidney cancer) histo-

logic subtypes are categorized as clear cell, papillary, chromophobe,

collecting duct and unclassified RCC types based on the Heidelberg

classification system (Kovacs et al., 1997), and some types of RCC
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also have its own subtypes. Previous studies on many cancers have

suggested that stratification by histologic subtype could provide

prognostic value (Patard et al., 2005). Stratifying cancer patients

into different subtypes with more accurate prediction of the clinical

outcome will greatly enhance precision medicine practices. For ex-

ample, patients with worse prognosis may benefit from closer

follow-up, more aggressive treatment, and advance care planning.

Currently, despite fast advances in genome medicine, patient

stratification is still often carried out by pathologists by reviewing

histopathology slides under a light microscopy. However, such re-

view is often subjective, and both intra- and inter-operator vari-

ations are large, frequently leading to discrepancies in diagnosis and

subtyping results and sometimes even misdiagnosis. Thus there is an

urgent need for developing effective computer vision based algo-

rithms and workflows to extract quantitative features that can ef-

fectively stratify patients with distinct prognosis.

1.1 Scope of study
In this study, we focus on the second most common subtype of kid-

ney cancer called papillary renal cell carcinoma (pRCC), accounting

for 11% to 15% of all cases (Hansel, 2010). pRCC is a less well

understood cancer, and currently there are no effective morpho-

logical markers for pRCC that pathologists can use to effectively

predict prognosis. We aim to improve the prognostic prediction of

pRCC through objective features derived from histopathology

images. Despite the specific application, our workflow is a general

one focusing on an important aspect of the development of all solid

tumors—the interaction between tumor and its surrounding stroma.

With the development of cancer biology, scientists and clinicians

have gained deep insights into the importance of the tumor micro-

environment. As a highly heterogeneous organ-like structure, the de-

velopment of tumor is not only achieved by unlimited growth of the

tumor cells, but also supported, stimulated, and nurtured by the

microenvironment around it (Pietras and Östman, 2010; Trimboli

et al., 2009). The tumor microenvironment includes fibroblasts with

large amount of extracellular matrices, blood vessels with endothe-

lial cells, and various immune cells such as macrophages, T-cells,

and B-cells, which form the stroma. In fact, the amount of stroma,

its organization, gene expression profiles, and interaction with the

tumor cells are sometimes more effective predictors for clinical out-

comes than the tumor cells alone. For instance, Yuan et al. (2012)

found that spatial distribution of stromal cells is critical for predict-

ing patient survival in ER-breast cancers while Beck et al. (2011)

found that most of the quantitative histopathological features pre-

dicting general breast cancer survival are stromal features.

1.2 Related work
Commonly used clinical and pathological factors include patient

age, gender, tumor multifocality, stage, grade, cancer specific sub-

typing and so on. Patard et al. (2005) conducted a retrospective

study in a large cohort which contains 4063 patients from eight

international centers. They concluded that the stratification in three

main renal cell carcinoma histologic subtypes (clear cell, papillary,

and chromophobe carcinoma) should not be considered as a major

prognostic variable comparable to TNM stage, Furman grade, and

eastern cooperative oncology group performance status. pRCC is

usually classified into two subtypes based on specific histologic fea-

tures, consisting of type 1 (or basophilic) and type 2 (or eosinophilic)

(Sukov et al., 2012). Although some pRCCs can be easily split into

two subtypes, pRCC is usually heterogeneous and can show both

type 1 and type 2 features. For this reason, the prognostic value of

pRCC type varies between studies. For example, several studies

show type 2 pRCC has a significantly worse prognosis than type

1(Moch et al., 2000; Pignot et al., 2007). However, the prognostic

utility of subtyping pRCC remains controversial. Ku et al. (2009)

compared pRCC type 1 and type 2 in a small group of 70 patients,

and did not observe a statistically significant difference in survival

times. Gontero et al. (2008) confirmed that finding.

