BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY

Synthesis of pyrimido[1,6-*a*]quinoxalines via intermolecular trapping of thermally generated acyl(quinoxalin-2-yl)ketenes by Schiff bases

Svetlana O. Kasatkina, Ekaterina E. Stepanova^{*}, Maksim V. Dmitriev, Ivan G. Mokrushin and Andrey N. Maslivets^{*}

Full Research Paper	Open Access
Address: Department of Chemistry, Perm State University, ul. Bukireva 15, Perm 614990, Russian Federation	Beilstein J. Org. Chem. 2018 , <i>14</i> , 1734–1742. doi:10.3762/bjoc.14.147
	Received: 06 April 2018
Email:	Accepted: 26 June 2018
Ekaterina E. Stepanova [*] - caterina.stepanova@psu.ru; Andrey N. Maslivets [*] - koh2@psu.ru	Published: 11 July 2018
	Associate Editor: T. J. J. Müller
* Corresponding author	
	© 2018 Kasatkina et al.; licensee Beilstein-Institut.
Keywords: acyl(quinoxalin-2-yl)ketenes; cycloaddition; pyrimido[1,6- <i>a</i>]quinoxalines; Schiff bases; thermolysis	License and terms: see end of document.

Abstract

Acyl(quinoxalin-2-yl)ketenes generated by thermal decarbonylation of 3-acylpyrrolo[1,2-*a*]quinoxaline-1,2,4(5*H*)-triones react regioselectively with Schiff bases under solvent-free conditions to form pyrimido[1,6-*a*]quinoxaline derivatives in good yields.

Introduction

Quinoxaline is a 4-aza isostere of quinoline, which rarely occurs in structures of natural products. Its derivatives are gaining popularity in medicinal chemistry and pharmacology because many of them exhibit various biological activities [1,2].

Quinoxaline-based 6/6/6-angularly fused scaffolds (quinoxaline fused by a six-membered heterocycle at the [*a*]-side) are promising biologically active compounds. Recent research studies revealed that they can act as inhibitors of poly(ADPribose) polymerase (PARP) [3], inhibitors of hepatitis C virus [4], 5-HT_{2C} agonists [5-7], substances for controlling intraocular pressure (IOP) [8] etc. (Figure 1). Pyrimido[1,6-*a*]quinoxalines are one of the most intriguing and unexplored structures representing isosteres of this scaffold. Only few synthetic procedures towards these compounds are described in the literature: heterocyclizations of α -chloroisocyanates with quinoxalin-2-ylideneacetates [9], multicomponent Mannich–Ritter transformations of quinoxalin-2(1*H*)-ones under the action of nitriles and 3,4-dihydro-2*H*-pyran [10] and a microwave-assisted cascade strategy via in situ-generated *N*-acyliminium ion precursors and amines [11] (Figure 2).

To develop a new synthetic approach towards pyrimido[1,6-a]quinoxalines we looked through the procedures to their closest

analogues – pyrido[1,2-a]quinoxalines, the synthesis of which has been explored more frequently [3,4,12-46]. The analysis helped us to disclose a tempting but challenging methodology, which has the potential to be extended for the synthesis of the desired heterocyclic system, via intermolecular trapping of thermally generated acyl(quinoxalin-2-yl)ketenes [20,21,23,24,28,29,38] (Figure 2).

Syntheses utilizing acylketenes are of practical and theoretical interest due to the high reactivity of acylketenes and the structural diversity of the reaction products [47-54]. The introduction of the quinoxalin-2-yl substituent into acylketenes results in the formation of a peculiar system of conjugated double bonds, which can potentially act as either oxo-diene or aza-diene (Figure 3).

To the best of our knowledge, there is no example of the involvement of the aza-diene fragment of acyl(quinoxalin-2-yl)ketenes into intermolecular trapping by hetero-dienophiles published so far. In this article we report a synthetic protocol towards pyrimido[1,6-*a*]quinoxalines via the intermolecular trapping of acyl(quinoxalin-2-yl)ketenes by Schiff bases.

