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BACKGROUND Insertable cardiac monitors (ICMs) are indicated for
long-term monitoring of patients with unexplained syncope or who
are at risk for cardiac arrhythmias. The volume of ICM-transmitted
information may result in long data review times to identify true
and clinically relevant arrhythmias.

OBJECTIVE The purpose of this study was to evaluate whether arti-
ficial intelligence (AI) may improve ICM detection accuracy.

METHODS We performed a retrospective analysis of consecutive pa-
tients implanted with the Confirm RxTM ICM (Abbott) and followed in
a prospective observational study. This device continuously moni-
tors subcutaneous electrocardiograms (SECGs) and transmits to cli-
nicians information about detected arrhythmias and patient-
activated symptomatic episodes. All SECGs were classified by expert
electrophysiologists and by the WillemTM AI algorithm (IDOVEN).

RESULTS During mean follow-up of 23 months, of 20 ICM patients
(mean age 686 12 years; 50% women), 19 had 2261 SECGs record-
ings associated with cardiac arrhythmia detections or patient symp-
toms. True arrhythmias occurred in 11 patients: asystoles in 2,
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bradycardias in 3, ventricular tachycardias in 4, and atrial tachyar-
rhythmias (atrial tachycardia/atrial fibrillation [AT/AF]) in 10; with
6 patients having.1 arrhythmia type. AI algorithm overall accuracy
for arrhythmia classification was 95.4%, with 97.19% sensitivity,
94.52% specificity, 89.74% positive predictive value, and 98.55%
negative predictive value. Application of AI would have reduced
the number of false-positive results by 98.0% overall: 94.0% for
AT/AF, 87.5% for ventricular tachycardia, 99.5% for bradycardia,
and 98.8% for asystole.

CONCLUSION Application of AI to ICM-detected episodes is asso-
ciated with high classification accuracy and may significantly
reduce health care staff workload by triaging ICM data.

KEYWORDS Artificial intelligence; Detection accuracy; Insertable
cardiac monitors
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Introduction
Insertable cardiac monitors (ICMs) are indicated for detec-
tion of arrhythmias in patients with unexplained syncope.1,2

Moreover, they are established as a monitoring and diag-
nostic solution in patients with unexplained symptoms,
such as dizziness, palpitations, chest pain, and shortness of
breath. They also are used in patients who are at risk for car-
diac arrhythmias, for example, to monitor atrial tachyarrhyth-
mias (ie, atrial tachycardia/atrial fibrillation [AT/AF]) before
and after ablation and in patients with cryptogenic stroke.3,4
ICMs may detect asystole events, bradycardia episodes,
and both atrial and ventricular tachycardias. The detection
logic is based on continuous ambulatory monitoring of the
patient’s subcutaneous electrocardiograms (SECGs).

New-generation ICMs are connected via the patient’s
smartphone and Bluetooth technology and can transmit
data in a patient-activated mode or daily in an automatic
mode.5 ICM detection yield is such that a large amount of
data can be transmitted to clinicians. This is beneficial
because it provides opportunities to associate patient symp-
toms with cardiac arrhythmias, to detect unknown cardiac
conditions, and to derive clinical insight and relevant knowl-
edge to guide medical action. However, false arrhythmia de-
tections may occur6–13 and result in unnecessary review
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KEY FINDINGS

� An artificial intelligence (AI) algorithm that was devel-
oped and trained on electrocardiographic (ECG) and
cardiac Holter data, when applied to data from an
implantable cardiac monitor (ICM), classified
arrhythmia subcutaneous electrocardiograms (SECGs)
with 95.4% overall accuracy, 97.19% sensitivity,
94.52% specificity, 89.74% positive predictive value,
and 98.55% negative predictive value.

� The fact that AI algorithms may classify ICM-detected
episodes with high accuracy suggests that AI algo-
rithms can be used to triage ICM data with the aim of
discarding ICM false-positive detections and reducing
health care staff workload.

� The AI algorithm applied in our research, if used to re-
view SECGs collected in our patient population during
the observation period, would have reduced the number
of false-positive detections by 98.0% overall: 99.5% for
bradycardia, 98.8% for asystole, 94.0% for atrial tachy-
arrhythmias, and 87.5% for ventricular tachyarrhyth-
mias.

202 Cardiovascular Digital Health Journal, Vol 3, No 5, October 2022
workload for health care staff, which partially reduces
broader ICM use in clinical practice and may entail high
costs for health care systems.

