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Introduction. We aimed to explore the downregulation of the coiled-coil domain containing 80 (CCDC80) and its underlying
molecular mechanisms in ovarian carcinoma (OVCA). Materials/Methods. Immunohistochemical staining was performed to
confirm the expression status of CCDC80 protein. Combining the data from in-house tissue microarrays and high-throughput
datasets, we identified the expression level of CCDC80 in OVCA. We utilized cell-type identification by estimating relative
subsets of RNA transcripts (CIBERSORT) algorithm and single-sample gene set enrichment analysis (ssGSEA) to explore the
relationship between CCDC80 and the tumor microenvironment (TME) landscape in OVCA. Pathway enrichment, function
annotation, and transcription factor (TFs) exploration were conducted to study the latent molecular mechanisms. Moreover,
the cell line data in the Genomics of Drug Sensitivity in Cancer (GDSC) database was used to discover the relationship
between CCDC80 and drug sensitivity. Results. An integrated standard mean difference (SMD) of −0.919 (95% CI: −1.515–
0.324, P = 0:002) identified the downregulation of CCDC80 in OVCA based on 1048 samples, and the sROC (AUC = 0:76)
showed a moderate discriminatory ability of CCDC80 in OVCA. The fraction of infiltrating naive B cells showed significant
differences between the high- and low-CCDC80 expression groups. Also, CCDC80-related genes are enriched in the Ras
signaling pathway and metabolic of lipid. Nuclear receptor subfamily three group C member 1 (NR3C1) may be an upstream
TF of CCDC80, and CCDC80 may be related to the sensitivity of mitocycin C and nilotinib. Conclusion. CCDC80 was
downregulated in OVCA and may play a role as a tumor suppressor in OVCA.

1. Introduction

Ovarian carcinoma (OVCA), a neoplasm in the ovary, orig-
inates from embryonic Müllerian ducts and is influenced by
hormones and other molecular events [1–6]. As one of the
most frequent gynaecological cancers, OVCA is ranked
among the deadliest roles from the morbidity and motality
perspective [7, 8]. Approximately 21,410 new cases of

OVCA have been projected in 2021, which might cause
13,779 deaths in the United States [9]. Patients with OVCA
still have poor prognoses despite some treatment
approaches, such as chemotherapy, surgery, and immuno-
therapy [8, 10–12]. Thus, exploring new biomarkers and
therapeutic targets for OVCA is imperative.

Coiled-coil domain containing 80 (CCDC80), also
known as DRO1 or SSG1, is located at 3q13.2. The protein
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encoded by CCDC80 is expressed in different cells, such as
hepatocytes and adipocytes [13]. Previous studies have iden-
tified that CCDC80 may act as an inhibitor in tumorigenesis
of thyroid, pancreatic, and colon cancer [14, 15]. Recently,
one study found that low-CCDC80 expression may facilitate
the migration of melanoma cells by mediating the downreg-
ulation of E-cadherin [16]. Besides, CCDC80 was proven to
be an AIB1-target tumor inhibitor and may participate in
the apoptosis of tumor cells [17].

One study had reported that the expression of CCDC80
mRNA in OVCA tissues was lower than that in nontumor
tissues via RT-qPCR [18]. However, no study has revealed
the dysregulation of CCDC80 protein in OVCA. Thus, a
multicenter study needed to carry out for comprehensively
exploring CCDC80 in OVCA. Herein, based on in-house tis-
sue microarrays, RNA-sequencing (RNA-seq), and gene

chips, we performed an integrated study and revealed that
CCDC80 was downregulated in OVCA at both the mRNA
and protein levels with a large sample size (n of OVCA =
802, n of non −OVCA = 246). Cell-type identification by
estimating relative subsets of RNA transcripts (CIBER-
SORT) and single-sample gene set enrichment analysis
(ssGSEA) was used to explore the relationship between
CCDC80 expression and the tumor microenvironment
(TME) landscape of OVCA. Based on Gene Ontology
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG),
Disease Ontology (DO), and Reactome enrichment analysis
and prediction of transcription factors regulating CCDC80,
the prospective molecular mechanisms of CCDC80 in
OVCA were explored. Moreover, using cell line data in the
Genomics of Drug Sensitivity in Cancer (GDSC) database,
we explored the relationship between drug sensitivity on cell

Table 1: General characteristics of microarray and RNA-sequencing datasets on ovarian carcinoma.