With the recent availability of digital whole-slide images, we can

perform systematic analysis of the diverse structures present in histo-

pathology images and may find previously unrecognized image fea-

tures that correlate with patient prognosis, while reducing the

inconsistence arising from subjective interpretation. Quantitative

analysis of biomedical images has been an area gaining increasing

interest. Plenty of methods have been proposed for tasks like object

detection and segmentation (nuclei, mitosis, and glands)

(Albarqouni et al., 2016; Xu et al., 2014), benign/malignant image

classification (Zhang et al., 2015a), and discovery of prognostic fac-

tors (Beck et al., 2011; Chen et al., 2015; Veta et al., 2012; Yuan

et al., 2012). For prognostic factor discovery, most studies focus on

tumor morphology; however, we provide an effective workflow tak-

ing into account not only cell morphology but also the spatial ar-

rangement of different cell patterns, with demonstrated advantages

over existing subtyping or cell-based features in pRCC.

1.3 Technical challenges and overview of our

contribution
One big challenge for computerized histopathological image ana-

lysis is that each type of cancer, given the specific anatomical origin,

will often have specific structures, calling for specific features. This

is also reflected in the fact that pathologists are highly diversified in

their expertise usually with focus on one or a couple of types of can-

cers instead of all cancers. From the computing point of view, it

means that researchers need to strike a balance between general

workflows and specific quantitative features tailored for specific

cancers.

In this paper, we aim at developing a bioimage informatics

workflow to quantitatively characterize the interaction between dif-

ferent types of cells in the cancer tissue and examine if such inter-

actions are associated with the outcomes of patients. The tumor

microenvironment is a complex milieu, which includes not only the

tumor cells but also the stromal cells, immune cells, and even nor-

mal, healthy cells. Biopsy tissue staining by such as hematoxylin and

eosin (H&E), can provide a spatial layout of heterogeneous tumor

cellularity. Our contributions include: (i) an integrative pipeline to

automatically learn different cell types and (ii) novel topological fea-

tures characterizing the topological organization of different cell

types including both tumor and stroma. This pipeline is universal

for other solid tumors, and our application on pRCC will have a

high impact on clinical practice.

2 Materials and methods

2.1 Dataset
The dataset used in the experiments was downloaded (at May 4,

2016) from The Cancer Genome Atlas (TCGA) portal (project

TCGA-KIRP). It consists of 190 patients with H&E stained whole

slide images (WSI) as well as corresponding clinical information (pa-

tients with survival times <1 month have been excluded from the

study). The typical resolution of a WSI is about 100 K by 90 K pix-

els. Due to the limited computational resource and the artifacts pre-

sent in the image, in each WSI, 2–8 regions of interest (ROI) of size
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3 K by 3 K are extracted, resulting in 856 ROIs in total. Regions

having too much blood or artifacts are avoided. The patient demo-

graphics and tumor characteristics of our dataset are summarized in

Table 1. Note that the stage and subtype information of some pa-

tients is not available. In addition, since the prognosis prediction is

more important for relatively early-stage patients, we focus our

study on the patients with stages I, II and III and exclude the patients

with stage IV (the latest stage).

2.2 Overview of the workflow
Figure 1 shows the overview of our workflow to extract topological

features, which consists of two modules. The first module (Fig. 1A)

shows the process for learning nucleus patterns from the imaging

dataset. The second one (Fig. 1B) demonstrates how to generate

topological features (bag of edge histogram features) for an image

using the learned nucleus patterns and Delaunay triangulation. In

the following subsections we provide details of our workflow.

2.3 Nucleus segmentation and patch extraction
For nucleus segmentation, we employ a recently proposed approach

by Phoulady et al. (Phoulady et al., 2016), which is an unsupervised

segmentation method for cell nuclei in histopathology images. More

specifically, following an initial preprocessing step involving color

deconvolution and image reconstruction, the segmentation step con-

sists of multilevel thresholding and a series of morphological oper-

ations. Unlike the methods in (Al-Kofahi et al., 2010; Wienert et al.,

2012), which require many parameters, this method requires no par-

ameter learning or training data because the parameters are set

adaptively, making the approach insensitive to variations in staining

intensity and appealing to our applications.

After nucleus segmentation, we need to extract nucleus patches

centered at the centroids of nuclei to train an autoencoder. In order

to choose an appropriate patch size that can frame most nuclei and

is not too large, for each nucleus we compute the size of the smallest

square bounding box that exactly covers it. The patch size in our ex-

periments is set to the 90th percentile of all the sizes, which is 41 by

41 pixels.