Results and Discussion

The most convenient method for the generation of acyl(quinoxalin-2-yl)ketenes is the thermal decarbonylation (thermolysis) of five-membered 2,3-dioxoheterocycles having a quinoxaline fragment. Currently, three types of such precursors are known: 5-aryl-4-quinoxalin-2-ylfuran-2,3-diones I [21], 3-aroyl-4arylpyrrolo[1,2-*a*]quinoxaline-1,2-diones II [55], and 3-acylpyrrolo[1,2-*a*]quinoxaline-1,2,4(5*H*)-triones III [23,56] (Scheme 1).

According to the literature data, precursors I and II are unsuitable for achieving the proposed goal as the generated ketene IV reacts only at its oxo-diene fragment in intermolecular trapping reactions with various dienophiles [57-62]. Under these circumstances precursors III generating ketenes V seemed to be the only suitable candidates for the development of a strategy towards pyrimido[1,6-a]quinoxalines.

First, we studied the decarbonylation of precursors III – 3-acylpyrrolo[1,2-a]quinoxaline-1,2,4(5*H*)-triones (PQTs, **1a–h**) by simultaneous thermal analysis (STA, Table 1). According to the data obtained, PQTs **1a–h** underwent thermal decomposition with a mass loss accompanied by an endothermic effect and CO evolution (Figure 4). The values of the mass loss corresponded to the elimination of a CO molecule from a PQT.

Table 1: Thermal characteristics of decarbonylation of PQTs 1a-h.				
PQT	temp. of decarbonylation (°C)			
	onset	extrapolated onset	peak	
1a	187	207	216	
1b	174	209	220	
1c	173	183	206	
1d	148	174	183	
1e	172	204	217	
1f	179	198	212	
1g	184	203	213	
1h	171	197	206	

Having taken into account the results of the thermal analysis, we examined the feasibility and conditions of the intermolecular reaction of the ketene generated from PQT **1a** with benzal-

aniline (2a). The reaction mixtures obtained were investigated by UPLC–MS and the results are summarized in Table 2.

The reaction mixtures contained only three types of products, and we succeeded to identify each of them. The structures of the reaction products were elucidated as the desired pyrimido[1,6a]quinoxaline **3a**, quinoxalinone **4a** [29] and pyrido[1,2a]quinoxaline **5a** [29] (Scheme 2). Product **IV** of an alternative intermolecular trapping reaction (Table 1) was not detected.

The most likely way of the formation of quinoxalinone 4a is hydration of the ketene with subsequent decarboxylation (Scheme 2); more careful drying the reaction vials and solvents easily reduced the amount of compound 4a.

The formation of pyrido[1,2-a]quinoxaline **5a** can be explained by a concurrent process of ketene dimerization (Scheme 2) [29] in comparison to the intermolecular trapping of it by benzalaniline (**2a**). Since the yields of the target product **3a** decreased and the yields of compound **5a** increased at prolonged time of reaction, the formation of the target compounds deemed to be reversible.

Performing the reaction under solvent-free conditions at the onset decarbonylation temperature (Table 1) exceeded our

expectations and gave the best yields of the target compound **3a** (Table 2, entry 6).

Being inspired by the optimization results obtained, we examined the scope of the reaction applying the developed methodology with PQTs 1a-h and Schiff bases 2a-d. The results are shown in Figure 5.

Unfortunately, our attempts to involve Schiff bases synthesized from aliphatic aldehydes and ketones did not give any satisfactory results because of various nucleophilic side-reactions.

We found that the intermolecular trapping worked perfectly in case of N⁵-substituted PQTs 1a-f and did not work at all with N⁵-unsubstituted PQT 1g and 1h. The failure to obtain products 3o and 3p from PQTs 1g and 1h can be explained by the occurrence of intramolecular cyclization in these ketenes resulting in the formation of furoquinoxalines 6a,b [56,63,64] which were confirmed by UPLC–MS data as the sole products of the reaction (Scheme 3).