Study Test method/platform Country Year OVCA group Noncancerous ovary controls

GSE105437 GPL570 South Korea 2017 10 5

GSE29450 GPL570 USA 2011 10 10

GSE18520 GPL570 USA 2009 53 10

GSE10971 GPL570 Canada 2008 13 24

GSE54388 GPL570 USA 2017 16 6

GSE14407 GPL570 USA 2009 12 12

GSE36668 GPL570 Norway 2012 4 4

GSE119054 GPL19615 China 2019 6 3

GSE66957 GPL15048 USA 2015 57 12

GSE146553 GPL6244 USA 2020 46 9

GSE124766 GPL6480 Germany 2020 20 8

GSE132289 GPL20301 UK 2020 5 3

GSE155310 GPL18573 UK 2020 21 6

TCGA_GTEx_ovary RNA-seq USA 2021 379 88

OVCA: ovarian carcinoma.

(a) (b)

(c) (d)

Figure 1: The expression of CCDC80 protein in normal ovary (a) and (b) and ovarian carcinoma (c) and (d) tissues through
immunohistochemical (IHC) staining.
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Figure 2: Continued.
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lines of OVCA and CCDC80 expression. All of these works
will deepen our understanding of the significance of
CCDC80 in OVCA and explore a latent biomarker and ther-
apy target for OVCA.

2. Materials and Methods

2.1. Evaluation of CCDC80 Protein Expression in OVCA
Tissues. Twenty-four cases of OVCA tissues and 28 cases
of non-OVCA controls were collected from the First Affili-
ated Hospital of Guangxi Medical University, Naning,
Guangxi Zhuang Autonomous Region, China. This study
was approved by the ethics committee of the First Affiliated
Hospital of Guangxi Medical University (no. 2020-KY-E-
095). Two tissue microarrays (OVC1021 and OVC2281)
were afforded by Pantomics, Inc. (Richmond, CA 94806).
Afterward, immunohistochemical (IHC) staining conducted
using CCDC80 polyclonal antibody (biorbyt, orb216089,
rabbit-anti-human) with 150 OVCA tissues and 46 non-
OVCA tissues from clinical samples and tissue microarrays.
All operations were performed in accordance with the man-
ufacturer’s instructions. Formalin-fixed and paraffin-
embedded tissue slides were used to deparaffinize and rehy-
drate. Then, antigen retrieval was accomplished in a pre-
heated ethylenediaminetetraacetic acid buffer (pH = 9:0).
Inactivation of endogenous peroxidase was carried out via
3% H2O2 at room temperature (25°C, the same below) for

15 minutes, and distilled water was used to rinse, followed
by PBS soak. The rabbit anti-human CCDC80 polyclonal
antibody (dilution 1 : 250) was incubated at 37°C for 90
minutes, followed by PBS rinsing. Universal mouse/rabbit
secondary antibody was added into the tissue slides and
placed in room temperature for 20 minutes, followed by
PBS soak. Coloration was accomplished with diaminobenzi-
dine for 5 minutes, and counterstaining was performed with
hematoxylin. Dehydration was carried out in 75%, 85%,
95%, and 100% alcohol successively, and tissue slides were
sealed with neutral gum finally. The assessment was con-
ducted via microscope. Blue represented negative staining
and red represented positive staining.

Two pathologists evaluated the results of IHC indepen-
dently. The score of staining intensity followed the criteria:
no staining (point = 0), light staining (point = 1), moderate
staining (point = 2), and strong staining (point = 3). The
score of positive cells in visual field followed the criteria:
0–5% (point = 0), 6–25% (point = 1), 26–50% (point = 2),
51–75% (point = 3), and > 75% (point = 4). The final IHC
score equaled the product of intensity and positive cells
score [19].