2.4 Nucleus subtyping using stacked sparse

autoencoder
Since there are a large number of cell types in the tumor microenvir-

onment each calling for a different set of features for its recognition,

it is difficult to design a repertoire of algorithms for this classifica-

tion. Instead we take an unsupervised approach to categorize the

cells based on their morphology without explicitly labeling their

histological types using a stacked sparse autoencoder (SSAE) (Fig.

1A). A SSAE is a neural network that consists of multiple layers of

sparse autoencoder (SAE) in which the outputs of each layer are

wired to the inputs of each successive layer. In a recent work on cell

nucleus detection (Xu et al., 2016), SSAE is utilized to learn high-

level features from just pixel intensities of small patches. A slide win-

dow is applied to each image in order to represent image patches via

high-level features obtained from SSAE. The features are subse-

quently fed into a classifier to determine whether an image patch

contains nucleus. However in this paper, instead of putting the

learned features into a classifier, we put them into the K-means clus-

tering algorithm to learn K distinct nucleus patterns.

Similar to Xu’s work (Xu et al., 2014), we also employ two SAE

layers to form the SSAE whose architecture is shown in Figure 1A.

The SSAE is trained by a greedy layer-wise approach, i.e. training

each layer in turn. First, we train a SAE on the training nucleus

patches xk. Next, we feed all the training nucleus patches into the

first trained SAE, obtaining the primary features h1
k for each xk. We

then use h1
k as input to another SAE to learn secondary features h2

k.

After that, we perform K-means algorithm on h2
k to generate K nu-

cleus patterns.

We randomly choose 50 000 nucleus patches to train the SSAE.

The input to the first SAE layer is the vector of pixel intensities cor-

responding to the nucleus patch, which is 41 � 41 � 3 dimensional.

The number of units of the first and second SAE is set to 400 and

200, respectively.

2.5 Topological features based on Delaunay

triangulation
For each image, we obtain the label of every nucleus therein by the

following steps: nucleus segmentation, nucleus patch extraction,

Table 1. Patient demographics and tumor characteristics

Characteristics Summary

Patient no. 190

Age (year)

Median 60.5

Range 28–85

Gender

Female 51

Male 139

Follow-up (month)

Median 16.3

Range 1–185.3

Number of Death 27

Subtype

Type 1 46

Type 2 60

Not available 84

TNM stage

I 110

II 10

III 39

IV 12

Not available 19

Fig. 1. Overview of our workflow. (A) Learning nucleus patterns in an un-

supervised manner. (B) Generating bag of edge histogram features and iden-

tifying survival-related edge patterns (Color version of this figure is available

at Bioinformatics online.)

1026 J.Cheng et al.

Deleted Text: ,
Deleted Text: Ahmady 
Deleted Text: ,
Deleted Text: ,
Deleted Text: <IMG_FOUND/>
Deleted Text: <IMG_FOUND/>
Deleted Text: D


feeding them into the learned SSAE to generate high-level features,

and quantizing these features to one of the K clusters. Given an

image I consisting of its nuclei OðIÞ ¼ foig, we construct a graph

G ¼ fV;Eg on the nuclei’s centroids using Delaunay triangulation,

where vertex set V includes every nucleus oi 2 OðIÞ, and edge set E

contains triangle edges edgeðom;onÞ. Edges are labeled with regard

to their end nodes, regardless of their order.

Then, we characterize the image by the histogram of edge types,

which we call bag of edge histogram (BOEH for short) (Fig. 1B). If

there are K nucleus patterns, the dimensionality of BOEH would be

K� ðK� 1Þ=2þK. The first term is the number of combinations

when two nuclei come from different types, and the second term is

the number of combinations when two nuclei are of the same type.

Note that each patient has multiple images and the BOEH represen-

tations of these images for each patient are summed and then L1-

nomalized.

The BOEH representations encode the neighborhood informa-

tion between adjacent nuclei. Figure 1B shows a schematic diagram

of constructing a Delaunay graph on eight nuclei. For the sake of

simplicity, there are only three types of nuclei and therefore six edge

types. Triangle edge types are indicated with different colors.