The formation of pyrimido[1,6-*a*]quinoxalines **3a**–**n** was unambiguously confirmed by the crystal structure of compounds **3g** and **3j** (CCDC 1834011, Figure 6; CCDC 1834012, Figure 7).

^aConditions: suspension of **1a** (1 mmol) and **2a** (1.1 mmol) in Dowtherm A (5 mL). ^bYields were determined by UPLC. ^cSolvent-free reaction.

Scheme 3: Formation of furoquinoxalines 6a,b via intramolecular cyclization in ketenes generated from PQTs 1g,h.

Figure 6: ORTEP drawing of compound 3g (CCDC 1834011) showing thermal ellipsoids at the 30% probability level.

Figure 7: ORTEP drawing of compound 3j (CCDC 1834012) showing thermal ellipsoids at the 30% probability level.

Conclusion

We have developed a facile synthesis of pyrimido[1,6*a*]quinoxaline derivatives via the intermolecular trapping of thermally generated acyl(quinoxalin-2-yl)ketenes by Schiff bases. The reaction proceeds under solvent-free conditions without any additives and catalysts. The elaborated method might be applicable to the syntheses of pharmaceutically important substances.

Supporting Information

Supporting Information File 1

Experimental details, copies of ¹H and ¹³C NMR spectra of pyrimido[1,6-*a*]quinoxalines **3a–n**, STA plots of PQT **1a–h** and X-ray crystal structure details of compounds **3g**,**j**. [https://www.beilstein-journals.org/bjoc/content/ supplementary/1860-5397-14-147-S1.pdf]

Acknowledgements

This work was supported by the Russian Science Foundation, project # 17-73-10210.

ORCID[®] iDs

Svetlana O. Kasatkina - https://orcid.org/0000-0002-7943-7525 Ekaterina E. Stepanova - https://orcid.org/0000-0002-5851-3082 Andrey N. Maslivets - https://orcid.org/0000-0001-7148-4450

References

- Pereira, J. A.; Pessoa, A. M.; Cordeiro, M. N. D. S.; Fernandes, R.; Prudêncio, C.; Noronha, J. P.; Vieira, M. *Eur. J. Med. Chem.* 2015, 97, 664–672. doi:10.1016/j.ejmech.2014.06.058
- Tariq, S.; Somakala, K.; Amir, M. Eur. J. Med. Chem. 2018, 143, 542–557. doi:10.1016/j.ejmech.2017.11.064
- Miyashiro, J.; Woods, K. W.; Park, C. H.; Liu, X.; Shi, Y.; Johnson, E. F.; Bouska, J. J.; Olson, A. M.; Luo, Y.; Fry, E. H.; Giranda, V. L.; Penning, T. D. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 4050–4054. doi:10.1016/j.bmcl.2009.06.016
- Liu, R.; Huang, Z.; Murray, M. G.; Guo, X.; Liu, G. J. Med. Chem. 2011, 54, 5747–5768. doi:10.1021/jm200394x

Beilstein J. Org. Chem. 2018, 14, 1734-1742.