2.2. Data Collection from High-Throughput Databases. To
identify the expression of CCDC80 mRNA in OVCA, we
searched Gene Expression Omnibus (GEO), Sequence Read
Archive (SRA), ArrayExpress, and Oncomine databases to
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Figure 2: Scatter plots of CCDC80 protein (a) and mRNA (b)–(i) expression of OVCA and the corresponding normal controls.
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collect gene chips. The search terms were ovarian carcinoma
and the mRNA OR gene. Datasets that met the following
requirements were collected: (a) the samples were collected
from humans, (b) both OVCA and non-OVCA samples
were provided and not below three, (c) the expression and
annotation profiles were available, and (d) the expression
of CCDC80 was contained. For those datasets from the same
platform, we combined them and used the function “Com-
bat” of the sva package to remove the batch effects. Further-
more, we also explored the Cancer Genome Atlas (TCGA)
and the Genotype-Tissue Expression (GTEx) databases and
included tertiary RNA-seq data of OVCA and normal ovar-
ian samples, and we calculated log2(expression+1) to nor-
malize the data. Figure S1 shows the flow chart. As of May
1, 2021, 14 datasets from eight platforms were included
(Table 1). After integrating microarrays, we finally
obtained eight high-throughput cohorts for our study:
GPL570-OVCA, TCGA_GTEx_ovary, GSE66957,
GSE119054, GSE124766, GSE132289, GSE146553, and
GSE155310.

2.3. Statistical Analysis of CCDC80 Expression in OVCA
Tissues. If the data followed the normal distribution, Stu-
dent’s t-test was used to compare the expression status of
CCDC80 between OVCA and non-OVCA samples using
GraphPad Prism 8 software; otherwise, Wilcoxon test was
utilized. We also drew receiver operating characteristic
(ROC) curves to evaluate the capacity of CCDC80 to distin-

guish OVCA samples from non-OVCA samples. The area
under the curve ðAUCÞ > 0:7 was reckoned as having mod-
erate discriminatory capacity. Also, by integrating the in-
house IHC data, gene chips, and RNA-seq, the standard
mean difference (SMD) was calculated, and a summary of
ROC (sROC) curve was drawn using Stata v15.1 software
(TX, USA). The chi-squared-based Q-test and I2 statistic
were used to assess the heterogeneity. I2 ≤ 50% and P value
of Q-test ≥ 0.05 mean low heterogeneity, and a fixed effect
model should be chosen; otherwise, a random effect model
should be used to combine SMD. If the 95% confidence
interval (CI) of the SMD does not contain zero, the inte-
grated SMD is statistically significant. Egger’s test was used
to identify publication bias.

2.4. Relationships between CCDC80 Expression and TME
Landscape of OVCA. CIBERSORT, a deconvolution algo-
rithm, can estimate the composition of a cell following a
gene expression profile with support vector regression [20].
We explored the relationships between CCDC80 and
tumor-infiltrating immune cells in the TCGA-OVCA cohort
via the CIBERSORT algorithm in R v3.6.3 software. Subse-
quently, ssGSEA was performed to explore the immune-
related pathways in OVCA by the GSVA package in R
[21]. The file “c7.all.v7.4.symbols.gmt” was downloaded
from the Molecular Signature Database (MSigDB, http://
software.broadinstitute.org/gsea/msigdb/index.jsp) as the
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Figure 3: The receiver operating characteristic (ROC, (a)–(i)) and sROC (j) curves of CCDC80 in OVCA and Deek’s test for publication bias
test (k).
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reference immune-related gene set. The limma package of R
was used to determine significant immune-related pathways
and biological processes between high-and low-CCDC80
expression groups (P < 0:05).

2.5. Identification of Differentially Expressed and Coexpressed
Genes of CCDC80 in OVCA. First, we calculated Pearson’s
correlation coefficient r of CCDC80 and other genes in
OVCA matrices. The genes with the absolute value of r ≥

NOTE: weights are from random effects analysis
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0:4 and P < 0:05 were recognized as the coexpressed genes
(CEGs) of CCDC80. The CEGs appearing in at least three
matrices were chosen. Simultaneously, we calculated the
pooled SMD of each gene in the included OVCA matrices
using R software. When the 95% CIs of SMDs lacked 0
and P < 0:05, we identified the genes as the differentially
expressed genes (DEGs) in OVCA. Subsequently, we over-
lapped the positive-correlated genes of CCDC80 with down-
regulated genes and the negative-correlated genes of
CCDC80 with upregulated genes in OVCA, and the intersec-
tion genes were obtained for further research.