2.6 Morphological and intensity features
In addition to the proposed BOEH representations, we also imple-

ment some morphological and intensity features (Yang et al., 2011)

for comparison. Ten cell-level features are computed for each seg-

mented nucleus: nuclear area, lengths of major and minor axes of

cell nucleus and their ratio, mean pixel values of nucleus in RGB

three channels, respectively, as well as mean, maximum and min-

imum neighbor distances of cell nuclei in Delaunay triangulation

graph. Afterwards, for each type of cell-level features extracted from

a patient, five statistical distribution parameters, including mean

value, standard deviation, skewness, kurtosis and entropy, are calcu-

lated to characterize the distribution of cell-level features.

Consequently, a total of 50 patient-level features are extracted to de-

scribe each patient. Skewness is a measure of the asymmetry of the

data around the sample mean. Kurtosis is a measure of how outlier-

prone a distribution is. And entropy is a statistical measure of

randomness.

2.7 Machine-learning methods for prognosis prediction
A lasso-regularized Cox regression model (lasso-Cox model) is built

on image features to predict the risk indices of patients and divide

them into a low-risk or high-risk group (R package ‘glmnet’). To

validate our method, Leave-one-out cross validation (CV) strategy is

used due to relatively small sample size and low death rate (Table

1). More specifically, in each round of the leave-one-out CV process,

a single patient is left out as test set with the rest as training set. In

the training set, to reduce high dimensionality of BOEH features, we

first perform univariate Cox regression to select features strongly

related to survival by dichotomizing patients using median feature

value and calculating the hazard ratio between the two groups.

Features with hazard ratios >4 or <0.25 are selected. Next, prin-

ciple component analysis (PCA) is used to reduce noise and decorre-

late these features, and Cox regression model is trained using the top

two principle components. To predict the risk index of the held-out

patient, we select survival-related features based on the feature selec-

tion results in the training set, apply the PCA projection matrix

learned from training set to the test data, and put the reduced fea-

tures to the learned Cox regression model. Note that only the train-

ing set is used for feature selection and PCA while the test sample is

excluded from training. After n rounds, each patient is assigned a

predicted risk index. Finally, patients are divided into two groups

(low-risk versus high risk) using the median risk index as cut-off

point, and log-rank test is used to test if there are distinct survival

outcomes between the two groups.

In addition, we conduct receiver-operator characteristics (ROC)

curve analysis for binary outcome of 5-year survival to determine

the prognosis prediction capability for tumor stage, tumor subtype

and the predicted risk index of Cox regression model by using near-

est neighbor estimation method (Heagerty and Zheng, 2005;

Heagerty et al., 2000).

3 Results

3.1 Nucleus segmentation, subtyping and BOEH

representations
For evaluating nucleus segmentation algorithm, we manually count

the true number of nuclei, the number of nuclei identified by the seg-

mentation algorithm, and the number of false positives in eight

image patches of size 1500 � 1500 pixels; the three numbers are

4082, 4159 and 168, respectively. The recall is (4159 � 168)/

4082¼97.77%, and precision is (4159 � 168)/4159¼95.96%.

Thus this nucleus segmentation algorithm performs well enough for

the subsequent steps in our pipeline. Examples of segmentation re-

sults are shown in Supplementary Figure S1.

Using a ROI as an example, Figure 2 shows the results of several

steps involved in our computer-aided image analysis pipeline,

including nucleus segmentation, nucleus subtyping by K-means clus-

tering algorithm on the high-level features learned by SSAE,

Delaunay triangulation on nucleus centroids, and construction of

bag of edge histogram features. In this figure, we set the number of

clusters to 8 in K-means algorithm, so we will have 8 distinct nu-

cleus patterns and therefore 8 � (8 � 1)/2þ8¼36 edge types. We

can see clearly that the proposed feature representations can capture

the interaction between nuclei and their neighbors, which may pro-

vide useful information about patient prognosis.