Standard detection algorithms use fixed rules for cardiac
electrical signal processing and have limited capacity to adapt
to specific patient patterns. However, artificial intelligence
(AI), which already is being applied to electrocardiographic
and Holter data,14–18 offers the promise of performing
efficient data triage by reducing false detections19 and iden-
tifying and using patient-specific rate and rhythm models to
predict future clinical events.17,18,20

Within the framework of a pilot prospective observational
study in patients implanted with an ICM, we performed a
retrospective analysis to evaluate whether AI may signifi-
cantly improve ICM detection accuracy, thus supporting cli-
nicians in arrhythmia evaluation while reducing their
workload.
Methods
Project design
We performed a retrospective analysis on consecutive ICM
patients included in a pilot prospective observational study.
The study protocol was approved by the hospital ethics com-
mittee. All patients provided consent for the use of their data.
Patient population
Patients were included in the study after they had undergone
implantation of a Confirm RxTM ICM (Abbott, Sylmar, CA)
according to standard indications.1–4
ICM
The characteristics of the Confirm Rx ICM have been previ-
ously described.5,13 In brief, the Confirm Rx ICM is a subcu-
taneously implanted device that can continuously monitor
patient heart rhythm for up to 2 years. Specific detection al-
gorithms warrant accurate detection of arrhythmias. The
ICM is capable of remote monitoring, connecting patients
with their cardiologists via Bluetooth wireless technology
and a dedicated smartphone application.
ICM implantation
ICM implantations were performed between April 2018 and
January 2020. ICM devices were inserted near the left para-
sternal area over the fourth intercostal space at 45� to the ster-
num. At the end of the implantation procedure, SECGs were
recorded to assess the quality of R-wave sensing.
ICM arrhythmia detection
The arrhythmia detection algorithms used in the Confirm Rx
devices have undergone technological evolutions.5,10,13 In
April 2019, an improved SharpSenseTM arrhythmia detection
technology was implemented.13 Fifteen of 20 patients in our
cohort were included in the study before April 2019; there-
fore, their ICMs, in the first observation period (average 11
months), used the standard detection algorithm. The Sharp-
Sense software then was uploaded to the devices of these pa-
tients during in-person patient follow-up visits, so in these
patients the SharpSense technology was used in their second
observation period (average 14 months). Five of 20 patients
in our cohort were included in the study after April 2019;
therefore, their ICMs used the SharpSense technology from
the time of implant.

The details of the device detection algorithms have been
previously described.5,10,13 Specifically, the SharpSense
technology evaluates R-R intervals and uses (1) a Markov
chain model to detect R-R interval irregularities; (2) a vari-
ance model to reject regularly irregular rhythms such as
bigeminy and trigeminy; and (3) sudden-onset criteria to
reject rhythms that are not sudden. For AT/AF detection,
a p-wave detection algorithm is activated when the base al-
gorithm triggers AT/AF detection. The p-wave detection
algorithm analyzes the SECG signal before the trigger
and rejects the initial detection if consistent p waves are
found.

In our patient population, the ICMs were programmed to
detect asystole episodes if a pause �4.5 seconds was
observed; bradycardia episodes if heart rate was �40 bpm;
ventricular tachyarrhythmia (VT) episodes if heart rate was
�160 bpm; or AT/AF episodes if the device detected an
AT/AF rhythm lasting at least 6 minutes.
Objectives
The main objective of this research was to evaluate AI
arrhythmia detection accuracy in terms of positive predic-
tive value (PPV), negative predictive value (NPV), sensi-
tivity, and specificity. Secondary objectives were to



Table 1 Baseline patient characteristics and ICM implant primary
indications (N 5 20)
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evaluate the percentage of false-positive detections that can
be detected by AI.
Age (y) 68 6 12
Female 10 (50)
Insertable cardiac monitor indication
Unexplained syncope
Risk for cardiac arrhythmias
Atrial fibrillation
Cryptogenic stroke

15 (75)
3 (15)
1 (5)
1 (5)

Hypertension 10 (50)
Diabetes 5 (25)
Stroke 3 (15)
Heart failure 1 (5)
Atrial fibrillation 6 (30)
Ventricular tachycardia 3 (15)
Coronary artery disease 2 (10)
History of cerebral ischemia, vascular
disease, previous myocardium
infarction, peripheral arterial disease,
or aortic plaque

8 (40)