2.6. GO, KEGG, DO, and Reactome Enrichment Analysis.
Intersection genes of CEGs and DEGs were used to conduct
GO, KEGG, and DO enrichment analysis via clusterProfiler
and the DOSE package of R [22]. The online tool KOBAS 2.0
was used to perform Reactome pathway enrichment [23].
GOplot and enrichplot packages of R were used to visualize
the results, and the pathview package was used to draw the
pathway graphs. Enriched results with adjusted P value
(false discovery rate, calculated by Benjamini–Hochberg
procedure) < 0.05 were chosen to visualize and for further
analysis.

2.7. GSEA Based on Broad Institute Cancer Cell Line
Encyclopedia Data. We downloaded the RNA-seq data of
OVCA cell lines from the Broad Institute Cancer Cell Line

Encyclopedia (CCLE) database and divided it into two
groups based on high- and low-expression level of CCDC80.
The file “h.all.v7.4.symbols.gmt” from MSigDB was obtained
as a reference gene set.

2.8. Exploration of Upstream Transcription Factors of
CCDC80 in OVCA. To explore the molecular regulatory
mechanisms of CCDC80 in OVCA, the Cistrome Data
Browser (Cistrome DB) was used to predict the latent tran-
scription factors (TFs) of CCDC80. Moreover, we over-
lapped the predicted TFs, CCDC80 positive-correlated
genes, and downregulated genes in OVCA to screen initial
TFs. We drew the seqlogo of the motifs via the ggseqlogo
package of R. We used the JASPAR database and FIMO tool
in the MEME suite to explore the combining site between
motifs and the upstream TSS of CCDC80 [24, 25]. Concur-
rently, the chromatin immunoprecipitation sequencing
(ChIP-seq) data in Cistrome DB was used to validate
whether there were peaks before the TSS of CCDC80 with
the IGV tool.

2.9. Relationship between CCDC80 Expression and Drug
Sensitivity in OVCA Cell Lines. We downloaded the RNA-
seq data of cell lines and estimated half maximal inhibitory
concentration (IC50) of all the screened compounds from
GDSC database. Mann–Whitney U-test was used to com-
pare the estimated IC50 between high- and low-CCDC80
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expression groups of OVCA cell lines using GraphPad Prism
8 software. A two-tailed P < 0:05 indicates a statistically sig-
nificant difference. Compounds with higher IC50 signified
that the cell lines of OVCA were not susceptible to the
compounds.

3. Results

3.1. The Expression Status of CCDC80 in OVCA Tissues. The
results of IHC staining identified that the expression of
CCDC80 protein in OVCA tissues was lower than that in
non-OVCA tissues (Figure 1), and the difference was statis-

tically significant (P < 0:0001, Figure 2(a)). At the mRNA
level, three cohorts showed consistent trends with the
CCDC80 protein (TCGA_GTEx_ovary, P < 0:0001;
GPL570-OVCA, P < 0:0001; GSE132289, P = 0:0030;
Figures 2(b), 2(c) and 2(g)). However, the other five datasets
showed nonsignificant differences (GSE66957, GSE119054,
GSE124766, GSE146553, and GSE155310, P > 0:05;
Figures 2(d)–2(f), 2(h) and 2(i)). Figures 3(a)–3(i) show
the ROC curves.