3.2 Prognostic values of BOEH representations
Since prognosis prediction for patients with terminal cancer is not

crucial, instead we focus on survival analysis for relatively early to

middle-stage (I, II, and III) patients, and patients with stage IV are

excluded. By setting a large number of nucleus patterns, we can

characterize nuclei more distinctively and discover the potential

topological arrangements of nuclei that are related to patient prog-

nosis. Several values of the number of nucleus patterns are tried, 8,

16, 32 and 64, which corresponds to 36, 136, 528 and 2080 dimen-

sional BOEH representations (see Section 2.5). To conduct univari-

ate survival analysis, patients are divided into two groups using the

median of each feature. Results from log-rank test on each feature

reveal that 1 out of 36, 1 out of 136, 16 out of 528 and 51 out of

2080 are significantly associated with patient survival. Besides, we

also conduct univariate survival analysis on the 50 morphological

features and two pathological variables, i.e. TNM stage and pRCC

subtypes. We merge stage II and III into one group and compare it

with stage I. Among the 50 morphological features, two features are

identified to be related to survival. Table 2 shows the P values of

log-rank test for the pathological and image features. Due to limited

space, only the two significant morphological features are listed,

and only the top five significant BOEH features with the smallest P

values are listed. For extracting the BOEH features in Table 2, the

number of nucleus patterns is set to 64.
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Figure 3A–C shows the Kaplan–Meier survival curves stratified

by stage, subtype, and lasso-Cox on BOEH features, respectively.

Early stage trends with better survival (log-rank test P¼0.0726, Fig.

3A). Patients with pRCC type 2 have worse prognosis than those

with pRCC type 1 (log-rank test P¼0.00946, Fig. 3B), which is con-

sistent with the conclusion by Pignot (Pignot et al., 2007). Patient

stratification by the predicted risk inedx provides the best prognosis

prediction (log-rank test P¼1.46e-4, Fig. 3C; see Section 2.7 for de-

tails of model training and classification). In addition, area under

the curve (AUC) of ROC that predicts the binary outcome of 5-year

survival for the stage and subtype is 0.63 and 0.66, respectively. The

predicted risk index achieves an AUC of 0.78 (Fig. 3D; see Section

2.7 for the methods used to plot ROC curves). Therefore, the pro-

posed BOEH features have a better predictive capability than stage

or subtype.

Figure 4 shows some nucleus patch patterns that form the edge

types that are strongly associated with survival, identified by uni-

variate survival analysis (Table 2). Although these nucleus clusters

contain mostly tumor cells with diverse texture, there exist different

levels of stromal deposition around the nucleus clusters (e.g. 1, 58,

and 56). The clusters 16 and 14 also show strong interactions be-

tween tumor cells and lymphocytes (as shown in Supplementary Fig.

S2). Therefore these four pairs of clusters with most significant

difference between patient survival times are involved in tumor het-

erogeneity, implying the importance of stroma-tumor-lymphocyte

interaction which is consistent with previous findings (Beck et al.,

2011; Loi et al., 2013; Yuan et al., 2012) that stromal tissue and

tumor-infiltrating lymphocytes also play an important role in pre-

dicting survival times.

4 Discussion

Nuclei in histopathology images play a very important role in cancer

diagnosis and prognosis prediction. Many studies have been focus-

ing on nuclear morphological features. However, in this study we

present a workflow to automatically extract image features which

considers both nucleus morphology and topology of the distribution

of different types of nuclei. Based on these features, we find that the

co-occurrences of some nucleus patterns are potential biomarkers

for pRCC with stronger prognostic power than clinical staging or

existing subtyping in the TCGA-KIRP dataset. The interaction

among different tumor cells, stromal cells and lymphocytes is known

to play a major role in cancer growth and progression. Our method

provides a way of quantitatively characterizing this interaction, and

our results suggest that some connecting edges between tumor cells

and stromal cells are related to patient survival.

Many previous studies for discovering prognostic image features

require laborious labeling by skilled pathologist, such as labeling

various cell types (Yuan et al., 2012) and classifying tissues into epi-

thelium or stoma (Beck et al., 2011; Wang et al., 2013). In contrast,

our approach is fully automated, which can learn potential nucleus

patterns via an unsupervised feature learning algorithm (i.e. stacked

sparse autoencoder) followed by clustering. Although the learnt nu-

cleus patterns may not explicitly correspond to known cell types

such as cancer cells, stromal cells or lymphocytes, due to this flexi-

bility it enables us to thoroughly investigate nucleus morphology

and their spatial arrangement which are proved by our experiments

to be related to clinical outcomes.