CHA2DS2VASc score 3.0 6 2.2
Oral anticoagulation 2 (10)
Platelet inhibitors 10 (50)
Data collection and transmission
SECGs were collected according to established standards (ie,
25 mm on the x-axis corresponding to 1 second and 10 mm
on the y-axis corresponding to 1 mV). SECGminimum dura-
tion was 10 seconds. The SECG signal was recorded at a
sampling frequency of 128 Hz with standard bandpass
filtering of 0.05–150 Hz and notch of electric current of 50
Hz. The dynamic range of the signal amplitude values was
610 mV, and the storage analog-to-digital conversion factor
was �8 bits. The device was programmed to store SECGs
and other information on detected arrhythmic events. These
data were transmitted daily to the Merlin.net� patient care
network (https://www.merlin.net/it/web/chakravyuh/login),
with transmissions occurring just after midnight. Through
the MyMerlin application, patients were able to manually
initiate SECG recordings, which were immediately trans-
mitted.
Class III antiarrhythmic drugs 2 (10)
Beta-blockers 6 (30)
Calcium channel blockers 2 (10)
Renin–angiotensin inhibitors 9 (45)
Statins 7 (35)
Diuretics 5 (25)

Values are given as mean 6 SD or n (%) unless otherwise indicated.
ICM 5 insertable cardiac monitor.
Episode classification
The Merlin.net system allowed extraction of the episode
SECGs both as images for expert electrophysiologists to re-
view and as anonymized digital data for the AI algorithm
to be applied.

Episode classification was performed by expert cardiolo-
gists. At least 2 reviewers independently analyzed all epi-
sodes and classified each episode according to 5 types
(asystole, bradycardia, ventricular tachycardia, AT/AF, or
Other). In case of differences between the classifications of
2 reviewers, the episode classification was derived by the
consensus of other expert electrophysiologists. Each episode
was classified as either a true or false arrhythmia and accord-
ing to arrhythmia type. In case of false episode classification,
the following etiologies were identified: presence of prema-
ture atrial contractions, presence of premature ventricular
contractions, sinus tachycardia, oversensing, undersensing,
noise, or other causes.
AI algorithm
The AI algorithm used in this research is Willem� software
(IDOVEN, Madrid, Spain). Willem algorithms correspond to
a set of data-driven AI models developed in a cloud platform
based on deep learning methodologies trained with a data-
base including 1,234,207 hours of electrocardiograms
(ECGs) from 47,035 real anonymized patients. No simulated
data have been used for these trainings. A supervised learning
methodology has been used to train the AI algorithm using
data labeled by cardiology experts. Specifically, Willem is
composed of an improved Inception network,14 which
maps ECG recordings to 84 diagnostic classes. The main
model takes the raw ECG data of 1, 2, 3, or up to 18 different
leads (sampled at a minimum of 128 Hz) as input; it also al-
lows the inclusion of static hand-crafted features. The model
corresponds with a series of convolutional networks layers
(CNN) followed by inception blocks.21 Likewise, the final
fully connected (FC) layer is modified to incorporate static
hand-crafted features, and relatively large kernel sizes are
used in CNNs. Finally, the training error was obtained as
an average binary cross-entropy loss, whereas loss was opti-
mized using the Adam optimizer with an initial learning rate
0.001. The models were trained with 50 epochs using a batch
size of 128.
Statistical analysis
Continuous data are given as mean 6 SD or median [inter-
quartile range] as appropriate. All categorical data are given
as proportions. Global performance of the AI detection algo-
rithms is described according to standard estimations of accu-
racy, sensitivity, specificity, PPV, NPV, and the F1 score.22

Statistical analyses were performed using Stata software (Sta-
taCorp, College Station, TX).
Results
Our study cohort included 20 patients (mean age 68 6 12
years; 50% women) with an ICM. Patient characteristics
are given in Table 1. Indications for ICM implantation
were unexplained syncope in 15 patients, AT/AF in 1, cryp-
togenic stroke in 1, and risk of cardiac arrhythmias in 3.

https://www.merlin.net/it/web/chakravyuh/login
http://Merlin.net


Table 2 Comparison of episode classifications by expert cardiologists and AI algorithm

Cardiologist classification

AI classification AT/AF (n 5 528) VT (n 5 18) Brady (n 5 199) Pause (n 5 2) Other (n 5 1514)

AT/AF (n 5 589) 510 0 0 1 78
VT (n 5 20) 1 14 0 0 5
Brady (n 5 200) 0 0 199 1 0
Pause (n 5 0) 0 0 0 0 0
Other (n 5 1452) 17 4 0 0 1431