3.2. Comprehensive Evaluation of CCDC80 in OVCA. Due to
high heterogeneity (I2 = 90:0%, P < 0:001), we used a
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Figure 6: The boxplots visualizing the single-sample gene set enrichment analysis (ssGSEA) in high- and low-CCDC80 expression group in
OVCA based on immunocyte-related gene sets (a) and immune function-related gene sets (b) (∗∗∗, P < 0:0001; ∗∗, P < 0:001; ∗, P < 0:05; ns,
P ≥ 0:05).
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random effect model to combine SMD. The results of the
subgroup analysis showed that CCDC80 expression in
OVCA was below that in the non-OVCA samples at both
the mRNA level (subtotal SMD = −0:693, 95% CI: −1.284–
−0.101, P = 0:022) and the protein level
(subtotal SMD = −2:368, 95% CI: −2.774–−1.963, P < 0:001
). An overall SMD = −0:919 confirmed the downregulation
of CCDC80 in OVCA (95% CI: −1.515–0.324, P = 0:002,
Figure 4(a)). Egger’s test identified no publication bias
(P = 0:170, Figure 4(b)). The AUC of the sROC curve was
0.76 (95% CI: 0.72–0.80, Figure 3(j)), and Deek’s funnel plot
also indicated no publication bias (P = 0:949, Figure 3(k)).

Moreover, we downloaded the RNA-seq data from the
CCLE database and surprisingly found that CCDC80 was
not expressed in the cell lines of OVCAR5_OVARY,
OVCA420_OVARY, OVCA433_OVARY, OC315_OVARY,
etc., which made the result of the downregulated CCDC80
level in OVCA more convincing.

3.3. The Relationship between the TME Landscape of OVCA
and CCDC80 Expression. Through CIBERSORT, we found
that the fraction of tumor-infiltrating naive B cells and M2

macrophages (M2) was lower in the high-CCDC80 group
than in the low-CCDC80 group (naive B cells, P = 0:028;
M2, P = 0:02, Figure 5). However, the fraction of memory
B cells (Bm), follicular helper T cell (Tfh), and activated
NK cells infiltrated in OVCA was higher in the high-
CCDC80 group than in the low-CCDC80 group (Bm, P =
0:001; Tfh, P = 0:026; activated NK cells, P = 0:024;
Figure 5).

Moreover, the results of ssGSEA showed that between
high- and low-CCDC80 groups, the scores of “B_cells,”
“CD8+_T_cells,” “Th1_cells,” “Th2_cells,” and other
immunocyte-related gene sets were statistically significant
(Figure 6(a)). Also, the scores of “APC_co_inhibition,”
“APC_co_stimulation,” “Check-point,” “Type_II_IFN_
Response,” and other immune function-related gene sets
were statistically significant between the high- and low-
CCDC80 groups (Figure 6(b)). Interestingly, the score in
the high-CCDC80 group considerably exceeded that in the
low-CCDC80 group.

3.4. Enrichment Analysis. Through intersection, we obtained
298 CCDC80-related downregulated DEGs and 156
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Figure 7: KEGG enrichment plots of the intersection genes from CCDC80 positively related coexpressed genes (CEGs) and downregulated
differentially expressed genes (DEGs) (a), and CCDC80 negatively related CEGs and upregulated DEGs (b).
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CCDC80-related upregulated DEGs (Figure S2). The results
of GO term annotation showed that CCDC80-related
downregulated DEGs were relative to “focal adhesion,”

“cell-cell junction,” and “glycosaminoglycan binding,” and
that CCDC80-related upregulated genes were enriched in
“cell-cell adhesion mediator activity,” “microtuble,” and

(e)

Figure 8: A volcano plot shows the results of GSEA based on the OVCA cell lines and enrichment plots of immune-related gene sets in low-
CCDC80 group (b) and (c) and high-CCDC80 group (d) and (e).
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PBX3 in the upstream of the transcription start site of CCDC80 (d).

14 International Journal of Genomics



ABL signaling
nilotinib

P < 0.0001

High Low

CCDC80 expression

10

8

6

4

2

0

IC
50

(a)

Tipifarnib
P = 0.0434

High Low

CCDC80 expression

6

4

2

0

–2

IC
50

(b)

5-Fluorouracil
P = 0.3513

High Low

CCDC80 expression

6

8

4

2

0

IC
50

(c)

DNA replication
doxorubicin

P = 0.0205

High Low

CCDC80 expression

2

0

–6

–4

–2

IC
50

(d)

4

2

0

–2

–4

IC
50

High Low

CCDC80 expression

DNA replication
mitomycin C

P = 0.0266

(e)

–10

–5

0

5 P = 0.0676

DNA replication
gemcitabine

IC
50

High Low

CCDC80 expression

(f)

Figure 10: Continued.