Our study has several limitations. First, although cross validation

is used to validate our method, the proposed topological features

need to be tested on other validation cohorts to fully validate its gen-

eralizability. This is an ongoing effort as we are collecting pRCC

samples from multiple sites. Secondly, a common practice in survival

analysis is to first conduct univariate survival analysis to identify

Table 2. Univariate survival analysis results using log-rank test

Feature P value

TNM stage (I versus II, III) 0.073

Subtype (type 1 versus type 2) 0.009

Skewness of length of major axis 0.044

Kurtosis of length of minor axis 0.034

Edge(14, 58) 0.005

Edge(58, 62) 0.007

Edge(16, 56) 0.008

Edge(21, 58) 0.009

Edge(15, 23) 0.010

Note: For morphological and intensity features only the significant features

are listed, and for the proposed BOEH features only the top five features with

smallest P values are listed. The number of nucleus patterns is set to 64. Edge

(14, 58) means the edge type with the 14th and 58th nucleus patterns as its

end nodes, and the other pairs are listed in the same fashion.

Fig. 2. Illustration of the three main steps involved in our feature extraction workflow. (A) Nucleus segmentation. (B) Nucleus pattern learning using stacked

sparse autoencoder to learn high-level features followed by clustering. Nucleus patterns are indicated by different colors. There are eight nucleus patterns. (C)

Delaunay triangle edge patterns showed in different colors. Edge patterns are defined in terms of their end nodes. There are 36 edge patterns since we have eight

nucleus patterns. The H&E image is converted to a grayscale image to highlight colors (Color version of this figure is available at Bioinformatics online.)
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Fig. 3. The proposed BOEH features provide better prognosis prediction than clinical variables. (A–C) Kaplan–Meier curves stratified by tumor stage, tumor sub-

type, and predicted risk index of lasso-Cox model built on BOEH features, respectively. (D) ROC curves that predict the binary outcome of 5-year survival using

predicted risk index of lasso-Cox model built on BOEH features, tumor stage, and tumor subtype, respectively. For extracting BOEH features, the number of nu-

cleus patterns is set to 64 (Color version of this figure is available at Bioinformatics online.)

Fig. 4. Examples of the learned nucleus patterns forming edge types that are strongly associated with survival. The number of nucleus clusters is set to 64. The

number in the upper-left corner of each image is the cluster index. Each image consists of 10 � 10 nucleus patches from the same cluster (Color version of this

figure is available at Bioinformatics online.)
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significant variables and then to carry out multivariate survival ana-

lysis on these variables using Cox regression to determine independ-

ently significant variables. However, in order for results of the

multivariate Cox regression to be reliable, there must be at least 10

events (deaths) for each investigated variable (Peduzzi et al., 1995).

Due to the relatively few events in our dataset (16 in 159), we do

not do testing for independence of features. Lastly, since the nucleus

patterns are learnt directly from the images by the SSAE, they need

to be further interpreted by pathologists.

Future work of research includes automated detection of arti-

facts in histopathological images and application of our method to

other cancers and tasks. Currently regions of interest are manually

selected in our study, which is infeasible for very large dataset.

Automated detection of artifacts can make our pipeline fully auto-

mated and therefore applicable to large clinical trials. The proposed

features are the histogram of co-occurrence of nucleus patterns, so

in order for the features to be robust it is important that the features

are summarized over a much larger area of the tumor. Although our

study focuses on predicting prognosis in patients with pRCC, our

flexible workflow is not specific to this application and can be

applied to other cancer types or even diseases other than cancers. In

addition, we plan to investigate how the proposed bag of edge histo-

gram representations perform in other applications in digital path-

ology and bioimage informatics such as the problem of

histopathology image classification and retrieval (Zhang et al.,

2015a, 2015b). Furthermore, these features not only provide new in-

sights into the topological organization of cancers, but also can be

integrated with genomic data in future studies to develop new inte-

grative biomarkers and to generate new insights regarding the gen-

omic basis for tissue morphology and organization.
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