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Abstract: Amorphous solid dispersion (ASD) is one of the most promising formulation technologies
for improving the oral absorption of poorly soluble drugs, where the maintenance of supersaturation
plays a key role in enhancing the absorption process. However, quantitative prediction of oral
absorption from ASDs is still difficult. Supersaturated solutions can cause liquid-liquid phase sepa-
ration through the spinodal decomposition mechanism, which must be adequately comprehended
to understand the oral absorption of drugs quantitatively. In this study, albendazole (ALZ) was
formulated into ASDs using three types of polymers, poly(methacrylic acid-co-methyl methacrylate)
(Eudragit) L100, Vinylpyrrolidone-vinyl acetate copolymer (PVPVA), and hydroxypropyl methyl-
cellulose acetate succinate (HPMCAS). The oral absorption of ALZ in rats administered as ASD
suspensions was not explained by dissolution study but was predicted using liquid-liquid phase
separation concentration, which suggested that the absorption of ALZ was solubility-limited. The
oral administration study in dogs performed using solid capsules demonstrated the low efficacy
of ASDs because the absorption was likely to be limited by dissolution rate, which indicated the
importance of designing the final dosage form of the ASDs.

Keywords: amorphous solid dispersions; albendazole; oral absorption; liquid-liquid phase separa-
tion; dissolution study; supersaturation

1. Introduction

Candidate compounds developed in the pharmaceutical industry frequently exhibit
extremely low aqueous solubility and may be poorly absorbed after oral administration,
which is one of the major issues in drug development. For such compounds, supersaturat-
ing formulation technologies are often used to improve their oral absorption [1–3]. The
method for predicting drugs’ oral absorption from supersaturating formulations using
dissolution studies is still under debate [4]. Specifically, non-sink conditions must be used
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in the analysis because supersaturation must be investigated during the dissolution pro-
cess [5]. However, the dissolution pattern of compounds in supersaturating formulations is
significantly influenced by supersaturation degree [6,7]. The pH shift from acidic to neutral
conditions is worth being tested, especially when the drugs, excipients, or both have pH-
dependent dissolution properties [8]. The absorption sink’s role also needs to be considered
because it changes the degree of supersaturation [6]. The effects of surface-active agents,
including drug solubilization [9,10] and acceleration of crystallization [8], have complicated
effects on the supersaturating dissolution behavior, which must also be considered. On the
other hand, the dissolution test should be simple to ensure intra-individual reproducibility.

Amorphous solid dispersion (ASD) is one of the most promising techniques for
improving poorly soluble candidates’ solubility. Dissolution profiles of ASDs are quite
different from conventional formulations using crystalline drugs, characterized by su-
persaturation and a gradual decrease in concentration [1,11]. During this process, the
supersaturated solution may cause liquid-liquid phase separation (LLPS) based on the
spinodal decomposition mechanism [11,12]. This process produces highly concentrated
(nano)droplets/particles, which cannot be absorbed directly but may act as drug reservoirs,
shuttles, or both to carry drug molecules effectively in the mucus layer [9,13–15]. The
drug concentration in the continuum phase (i.e., LLPS concentration) was relevant to oral
absorption [4,8]. Thus, it is critical to understand and control LLPS after the dissolution of
ASDs to use the ASD technology effectively.

Albendazole (ALZ) is a weak basic compound with low aqueous solubility (Figure 1,
Table 1) [16–18]. Some variability can be found for its reported intrinsic solubility, but it is
typically below 1 µg/mL, which is slightly improved in fasted-state simulated intestinal
fluid (FaSSIF) and significantly enhanced in fed-state simulated intestinal fluid (FeSSIF).
Although some successful attempts to apply ASD to ALZ to improve its oral absorption
have already been reported, the detailed mechanism of the enhanced oral absorption has
not yet been elucidated. Kohri et al. [19] showed that an ASD of ALZ with hydroxypropyl
methylcellulose (HPMC) and HPMC phthalate significantly improved the dissolution
properties and maintained supersaturation for >8 h. In the oral administration study of
an ALZ ASD in rabbits with low gastric acidity, the area under the concentration-time
curve (AUC) was three-fold higher than that of the physical mixture. Despite the successful
application of ASD in this animal study, no insights about the formulation strategy were
obtained because only one ASD was investigated in their study. Silvina et al. [20] found
that the AUC after oral administration of an ALZ ASD to mice using Pluronic 188 was
much higher than that that after administration of its crystalline suspension [20]. The ASD
exhibited a superior dissolution rate compared to that of the crystalline ALZ. In this case,
the improvement in dissolution behavior and oral absorption was mainly attributed to
the polymer’s surfactant-like properties, including enhancement of wettability and the
micellar solubilization effect.