- Sabb, A. L.; Welmaker, G. S.; Nelson, J. A. 2,3,4,4a-Tetrahydro-1*H*-pyrazino(1,2-a)quinoxalin-5(6*H*)one derivates being 5HT_{2C} agonists. WO Patent WO0035922 A1, June 6, 2000.
- Rosenzweig-Lipson, S.; Zhang, J.; Mazandarani, H.; Harrison, B. L.; Sabb, A.; Sabalski, J.; Stack, G.; Welmaker, G.; Barrett, J. E.; Dunlop, J. *Brain Res.* 2006, *1073–1074*, 240–251. doi:10.1016/j.brainres.2005.12.052
- Hayes, D. J.; Mosher, T. M.; Greenshaw, A. J. Behav. Brain Res. 2009, 197, 323–330. doi:10.1016/j.bbr.2008.08.034
- May, J. A.; Zinke, P. W.
 (*R*)-8,9-Dichloro-2,3,4,4a-tetrahydro-1*H*,6*H*-pyrazino[1,2-a]quinoxalin-5 -one for controlling IOP and treating glaucoma. U.S. Patent US2006211700 A1, Sept 21, 2006.
- Kushnir, O. V.; Vovk, M. V. Russ. J. Org. Chem. 2010, 46, 890–893. doi:10.1134/s1070428010060187
- Preciado, S.; Vicente-García, E.; Llabrés, S.; Luque, F. J.; Lavilla, R. Angew. Chem. 2012, 124, 6980–6983. doi:10.1002/ange.201202927
- Sawant, R. T.; Stevens, M. Y.; Sköld, C.; Odell, L. R. Org. Lett. 2016, 18, 5392–5395. doi:10.1021/acs.orglett.6b02774
- Kappe, T.; Linnau, Y.; Stadlbauer, W. Monatsh. Chem. 1977, 108, 103–111. doi:10.1007/BF00900912
- Ames, D. E.; Brohi, M. I. J. Chem. Soc., Perkin Trans. 1 1980, 1384–1389. doi:10.1039/p19800001384
- Adegoke, E. A.; Alo, B. J. Heterocycl. Chem. 1983, 20, 1509–1512. doi:10.1002/jhet.5570200614
- Chernavskaya, L. N.; Kholodova, N. V.; Blagorodov, S. G.; Dmitrieva, N. A. *Pharm. Chem. J.* **1984**, *18*, 413–416. doi:10.1007/BF00776797
- Kurasawa, Y.; Nemoto, Y.; Sakakura, A.; Ogura, M.; Takada, A. Chem. Pharm. Bull. 1984, 32, 3366–3372. doi:10.1248/cpb.32.3366
- 17. Kawahara, N.; Shimamori, T.; Itoh, T.; Takayanagi, H.; Ogura, H. *Chem. Pharm. Bull.* **1987**, 35, 457–467. doi:10.1248/cpb.35.457
- Kawahara, N.; Shimamori, T.; Itoh, T.; Takayanagi, H.; Ogura, H.
 J. Heterocycl. Chem. **1989**, *26*, 847–852. doi:10.1002/jhet.5570260362
- Öcal, N.; Turgut, Z.; Kaban, Ş. J. Heterocycl. Chem. 1998, 35, 1349–1351. doi:10.1002/jhet.5570350620
- Maslivets, A. N.; Golovnina, O. V.; Krasnykh, O. P.; Aliev, Z. G. Chem. Heterocycl. Compd. 2000, 36, 615–616. doi:10.1007/bf02290858
- Lisovenko, N. Y.; Krasnykh, O. P.; Aliev, Z. G.; Vostrov, E. S.; Tarasova, O. P.; Maslivets, A. N. *Chem. Heterocycl. Compd.* 2001, *37*, 1314–1316. doi:10.1023/A:1013886602711
- 22. Duffy, K. J.; Haltiwanger, R. C.; Freyer, A. J.; Li, F.; Luengo, J. I.; Cheng, H.-Y. J. Chem. Soc., Perkin Trans. 2 2002, 181–185. doi:10.1039/b102755g
- Maslivets, A. N.; Bozdyreva, K. S.; Smirnova, I. V.; Tolmacheva, I. A.; Mashevskaya, I. V. Chem. Heterocycl. Compd. 2002, 38, 498–499. doi:10.1023/A:1016056011167
- 24. Maslivets, A. N.; Lisovenko, N. Y.; Krasnykh, O. P.; Tarasova, O. P.; Aliev, Z. G.; Atovmyan, L. O. *Russ. Chem. Bull.* **2002**, *51*, 850–853. doi:10.1023/A:1016097120253
- García, M. B.; Orelli, L. R.; Magri, M. L.; Perillo, I. A. Synthesis 2002, 2687–2690. doi:10.1055/s-2002-35980
- Bunce, R. A.; Herron, D. M.; Hale, L. Y. J. Heterocycl. Chem. 2003, 40, 1031–1039. doi:10.1002/jhet.5570400611
- Chicharro, R.; de Castro, S.; Reino, J. L.; Arán, V. J.
 Eur. J. Org. Chem. 2003, 2314–2326. doi:10.1002/ejoc.200300028
- Maslivets, A. N.; Aliev, Z. G.; Krasnykh, O. P.; Golovnina, O. V.; Atovmyan, L. O. *Chem. Heterocycl. Compd.* 2004, 40, 1295–1299. doi:10.1007/s10593-005-0060-4