15International Journal of Genomics



“cadherin binding involved in cell-cell adhesion”
(Figure S3). Regarding DO enrichment, CCDC80-related
downregulated DEGs may participate in some pulmonary
and cardiovascular diseases, while CCDC80-related
upregulated DEGs may participate in ovarian tumors and
urinary system cancer (Figure S4).

Moreover, the results of KEGG enrichment identified
that CCDC80-related downregulated DEGs were enriched
in the “Ras signaling pathway,” “Axon guidance,” and “Pro-
teoglycans in cancer,” etc., while CCDC80-related upregu-
lated DEGs may be involved in “DNA replication” and
“Base excision repair,” etc. (Figure 7, Table S1). The
particulars of the Ras signaling pathway are demonstrated
in Figure S5, which illuminates how the Ras signaling
pathway may be related to some vital pathways in cancer,
such as cell-cell junctions, cell migration, MAPK signaling,
and the PI3K-Akt signaling pathway. Similarly,
proteoglycans in the cancer pathway were also related to
tumor-related pathways, such as cell adhesion, apoptosis,
oncogenic signaling, tumor cell migration, and invasion
pathway (Figure S6).

Meanwhile, the results of Reactome analysis revealed
that CCDC80-related downregulated DEGs may be relative
to some metabolism-related pathways, such as “Integration
of energy metabolism,” “Metabolism of lipids,” “Triglyceride
metabolism,” and “Metabolism of vitamins and cofactors,”
while CCDC80-related upregulated DEGs are enriched in
some cell cycle-related pathways, such as “Cell cycle,” “M
phase,” and “Cell cycle checkpoint” (Figure S7).

Following the cell line of OVCA, GSEA revealed that
high- and low-CCDC80 groups were both enriched in some
immune-related gene sets, such as “GSE26912_TUMORICI-
DAL_VS_CTRL_MACROPHAGE_UP,” “GSE30971_2H_
VS_4H_LPS_STIM_MACROPHAGE_WBP7_KO_UP,”
and “GSE32901_NAIVE_VS_TH1_CD4_TCELL_UP”
(Figure 8).

3.5. The Potential of TF Regulatory CCDC80 in OVCA. By
overlapping the predicted TFs from Cistrome DB, positive-
correlated genes of CCDC80, and downregulated genes in
OVCA, we obtained two initial TFs (NR3C1, PBX3) regulat-
ing CCDC80 (Figure S8). The motifs of NR3C1 and PBX3 are
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and low-CCDC80 expression group.
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demonstrated in Figures 9(a) and 9(b), and a ChIP-seq peak
of NR3C1 was observed before TSS of CCDC80 (Figure 9(c)).
However, the ChIP-seq peak of PBX3 was missing before the
TSS of CCDC80 (Figure 9(d)), which indicated that PBX3
may not be the regulatory TF of CCDC80. Using the
JASPAR and FIMO tools, a perspective binding sequence
in common was obtained—AAGAAAAGAATGTAGCC.

3.6. The Relationship between CCDC80 Expression and Drug
Sensitivity in OVCA Cell Lines. By comparing the estimated
IC50 between high- and low-CCDC80 cell lines of OVCA,
we found that the estimated IC50 of the ABL signaling
inhibitor (nilotinib and tipifarnib) and DNA replication
inhibitor (doxorubicin and mitomycin C) in the high-
CCDC80 group exceeded that in the low-CCDC80 group
(Figures 10(a), 10(b), 10(d), and 10(e)). However, the IC50
of some classic anticarcinogens, such as 5-fluorouracil and
afatinib, showed a nonsignificant difference between the
two groups (Figures 10(c) and 10(i)).