Pharmaceutics 2021, 13, x FOR PEER REVIEW 2 of 13 
 

 

in the analysis because supersaturation must be investigated during the dissolution pro-
cess [5]. However, the dissolution pattern of compounds in supersaturating formulations 
is significantly influenced by supersaturation degree [6,7]. The pH shift from acidic to 

neutral conditions is worth being tested, especially when the drugs, excipients, or both 
have pH-dependent dissolution properties [8]. The absorption sink’s role also needs to be 

considered because it changes the degree of supersaturation [6]. The effects of surface-
active agents, including drug solubilization [9,10] and acceleration of crystallization [8], 
have complicated effects on the supersaturating dissolution behavior, which must also be 

considered. On the other hand, the dissolution test should be simple to ensure intra-indi-
vidual reproducibility. 

Amorphous solid dispersion (ASD) is one of the most promising techniques for im-
proving poorly soluble candidates’ solubility. Dissolution profiles of ASDs are quite dif-
ferent from conventional formulations using crystalline drugs, characterized by supersat-

uration and a gradual decrease in concentration [1,11]. During this process, the supersat-
urated solution may cause liquid-liquid phase separation (LLPS) based on the spinodal 

decomposition mechanism [11,12]. This process produces highly concentrated 
(nano)droplets/particles, which cannot be absorbed directly but may act as drug reser-
voirs, shuttles, or both to carry drug molecules effectively in the mucus layer [9,13–15]. 

The drug concentration in the continuum phase (i.e., LLPS concentration) was relevant to 
oral absorption [4,8]. Thus, it is critical to understand and control LLPS after the dissolu-

tion of ASDs to use the ASD technology effectively. 
Albendazole (ALZ) is a weak basic compound with low aqueous solubility (Figure 1, 

Table 1) [16–18]. Some variability can be found for its reported intrinsic solubility, but it 

is typically below 1 μg/mL, which is slightly improved in fasted-state simulated intestinal 
fluid (FaSSIF) and significantly enhanced in fed-state simulated intestinal fluid (FeSSIF). 

Although some successful attempts to apply ASD to ALZ to improve its oral absorption 
have already been reported, the detailed mechanism of the enhanced oral absorption has 
not yet been elucidated. Kohri et al. [19] showed that an ASD of ALZ with hydroxypropyl 

methylcellulose (HPMC) and HPMC phthalate significantly improved the dissolution 
properties and maintained supersaturation for >8 h. In the oral administration study of an 

ALZ ASD in rabbits with low gastric acidity, the area under the concentration-time curve 
(AUC) was three-fold higher than that of the physical mixture. Despite the successful ap-
plication of ASD in this animal study, no insights about the formulation strategy were 

obtained because only one ASD was investigated in their study. Silvina et al. [20] found 
that the AUC after oral administration of an ALZ ASD to mice using Pluronic 188 was 

much higher than that that after administration of its crystalline suspension [20]. The ASD 
exhibited a superior dissolution rate compared to that of the crystalline ALZ. In this case, 
the improvement in dissolution behavior and oral absorption was mainly attributed to the 

polymer’s surfactant-like properties, including enhancement of wettability and the micel-
lar solubilization effect. 

Earlier studies of ALZ ASDs did not recognize the occurrence of LLPS during disso-
lution. In this study, the LLPS behavior of supersaturated ALZ solutions was investigated, 
and then an oral administration study of the ASDs was conducted in rats and dogs to 

observe the relevance of LLPS behavior to oral absorption. 

 

Figure 1. Chemical structure of ALZ. 

  

Figure 1. Chemical structure of ALZ.

Earlier studies of ALZ ASDs did not recognize the occurrence of LLPS during dissolu-
tion. In this study, the LLPS behavior of supersaturated ALZ solutions was investigated,
and then an oral administration study of the ASDs was conducted in rats and dogs to
observe the relevance of LLPS behavior to oral absorption.
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Table 1. Basic Properties of ALZ [16–18].

Molecular Weight pKa (Base), 25 ◦C LogP, 25 ◦C

265.3 4.2 3.1

Solubility, 37 ◦C (µg/mL)

pH 1.2 FeSSIFblk
(pH 5.0)

FeSSIF
(pH 5.0)

FaSSIFblk
(pH 6.5)

FaSSIF
(pH 6.5) pH 7.4

184 1.1 6.1 0.85 1.9 0.75
Subscript “blk” means the removal of taurocholic acid and lecithin from simulated intestinal fluids.