- Bozdyreva, K. S.; Smirnova, I. V.; Maslivets, A. N. Russ. J. Org. Chem. 2005, 41, 1081–1088. doi:10.1007/s11178-005-0296-6
- Ma, Y.; Luo, W.; Camplo, M.; Liu, Z.; Hider, R. C. Bioorg. Med. Chem. Lett. 2005, 15, 3450–3452. doi:10.1016/j.bmcl.2005.05.010
- 31. Tanimori, S.; Nishimura, T.; Kirihata, M. Bioorg. Med. Chem. Lett. 2009, 19, 4119–4121. doi:10.1016/j.bmcl.2009.06.007
- 32. Yavari, I.; Souri, S.; Sirouspour, M.; Bayat, M. J. Synlett 2009, 1921–1922. doi:10.1055/s-0029-1217542
- 33. Luo, X.; Chenard, E.; Martens, P.; Cheng, Y.-X.; Tomaszewski, M. J. Org. Lett. 2010, 12, 3574–3577. doi:10.1021/ol101454x
- 34. Xu, L.; Jiang, Y.; Ma, D. Synlett 2010, 2285–2288. doi:10.1055/s-0030-1258030
- Tanimori, S.; Kashiwagi, H.; Nishimura, T.; Kirihata, M. Adv. Synth. Catal. 2010, 352, 2531–2537. doi:10.1002/adsc.201000323
- Gulevskaya, A. V.; Nguyen, H. T. L.; Tyaglivy, A. S.; Pozharskii, A. F. Tetrahedron 2012, 68, 488–498. doi:10.1016/j.tet.2011.11.018
- 37. Xu, Z.; De Moliner, F.; Cappelli, A. P.; Hulme, C. Org. Lett. 2013, 15, 2738–2741. doi:10.1021/ol401068u
- 38. Lisovenko, N. Y.; Yukova, Y. V.; Makhmudov, R. R. Pharm. Chem. J. 2014, 47, 593–595. doi:10.1007/s11094-014-1014-x
- Nguyen, H. T. L.; Gulevskaya, A. V.; Pozharskii, A. F.; Nelina-Nemtseva, J. I. *Tetrahedron* 2014, *70*, 4617–4625. doi:10.1016/j.tet.2014.05.023
- Obydennov, D. L.; Sosnovskikh, V. Y. Chem. Heterocycl. Compd. 2014, 50, 579–582. doi:10.1007/s10593-014-1510-7
- Tanimori, S.; Inaba, U.; Kato, Y.; Ura, H.; Kashiwagi, H.; Nishimura, T.; Kirihata, M. *Res. Chem. Intermed.* **2014**, *40*, 2157–2164. doi:10.1007/s11164-014-1593-x
- 42. Miyamaru, S.; Umezu, K.; Ito, A.; Shimizu, M. *Eur. J. Org. Chem.* **2015**, 3327–3337. doi:10.1002/ejoc.201500225
- Rezvanian, A. Tetrahedron 2016, 72, 6428–6435. doi:10.1016/j.tet.2016.08.049
- 44. Azev, Y. A.; Kodess, M. I.; Ezhikova, M. A.; Ermakova, O. S.; Berseneva, V. S.; Bakulev, V. A. *Mendeleev Commun.* 2017, 27, 97–98. doi:10.1016/j.mencom.2017.01.032
- 45. Azev, Y. A.; Ermakova, O. S.; Berseneva, V. S.; Kodess, M. I.; Ezhikova, M. A.; Ganebnykh, I. N. *Mendeleev Commun.* **2017**, *27*, 637–639. doi:10.1016/j.mencom.2017.11.034
- Soozani, A.; Keivanloo, A.; Bakherad, M. Tetrahedron 2018, 74, 150–156. doi:10.1016/j.tet.2017.11.055
- 47. Reber, K. P.; Tilley, S. D.; Sorensen, E. J. Chem. Soc. Rev. 2009, 38, 3022–3034. doi:10.1039/B912599J
- Presset, M.; Coquerel, Y.; Rodriguez, J. Org. Lett. 2009, 11, 5706–5709. doi:10.1021/ol9024056
- 49. Presset, M.; Coquerel, Y.; Rodriguez, J. Org. Lett. 2010, 12, 4212–4215. doi:10.1021/ol101938r
- 50. Leber, S.; Kollenz, G.; Wentrup, C. *Beilstein J. Org. Chem.* **2012**, *8*, 738–743. doi:10.3762/bjoc.8.83
- Galvez, J.; Castillo, J.-C.; Quiroga, J.; Rajzmann, M.; Rodriguez, J.; Coquerel, Y. Org. Lett. 2014, 16, 4126–4129. doi:10.1021/ol5018245
- Khlebnikov, A. F.; Novikov, M. S.; Pakalnis, V. V.; lakovenko, R. O.; Yufit, D. S. *Beilstein J. Org. Chem.* **2014**, *10*, 784–793. doi:10.3762/bjoc.10.74
- 53. Cookson, R.; Barrett, T. N.; Barrett, A. G. M. Acc. Chem. Res. 2015, 48, 628–642. doi:10.1021/ar5004169
- 54. Kollenz, G.; Wentrup, C. Beilstein J. Org. Chem. 2018, 14, 1–10. doi:10.3762/bjoc.14.1