4. Discussion

In this study, we revealed the downregulation of CCDC80 at
the protein level based on tissue microarrays (number of
OVCA = 150, number of non −OVCA = 46). Via RNA-seq
and gene chip data, we substantiated this decreasing trend
at the mRNA level with a large sample size (number of
OVCA = 652, number of non −OVCA = 200) and different
approaches (t-test and combined SMD). Cocurrently, we
identified that the expression of CCDC80 was related to the
TME landscape in OVCA using the CIBERSORT algorithm
and ssGSEA. Also, we found that NR3C1 may be a potential
upstream TF of CCDC80. Moreover, following the RNA-seq
in cell lines and IC50 of compounds, we identified that the
expression status of CCDC80 may have a relationship with
drug sensitivity.

In previous study, 21 OVCA samples were used to detect
the low expression of CCDC80 mRNA by RT-qPCR [18].
However, no study reported the expression status of
CCDC80 at both mRNA and protein level in OVCA with
multiple detection means and multicenter samples (based
on the PubMed database, as of May 16, 2021). Herein, we
conducted a subgroup analysis to calculate integrated SMD
and first revealed that CCDC80 expression in OVCA tissues
was below that in non-OVCA tissues with 1048 multicenter
samples via multiple approaches (IHC, gene chips, and
RNA-seq).

The clinical significance of CCDC80 in malignant
tumors was attractive. In previous studies, CCDC80 was
reported as a prognostic signature in serous ovarian carci-
noma, colorectal cancer, and muscle-invasive bladder cancer
[26–28]. However, no study has revealed the discriminatory
capacity of CCDC80 in malignant tumors. In our study, an
AUC = 0:76 (95% CI: 0.72–0.80) of sROC indicated a mod-
erate ability of CCDC80 to distinguish OVCA from nontu-
mor ovary. Unfortunately, due to the small clinical sample
size and lack of follow-up information, the relationship
between CCDC80 and clinical parameters and the prognostic
value of CCDC80 in OVCA was unexplored.

Despite neoplastic cells, the components of tumors have
numerous normal cells incorporating fibroblasts, inflamma-
tory immunocytes, and epithelial cells [8, 29]. Many studies
have illustrated that TME may play a dynamic role in the
biological behaviors of tumors and may be a potential ther-
apy target of OVCA [8, 30–34]. TME is an essential element
to consider when stimulating the antitumor immunoreac-
tion since TME contains many types of immunocytes and
stromal cells. For example, tumor-infiltrating CD20+ B-cells,
such as naive B-cells, were found to act as antigen-
presenting cells and to facilitate antitumor immunity and
may negatively regulate tumor growth [35–37]. Tumor-
infiltrating B-cell can expedite the tumor antigens present
to stimulate the function of T lymphocytes via upregulating
costimulatory molecules (such as CD80/86) and HLA-II
[38]. Existing evidence has shown that some B-cell-related
pathways (such as CCL19, 21/CCR7, and CXCL13/CXCR5
axes) can induce the formation of tertiary lymphoid struc-
tures and activate the local antitumor immune response
[39]. In the present study, through the CIBERSORT algo-
rithm and ssGSEA, we found that the high expression of
CCDC80 was related to a high fraction of infiltrating naive
B-cells and a high score of B-cell-related pathways, which
revealed that CCDC80 may act as a tumor suppressor via
effecting B lymphocytes. The result of GSEA following the
OVCA cell line showed that CCDC80 may participate in
some immune-related biological processes, but these still
need further research.

We performed KEGG pathway enrichment analysis and
found that positive-related DEGs of CCDC80 were enriched
in Ras signaling and proteoglycans in the cancer pathway. A
study has reported that the Ras signaling pathway activates
the tumor-related fibroblast and stimulates the proliferation
of cancer cell [40]. Another study found that Ras signaling
may participate in the process of prostate cancer metastasis
to bone via interaction with Wnt signaling [41]. Proteogly-
can is a type of biomacromolecule comprising a protein core
and glycosaminoglycan. Proteoglycan is an essential regula-
tory factor of the extracellular matrix (ECM) and can impli-
cate the biological behaviors of cells through interaction with
cytokines, adhesion moleculars, or growth factors, which are
critical in tumorigenesis and tumor metastasis [42, 43].
Moreover, proteoglycan can affect TME and tumor-related
immune responses and even participate in metabolic repro-
graming [42, 44]. However, the impact of the Ras signaling
pathway and proteoglycans on OVCA has been partially
explained. Following the KEGG results, we inferred that
the downregulated CCDC80 may impact the Ras signaling
pathway and proteoglycan and may be involved in the
tumorigenesis and development in OVCA, which still needs
more validation.