2. Materials and Methods
2.1. Chemicals

ALZ was purchased from Sigma-Aldrich (St. Louis, MO, USA) and was ground using
a mortar and pestle before use. Poly(methacrylic acid-co-methyl methacrylate) (Eudragit
L100), hydroxypropyl methylcellulose acetate succinate (HPMCAS), and vinylpyrrolidone-
vinyl acetate copolymer (Kollidon VA64, PVPVA) were obtained from Evonik Industries
AG (Essen, Germany), Shin-Etsu Chemical Co., Ltd. (Tokyo, Japan), and BASF SE (Lud-
wigshafen am Rhein, Germany), respectively. Mannitol was supplied by Nacalai Tesque,
Inc. (Kyoto, Japan). All chemicals were used as supplied.

2.2. Physical Characterization

Powder X-ray diffraction (PXRD) measurements were performed using a D8 DIS-
COVER with a general area detector diffraction system (Bruker, MA, USA) using CuKα

radiation. The tube voltage and current were 40 kV and 40 mA, respectively. Data were
collected in the range of 5◦ to 40◦ with intervals of 0.02◦ (2 theta), and the scan speed was
5◦/min.

Simultaneous measurement of thermogravimetric (TG) and differential thermal analy-
sis (DTA) was performed on TG/DTA 6200 (Hitachi High-Tech, Tokyo, Japan) with a scan
rate of 10 ◦C/min. The temperature was calibrated with indium. Approximately 2 mg
of the sample (as an ALZ equivalent) was evaluated using an aluminum open pan. Dry
nitrogen was used as an inert gas at a flow rate of 100 mL/min.

The formulation morphology was examined using scanning electron microscopy
(SEM) with the SU8000 SEM (Hitachi, Tokyo, Japan) at an accelerating voltage of 1 kV.
Samples were loaded on carbon tapes under nitrogen flow to avoid moisture adsorp-
tion, followed by sputter coating using a platinum coater (E-1030 ion sputter, Hitachi)
before analysis.

2.3. Solubility Measurement of ALZ

Approximately 10 mg of crystalline ALZ was loaded in a test tube (n = 3), to which
5 mL of phosphate buffer (PB, 50 mM, pH 7) was added in the presence or absence of the
polymer (0.1 w/v%). The solutions were then lightly sonicated, vortexed, and then rotated
at approximately 50 rpm at 25 or 37 ◦C for 1 day. Each solution was filtered using a nylon
syringe filter with a pore size of 0.2 µm (Sanplatec, Osaka, Japan). For the measurement
of solubility at 37 ◦C, the syringes and syringe filters were warmed in an oven at 37 ◦C
prior to use. The filtrate was diluted with ethanol and measured using a high-performance
liquid chromatography (HPLC) system equipped with an octadecylsilyl (ODS) YMC-Pack
Pro C18 column (150 mm × 2.0 mm ID, YMC, Kyoto, Japan). A water/acetonitrile mixture
at a ratio of 55:45 was used as the mobile phase at a flow rate of 0.2 mL/min. The injection
volume and the column temperature were 2 mL and 30 ◦C, respectively. Measurements
were made at a concentration range from 0.1 to 20 µg/mL at a wavelength of 295 nm using
a photodiode array detector, where the linearity was confirmed.

2.4. Preparation of ASDs of ALZ

ALZ and the polymer were dissolved separately in 1,4-dioxane at concentrations
of 10 and 20 mg/mL, respectively, and then the solutions were mixed to achieve an
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ALZ:polymer ratio of 1:3 (w/w). For the PVPVA, a solution with an ALZ:polymer ratio of
1:4 was also prepared. The solutions were frozen using liquid nitrogen and then freeze-
dried using the VirTis Advantage EL freeze dryer (Warminster, PA, USA). The shelf was
initially maintained at −50 ◦C, followed by successive drying at −20 ◦C, −5 ◦C, and 10 ◦C
for 10 h each. Finally, the residual solvents were removed at 35 ◦C under vacuum, and
each ASD was stored in a refrigerator before use. An equal amount of crystalline ALZ
and mannitol were mixed using a mortar and pestle to prepare a physical mixture as the
control sample used for the dissolution and administration studies. All the formulations
were confirmed to be physically and chemically stable during the storage (for at least
three months).

2.5. LLPS Concentration and Particle Properties

An appropriate amount of a dimethylacetamide solution of ALZ was added to 50 mL
PB in the polymer’s presence or absence (0.1 w/v%). The solutions were stirred at ap-
proximately 200 rpm at 25 ◦C. The turbidity was measured at a wavelength of 500 nm
using a DU-800 spectrophotometer (Beckman Coulter, Brea, CA, USA) after stirring for
30 min. The phase separation concentration was estimated from the breakpoint of the
turbidity-concentration curves [7,8]. The suspensions’ particle size and zeta potential were
measured using a Zetasizer Nano ZS (Malvern Panalytical, Malvern, UK). All measure-
ments were repeated three times, and the mean particle size was determined using the
cumulant method.