- 55. Silaichev, P. S.; Maslivets, A. N. *Russ. J. Org. Chem.* **2012**, *48*, 1261–1262. doi:10.1134/S1070428012090229
- 56. Mashevskaya, I. V.; Mokrushin, I. G.; Bozdyreva, K. S.; Maslivets, A. N. *Russ. J. Org. Chem.* **2011**, *47*, 253–257. doi:10.1134/S1070428011020151
- 57. Lisovenko, N. Y.; Maslivets, A. N.; Aliev, Z. G. Chem. Heterocycl. Compd. 2003, 39, 132–134. doi:10.1023/A:1023097414711
- Lisovenko, N. Y.; Maslivets, A. N. Chem. Heterocycl. Compd. 2004, 40, 247–248. doi:10.1023/B:COHC.0000027901.78882.86
- 59. Lisovenko, N. Y.; Maslivets, A. N.; Aliev, Z. G. Russ. J. Org. Chem. 2004, 40, 1053–1057. doi:10.1023/B:RUJO.0000045203.69639.83
- Lisovenko, N. Y.; Maslivets, A. N.; Aliev, Z. G. Russ. J. Org. Chem. 2007, 43, 117–120. doi:10.1134/s1070428007010150
- Nekrasov, D. D.; Obukhova, A. S.; Lisovenko, N. Y.; Roubtsov, A. E. Chem. Heterocycl. Compd. 2010, 46, 413–418. doi:10.1007/s10593-010-0525-y
- Lisovenko, N. Y.; Nekrasov, D. D.; Karmanov, V. I. Chem. Heterocycl. Compd. 2012, 48, 1357–1360. doi:10.1007/s10593-012-1144-6
- Masilvets, A. N.; Golovnina, O. V.; Krasnykh, O. P.; Aliev, Z. G. *Chem. Heterocycl. Compd.* 2000, *36*, 355–356. doi:10.1007/BF02256878
- 64. Aliev, Z. G.; Maslivets, A. N.; Golovnina, O. V.; Krasnykh, O. P.; Atovmyan, L. O. *Russ. Chem. Bull.* **2001**, *50*, 1317–1319. doi:10.1023/A:1014091731016

License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the *Beilstein Journal of Organic Chemistry* terms and conditions: (https://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjoc.14.147