Regarding the metabolic process and pathways, the
metabolism of lipids was significant in our Reactome analy-
sis. Existing evidence has revealed that two lipids (arachi-
donic acid and lysophosphatidic acid) relate to the
dysregulated Ca2+ channels and Ca2+-activated potassium
and impact cell migration and invasion in OVCA [45]. Fur-
thermore, the metabolism of lipids was proved to be consid-
erable for maintaining cancer stem cells, and the level of
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unsaturated lipids in OVCA stem cells was significantly
high, which indicated that the lipid-related metabolic pro-
cess may be the potential therapeutic target for OVCA
[46–48]. A study has reported that CCDC80 may be an
inhibitor in the metabolism of lipids and adipogenesis [49].
In our study, we inferred that the downregulated CCDC80
may influence the metabolism of lipids and facilitate the
development of OVCA.

To further study the underlying molecular mechanisms
of downregulated CCDC80 in OVCA, we explored the
upstream regulatory TFs of CCDC80. Previously, CCDC80
was reported as a downstream target gene for TFs YAP/TAZ
[50]. In the current study, we identified that NR3C1may be a
potential TF regulating CCDC80 in OVCA, which clarifies
the molecular mechanisms of CCDC80 in OVCA.

Nilotinib, a type of tyrosine kinase inhibitor, was used to
treat chronic myeloid leukemia [51, 52]. A study reported
that nilotinib induces the apoptosis of OVCA cells via a
mitochondrion-dependent process [53]. Tipifarnib, a highly
selective farnesyltransferase, was reported to induce apopto-
sis, tumorigenesis cease, and regression of head and neck
squamous cell carcinoma in vivo [54]. Also, tipifarnib may
reduce the viability of OVCA cells in vitro [55]. Mitomycin
C is a well-known antitumor drug that can form deoxyade-
nosine monoadducts with DNA and block the replication
of DNA to impede the proliferation of cancer cell [56].
One clinical trial found that mitomycin C plus cisplatin
has a promising effect in treating recurrent BRCA1-related
OVCA [57]. Though these drugs tended to have a potential
capacity in the treatment of OVCA, the resistance of drugs
was common recently [58–60]. Some studies have reported
the mechanisms and prediction biomarkers of resistance
[61–63], whereas more exploration needed to carry out con-
cerning the chemotherapeutic resistance. In our study, we
found the estimated IC50 of nilotinib, tipifarnib, and mito-
mycin C in high-CCDC80 OVCA cells exceeded that in
low-CCDC80 OVCA cells, which indicates CCDC80 is
expected to be a biomarker to forecast the sensitivity of anti-
neoplastic drugs. Our results also identified the dysregula-
tion of CCDC80 in OVCA might play a role in the
resistance of chemotherapy. But it still needs experiments
and large-scale clinical trials for further verification.

Overall, our study demonstrated the downregulated
trend of CCDC80 at both the mRNA and protein levels in
OVCA, and CCDC80 may act as a tumor suppressor by
affecting the TME and metabolism. Nevertheless, there were
still some limitations. First, the collection of clinical samples
and clinicopathological parameters was limited, making the
clinical value of CCDC80 not to be revealed. Furthermore,
the molecular mechanisms of CCDC80 and drug sensitivity
still need further research and validation via experiments
in vitro and in vivo and large-scale clinical trials.

5. Conclusion

Briefly, by combining the data from in-house IHC and a
high-throughput database, we revealed that CCDC80 was
downregulated in OVCA and that CCDC80 probably has an
intimate relationship with TME and metabolism in OVCA.

Moreover, we identified that NR3C1 may be a latent TF regu-
lating CCDC80 and that CCDC80may be an indicator to fore-
cast drug sensitivity, but it needs further exploration.
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