LLPS behavior was also observed using ASD as a starting material. ASD or crystalline
ALZ (as a physical mixture with mannitol) was dispersed at a concentration of 40 µg/mL
as the ALZ equivalent in 50 mL PB at 25 ◦C while stirring at approximately 200 rpm in
beakers. Solutions were sampled over time and immediately filtered through syringe
filters with a pore size of 0.2 or 0.7 µm (Millex-LG, Merck Millipore, Burlington, MA, USA
and GF/F, Whatman, Buckinghamshire, UK, respectively). The ALZ concentration of the
filtered solutions was determined using HPLC as described above. The measurements
were duplicated to obtain averaged values. This observation is described as the LLPS
dissolution test hereafter.

2.6. µDISS Dissolution Study

The dissolution study was performed using a µDISS Profiler™ system (pION Inc.,
Billerica, MA, USA). The first and second fluids of the Japanese Pharmacopeia (JP1 and
JP2, respectively) were used as dissolution media. The µDISS vessels were placed in a
thermostatic chamber at 37 ◦C, 10 mL of JP1 (pH 1.2) or JP2 (pH 6.8) was added to the
vessel, and then the UV probe was immersed in the solution. The ASD or crystalline ALZ
was dispersed at a concentration of 15 µg/mL as the ALZ equivalent while stirring at
200 rpm, and the UV spectra were acquired over time to measure the ALZ concentration.

2.7. Oral Administration Study in Rats

All experiments using rats were approved by the Ethical Review Committee of Dai-
ichiSankyo RD Novare (Exp. No. 2017-024, 2017-027 (2017)). Male Crl:CD(SD) rats
(6–7-week-old, Charles River Laboratories Japan, Yokohama, Japan) were housed in a
temperature-controlled room at 23 ± 2 ◦C with a relative humidity of 55 ± 20%, and a
12 h light/dark cycle. The rats were starved for 16 h before and 6 h after administration
with free access to water. Formulations were dispersed in 0.5% methylcellulose (MC) (for
crystalline ALZ) or purified water (for ASDs) using a homogenizer, followed by imme-
diate administration to rats (n = 3) at a dose of 10 mg/10 mL/kg as the ALZ equivalent.
Approximately 150 µL blood samples were withdrawn through the jugular vein using
pre-heparinized syringes 0.25, 0.5, 1, 2, 4, and 8 h after administration. Plasma samples
were prepared by centrifuging the blood at 3000× g for 3 min and were then stored at
−20 ◦C until the analysis.
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Plasma concentration of ALZ sulfoxide, a metabolite of ALZ, was measured using a
liquid chromatography-tandem mass spectrometry (LC-MS/MS) method (API-4000, SCIEX
UPLC, Waters, Milford, MA, USA). The detailed procedure was described elsewhere [7].
Briefly, the plasma sample (20 µL) was mixed with a 50% (v/v) aqueous acetonitrile solution,
to which 200 µL of acetonitrile/methanol (75/25 (v/v)) was added. Niflumic acid was
used as the internal standard. The mixture was filtered and measured. The linearity was
confirmed in a concentration range of 0.005–5 µg/mL.

2.8. Oral Administration Study in Dogs

All experiments in the beagle dogs were approved by the Ethical Review Committee
of KAC Co. (Exp. No. 17-1220 (2017)). Male beagle dogs (body weight: 10.8–13.2 kg,
Kitayama Labes, Ina, Japan) were housed in a temperature-controlled room at 23–27 ◦C
under a 12 h light/dark cycle. The dogs were starved 16 h before and for 4 h after admin-
istration and allowed free access to water. Each formulation was loaded into #00 gelatin
capsules, except for the HPMCAS ASD, for which aqueous suspension was also prepared,
and then administered to the dogs (n = 3) at a dose of 10 mg/0.5 mL/kg. Pentagastrin was
administered intramuscularly at a dose of 10 µg/kg 30 min before and 30/90 min after ad-
ministration. Approximately 2.5 mL blood samples were withdrawn using pre-heparinized
syringes 0.25, 0.5, 1, 2, 4, and 7 h after administration, centrifuged at 1800× g for 10 min
and then stored at −80 ◦C until the analysis.

The plasma ALZ sulfoxide concentration was measured using LC-MS/MS (Ultimate
3000 Rapid Separation LC, Q Exactive, Thermo Scientific, Waltham, MA, USA). The plasma
samples were processed in the same manner as done for the rat study with phenacetin as
the internal standard. The mixture was filtered and subjected to measurements. Linearity
was confirmed in a concentration range of 0.0003–1 µg/mL.

3. Results
3.1. Physicochemical Properties of Crystalline ALZ and ASDs

The PXRD and TG-DTA patterns of crystalline ALZ are presented in Figure 2a,b,
respectively. Sharp diffraction peaks were confirmed in the PXRD pattern. An endother-
mic melting peak was found at 199 ◦C in the DTA curve; however, thermal degradation
was also initiated approximately at the same temperature. Thus, thermal analysis was
not an appropriate method for analyzing the crystalline property of ALZ because of the
overlapping of melting and degradation behaviors. No crystalline diffraction peaks were
observed for the ASDs prepared using Eudragit or HPMCAS (Figure 2c), whereas the
PVPVA ASD showed small diffraction peaks at an ALZ:polymer ratio of 1:3. ALZ Crystals
were found only for this ASD in polarized microscopy (PLM) analysis (supplementary ma-
terial). The diffraction peak disappeared when the PVPVA content was increased to a ratio
of 1:4 (Figure 2c), which was also confirmed in the PLM image (supplementary material).
Thus, this ratio was employed only for PVPVA in the following studies. Figure 2d shows
the TG-DTA pattern of PVPVA/ALZ = 3/1 ASD. Although a small broad endothermic
peak was found at the melting temperature in the DTA curve, it was difficult to assign
this event as the melting because of decrease of the weight at the same temperature that
indicated degradation. Thus, thermal analysis was not reliable for finding a small amount
of crystalline ALZ. Nevertheless, no melting behaviors were observed for all ASDs (sup-
plementary material). Absence of ALZ crystals was also confirmed by the PLM analysis
(supplementary material). Figure 3 shows SEM images of the crystalline ALZ and its
ASDs. The size of the ALZ crystals was confirmed to be reduced to a micrometer order
after grinding. A porous structure was confirmed for all the ASDs, which is typical for
freeze-dried ASDs, and no crystalline particles were found.
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ASD. 
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Figure 2. (a) PXRD pattern of crystalline ALZ. (b) TG-DTA curve of crystalline ALZ. (c) PXRD patterns of ALZ ASDs. A:
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PVPVA/ALZ = 3/1 ASD.
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Figure 3. SEM images of (a) crystalline ALZ, (b) HPMCAS ASD, (c) Eudragit ASD, and (d)
PVPVA ASD.

3.2. Dissolution and LLPS Properties of ALZ ASDs

Table 2 shows the crystalline ALZ’s equilibrium solubility, LLPS concentrations, and
particle properties above the LLPS concentrations. The poor solubility in PB was slightly
improved in the presence of Eudragit and HPMCAS, and the solubilities did not depend
significantly on temperature under these conditions. The pH did not change after equi-



Pharmaceutics 2021, 13, 220 7 of 13

libration in all cases. In the absence of the polymer, LLPS occurred at 1.4 µg/mL, which
was >10-fold the solubility, whereas it increased in the presence of polymers in the order of
7.2 µg/mL, 7.0 µg/mL, and 3.8 µg/mL for PVPVA, HPMCAS, and Eudragit, respectively.
The mean particle size found in each solution was >1 µm, except for the HPMCAS solution,
ca. 0.22 µm.

Table 2. Solution/suspension properties of ALZ in PB (pH7) in the presence and absence of polymers.

Polymers No Polymer Eudragit L100 HPMCAS PVPVA

Solubility, 25 ◦C (µg/mL) <0.10 0.44 ± 0.02 0.47 ± 0.07 <0.10
Solubility, 37 ◦C (µg/mL) <0.10 0.32 ± 0.06 0.55 ± 0.09 <0.10

LLPS, 25 ◦C (µg/mL) 1.4 3.8 7.0 7.2
Particle size, 25 ◦C (µm) >3 2.13 ± 0.23 0.22 ± 0.02 1.12 ± 0.06

Polydispersity Index (PDI) − 0.59 ± 0.10 0.14 ± 0.02 0.21 ± 0.04
Zeta potential, 25 ◦C (mV) − −32.8 ± 1.2 −12.4 ± 1.1 −0.2 ± 0.2

The size distribution of the particles found in the Eudragit solution was broad, al-
though they exhibited the highest zeta potential value. In the polarized microscopy analysis,
crystal particles were found in all samples except for HPMCAS (data not shown). Thus,
the observed particle sizes were likely not of the LLPS particles but were of ALZ crystals.
Crystallization was not evident in the HPMCAS solution because the particle size was too
small in the microscopic investigation. The zeta potentials were highly negative in the
presence of Eudragit and slightly negative in the presence of HPMCAS, which is a typical
observation [7,8].

Figure 4a shows the LLPS dissolution test results, where suspensions were treated
using syringe filters with a pore size of 0.7 µm. ALZ concentrations in the eluate from
the crystalline ALZ did not exceed 0.15 µg/mL, which was almost explainable from its
equilibrium solubility in PB. In contrast, ALZ concentrations reached much higher values
when ASDs were subjected to the study. The Eudragit ASD showed the highest concentra-
tion of ALZ, followed by the PVPVA and HPMCAS ASDs. The observed concentrations of
these ASDs were higher than the equilibrium solubility in the polymers’ presence (Table 2).
The concentrations of the Eudragit and PVPVA ASDs started to decrease from 10 min,
indicating that precipitation was induced by excess solids or crystallization of ALZ or both.
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Figure 4. Concentration profiles of ALZ eluted from crystalline ALZ and ALZ ASDs in the LLPS dissolution test. Filtration
was performed using syringe filters with pore sizes of (a) 0.7 µm or (b) 0.2 µm. Symbols: Crystalline ALZ (u), PVPVA ASD
(�), HPMCAS ASD (N), Eudragit ASD (•).

The LLPS dissolution tests’ filtrates using filters with 0.7 µm pore size had a slightly
turbid appearance, which suggested that small particles permeated through the syringe
filters. This is especially expected for HPMCAS ASD because it creates small LLPS particles
(Table 2). Therefore, the experiments were repeated using membrane filters with a 0.2 µm
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pore size (Figure 4b). All the filtrates in this experiment were transparent. The ALZ
concentrations of the HPMCAS and PVPVA ASDs decreased dramatically, indicating the
presence of particles with sizes between 0.2 and 0.7 µm. The concentration of Eudragit
ASD also decreased by approximately 1 µg/mL.

Although the ALZ concentration after filtration with a 0.2 µm filter in the LLPS dis-
solution test could be expected to be equal to that of the LLPS, it was much lower. One
possible explanation is enhanced precipitation induced by excess solids [7]. However, the
ALZ concentrations from the HPMCAS and PVPVA ASDs agreed well with the equilib-
rium solubility, which was likely attributable to the crystallization of ALZ. The dissolution
patterns supported this hypothesis for the Eudragit and PVPVA ASDs in Figure 4a. Crystal-
lization was not suspected for the HPMCAS ASD from its dissolution pattern (Figure 4a).
The crystals might pass through the syringe filters because of the smallness of the particle
size. Figure 5 shows the dissolution properties of crystalline ALZ and its ASDs evaluated
using the µDISS apparatus, where the order of the achieved concentrations did not agree
with that of the equilibrium solubility. In the acidic environment, the best dissolution
was observed with the crystalline ALZ and PVPVA ASD, followed by HPMCAS ASD
and Eudragit ASD. None of these formulations reached equilibrium solubility, which was
reported to be 184 µg/mL (Table 1), presumably because the observation was made only
for 1 h. The poor dissolution behavior of ALZ from Eudragit and HPMCAS ASDs could
be attributable to these acidic polymers’ low solubility. Elution of ALZ was likely to be
disturbed in the presence of these insoluble polymers.
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Figure 5. µDiss dissolution test of (a) crystalline ALZ and (b–d) ALZ ASDs. Types of polymers are indicated in the figure.
Blue and red lines represent dissolution profiles in JP1 (pH 1.2) and JP2 (pH 6.8) solutions.

In contrast, the dissolution under neutral pH conditions was enhanced the most by
HPMCAS ASD, followed by PVPVA ASD. The concentrations achieved with these ASDs
was higher than that of the equilibrium solubility (Table 2), indicating that supersatura-
tion was attained. Eudragit ASD also slightly improved the dissolution, where the ALZ
concentration almost agreed with the equilibrium solubility. Crystalline ALZ was rarely
dissolved under the neutral pH condition.
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3.3. Oral Administration Study

Figure 6 shows the results of the oral absorption study of crystalline ALZ and its ASDs
in rats. The absorption was considerably higher with the ASDs relative to crystalline ALZ.
The pharmacokinetic (PK) parameters are shown in Table 3. The PVPVA and HPMCAS
ASDs showed almost the same plasma concentration profiles with AUC values 4-fold higher
than that of the crystalline ALZ. The Eudragit ASD also improved the oral absorption;
however, the AUC was slightly lower than those of the other two ASDs, which was
approximately 3-fold of the crystalline ALZ.
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Figure 6. Plasma ALZ sulfoxide concentration profiles after oral administration of crystalline ALZ
and its ASDs in rats at a dose of 10 mg/kg (n = 3). Symbols: Crystalline ALZ (u), PVPVA ASD (�),
HPMCAS ASD (N), Eudragit ASD (•).

Table 3. PK parameters for oral administration study of ALZ ASDs in rats.

Formulations Crystalline ALZ Eudragit ASD HPMCAS ASD PVPVA ASD

Cmax (µg/mL) 2.17 ± 0.54 6.30 ± 1.14 8.06 ± 0.81 8.82 ± 1.44
Tmax (h) 3.3 ± 1.2 4.0 ± 0.0 2.0 ± 0.0 2.3 ± 1.5

AUC (µg·hr/mL) 12.7 ± 3.5 37.4 ± 4.9 48.9 ± 5.4 52.4 ± 11.6

Figure 7 and Table 4 show the oral absorption study results of the crystalline ALZ and
its ASDs in beagle dogs. Administration of HPMCAS ASD as a suspension considerably
enhanced the oral absorption, similar to the rat study’s findings. However, the absorption
behavior was totally different when the same ASD was administered as capsules, where the
ASDs were filled as solid forms. The absorption from the HPMCAS ASD was comparable
to the crystalline ALZ, which was also administered as capsules. That from the Eudragit
ASD was higher than that from the HPMCAS ASD, whereas that from the PVPVA ASD
was worse than that from crystalline ALZ.

Table 4. PK parameters for oral administration study of ALZ ASDs in beagle dogs.

Formulations Crystalline
ALZ

Eudragit
ASD

HPMCAS
ASD

HPMCAS ASD
Suspension

PVPVA
ASD

Cmax (µg/mL) 0.30 ± 0.21 0.44 ± 0.10 0.34 ± 0.09 0.57 ± 0.05 0.20 ± 0.07
Tmax (h) 1.3 ± 0.6 1.7 ± 0.6 2.3 ± 1.5 1.3 ± 0.6 1.3 ± 0.6

AUC (µg·h/mL) 1.93 ± 1.27 2.81 ± 0.47 2.14 ± 0.42 3.04 ± 0.13 1.04 ± 0.41
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Figure 7. Plasma ALZ sulfoxide concentration profiles after oral administration of crystalline ALZ
and its ASDs in beagle dogs at a dose of 10 mg/kg (n = 3). Formulations were administered as
capsules unless otherwise noted as suspension. Symbols: crystalline ALZ (u), PVPVA ASD (�),
HPMCAS ASD (N), HPMCAS ASD (suspension) (4), Eudragit ASD (•).

4. Discussion
4.1. Dissolution and LLPS Behaviors of ALZ and Its ASDs

The LLPS concentration increased with the polymer’s addition, and the highest value
was observed with PVPVA, followed by HPMCAS and Eudragit. If the crystallization
tendency of a drug is low, LLPS is not influenced by the presence of polymers [8]. Thus,
this observation indicates that these are values of “apparent” LLPS, which is influenced by
the crystallization of ALZ [7,8]. The occurrence of crystallization was also obvious from
concentration profiles during the LLPS dissolution study (Figure 4a). The “apparent” LLPS
was shown to be a good predictor of the AUC of oral absorption controlled by solubility [8].
The size of the LLPS particles may also be a factor that influences absorption from ASDs.
The particle size measurement based on the light scattering principle is a well-established
methodology; however, the data analysis can frequently be misleading, especially when
the particles have wide size distribution. Thus, we evaluated the particle size from the
dissolution study, where syringe filters with multiple pore sizes were used. It provided
direct information on the fraction of the particles in specific particle size ranges. Also, it
enabled discussion on the crystallization of ALZ during the LLPS behavior.

The µDISS dissolution study showed no dissolution advantage for the ASDs under the
acidic pH condition, whereas the dissolution was enhanced by formulating the drug with
HPMCAS or PVPVA under the neutral pH condition. The observed concentrations were
well below LLPS concentrations but higher than the equilibrium solubilities. Although the
reason for the effective maintenance of supersaturation in the µDISS dissolution study rela-
tive to the LLPS dissolution in beakers is unclear, it may have been due to the test vessels’
smaller scale. As ALZ was not charged under the neutral pH condition, the supersaturated
state was likely stabilized by interaction with polymers, including hydrophobic interac-
tion and hydrogen bonding. In the µDISS dissolution study, the ALZ concentration was
measured using a UV probe, which is expected to detect only dissolved ALZ. However, in
the LLPS dissolution study, where the filtrate’s ALZ concentration was determined, totally
different dissolution profiles were obtained. The dissolution appeared to be improved with
the ASDs, and Eudragit appeared to be the most effective polymer. However, the ALZ
concentration was affected by the pore size of the syringe filters, which indicated particles’
presence in the filtrate.
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Moreover, the particles were not likely to be the result of LLPS, but were more likely
caused by crystallization. The highest concentration of the Eudragit ASD after filtration
with a 0.2 µm filter can be explained by the particles’ wide size distribution, as expected
from its large PDI. The LLPS particles’ size was likely to be maintained only in the HPMC
solution even after crystallization. These findings are important for understanding the oral
absorption results.

4.2. Relationship between Dissolution Behavior and Oral Absorption

The absorption of ALZ from the ASDs was significantly higher than that from the crys-
talline ALZ in the rat study. The magnitude of effective improvement of the AUC and Cmax
by the polymers was in the following increasing order, PVPVA, HPMCAS, and Eudragit,
which also agreed with that of the LLPS. The relationship between LLPS concentration
and in vivo AUC is presented in Figure 8, where a good correlation was achieved. The
relationship between the final ALZ concentration in the µDISS dissolution study in the JP2
solution (pH 6.8) indicated that the supersaturation behavior was elucidated successfully.
However, its correlation with the AUC was much lower than that with LLPS concentration.
The absorption of ALZ from the ASDs was likely limited by solubility because LLPS is
analogous to amorphous solubility.
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Figure 8. Relationship between final ALZ concentration in the µDiss dissolution study at
pH 6.8 (open) or LLPS concentration (closed) and AUC in rats.

Most previously reported oral administration studies of ASDs have been performed
with suspensions because of difficulty in administering solid dosage forms for small
animals. However, ASDs are intended to be manufactured as solid dosage forms when
they are marketed. Thus, the difference in the performance of suspensions and solid dosage
forms has been increasingly observed recently. The most typical approach to fill this gap is
to improve the dissolution behavior of ASDs using additives such as inorganic salts [21,22].

The oral absorption behavior in dogs was completely different from that in rats. In
this study, ASDs were administered as solid dosage forms, which has more practical sig-
nificance compared to the administration of suspensions. For connecting results from
both animal species, the same HPMCAS ASD suspension was evaluated. Despite the
large difference in physiologies between rats and dogs, a similar improvement in the oral
absorption was confirmed using the HPMCAS ASD suspension. The capsule’s disintegra-
tion process appeared to dramatically affect the oral absorption, as evident from the large
difference in absorption between the two HPMCAS ASDs (suspension and capsule). The
absorption from the encapsulated solid ASD was comparable to that from the crystalline
ALZ. The Eudragit ASD allowed better absorption than the other ASDs, even when it
was administered as capsules, whereas absorption from the PVPVA ASD was worse than
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that from the crystalline ALZ. In this case, the absorption was not likely to have been
governed by solubility but rather by the dissolution rate, and LLPS is not a predictor of oral
absorption. The absorption profiles of ALZ from capsules were likely to be influenced by
particle size of the recrystallized ALZ. That from the Eudragit ASD were permeable to some
extent through the 0.2-µm filters (Figure 4b), suggesting that small ALZ particles should be
available after the recrystallization. As for the HPMCAS ASD, the particle size analysis
indicated that the ALZ particles’ mean size after the recrystallization was approximately
0.22 µm (Table 2). However, large ALZ crystals might be formed after the dissolution
of the PVPVA ASD, which was likely to be the origin of the worse absorption than from
crystalline ALZ. This analysis indicates that estimation of the particle size using filters
with multiple pore sizes may explain oral absorption if it is limited by dissolution rate.
However, for maximizing the efficacy of ASDs, the oral absorption should not be limited
by dissolution rate but solubility. In this regard, PVPVA should have the highest potential
to improve oral absorption of ALZ based on its highest LLPS concentration. Thus, after
optimizing the composition of the binary ASDs, further formulation studies to decide the
final dosage form are critical during the developmental study of ASDs. LLPS concentration
should work as a parameter that can offer the potential for improvement of oral absorption.

5. Conclusions

ALZ was formulated into ASDs using three types of polymers: Eudragit, PVPVA, and
HPMCAS, and their LLPS, dissolution, and oral absorption behaviors were investigated.
The oral absorption in rats, where the ASDs were administered as suspensions, was not
explained by the dissolution test but predicted by the LLPS concentration, which suggested
the solubility-limited absorption of ALZ. The efficacy of the ASDs administered to dogs
as solid capsules were likely to be limited by dissolution rate. Comprehension of particle
size after LLPS appeared to be important for understanding the oral absorption in this case.
This observation revealed the challenges in understanding supersaturation, LLPS, and
crystallization behaviors occurring in the gastrointestinal tract for interpreting/predicting
oral absorption. A formulation strategy that provides sufficiently fast disintegration and
dissolution for achieving supersaturation was indicated to be important for ASDs.
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Table S1. Numerical data for the LLPS dissolution test (Figure 4); Table S2. Numerical data for the rat
study (Figure 6); Table S3. Numerical data for dog study (Figure 7).
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