AI5 artificial intelligence; AT/AF5 atrial tachycardia/atrial fibrillation (ie, atrial tachyarrhythmia); Brady5 bradycardia; VT5 ventricular tachyarrhythmia.
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During mean follow-up of 236 4 months, 19 patients had
2261 SECGs recordings associated with cardiac arrhythmia
detections or patient symptoms.
AI detection accuracy
Expert electrophysiologist classifications, together with the
AI algorithm classifications and their correspondences and
discrepancies, are given in Table 2. AI classification overall
accuracy, PPV, NPV, sensitivity, specificity, and F1 score
are given in Table 3. The AI algorithm classified arrhythmia
SECGs with 95.4% overall accuracy, with 97.19% sensi-
tivity, 94.52% specificity, 89.74% PPV, and 98.55% NPV.
Figure 1 shows patient ECG examples of cardiac events
correctly classified by AI for each of the 5 types of episodes
(AT/AF, VT, bradycardia, pause, or Other).

AI misclassified 24 true-positive arrhythmias (Table 2). In
3 cases, the AI algorithm classified episodes as true arrhyth-
mias but assigned to them the wrong type. This occurred for 2
pauses, classified as bradycardia (ECG example shown in
Figure 2) and AT/AF, respectively, and for 1 AT/AF classi-
fied as ventricular tachycardia. The other 21 cases, which
were classified by expert cardiologists as 4 VT and 17
AT/AF, were classified by AI as nonmajor cardiac arrhyth-
mias (ECG examples in Figure 2). All 4 AI false-negative
VTs were very short (,4 seconds) in duration. AT/AF
false-negatives were short (,4 seconds) atrial tachycardias
or reinitiation of previously detected AF episodes with a
controlled ventricular response. In addition, most of the AI
misclassifications were nonsevere cardiac arrhythmias
(Figure 3).

The only AI false-positive in VT detection was due to an
AF episode with fast ventricular response at 129 bpm and
aberrant ventricular conduction.
Table 3 AI algorithm classification accuracy

Class PPV (%) NPV (%)

AT/AF 86.59 98.92
Ventricular tachycardia 70.00 99.82
Bradycardia 99.50 100.00
Asystole - 99.91
Any arrhythmia 89.74 98.55

Global accuracy 5 95.27%

NPV 5 negative predictive value; PPV 5 positive predictive value; other abbre
AI capability to reduce false-positive detections
Of the 1514 episodes classified by expert cardiologists as
nonarrhythmic events, the AI algorithm identified 1431
episodes as nonarrhythmic; therefore, the application of AI
would have reduced the number of false-positive detections
by 94.52% overall (Table 2).

To evaluate AI capability to discard false-positives as a
function of ICM-detected arrhythmia type, we had to discard
SECGs transmitted by patients due to symptomatic episodes
and to associate device classifications, expert electrophysiol-
ogist classifications, and AI algorithm classifications. Due to
the data anonymization process, this association was possible
for only 1464 episodes, which formed the dataset for analyses
of the secondary objectives. The AI algorithm identified 1065
of 1087 false-positive arrhythmias; therefore, AI application
to ICM data would have reduced false-positive detections by
98.0% (Figure 4). In particular, the AI algorithm identified
187 of 199 AT/AF false-positives (false-positive reduction
5 94.0%); 7 of 8 VT false-positives (false-positive reduction
5 87.5%); 186 of 187 bradycardia false-positives (false
positive reduction 5 99.5%); and 685 of 693 asystole
false-positives (false-positive reduction 5 98.8%). Figure 5
shows some ECG examples of device false-positive classifi-
cations corrected by AI.
SharpSense detection technology
Of 15 patients implanted before April 2019, 9 had observa-
tion periods .6 months both before and after upload of the
SharpSense detection technology. Implementation of Sharp-
Sense detection technology reduced the number of ICM
false-positive detections from 3331 false-positive detections
in 2938 days to 685 false-positive detections in 3843 days.
When normalized as a function of time, this reduced 7.9
Sensitivity (%) Specificity (%) F1 score (%)

96.59 95.44 91.32
77.78 99.73 73.68
100.00 99.95 100
- 100.00 -
97.19 94.52 93.32

viations as in Table 2.



Figure 1 Examples of electrocardiograms from different patients showing events that were correctly classified the WillemTM artificial intelligence algorithm
according to the real cardiac alteration (WillemTM TP column). AT/AF5 atrial tachycardia/atrial fibrillation (ie, atrial tachyarrhythmia); Brady 5 bradycardia;
TP 5 true positive; VT 5 ventricular tachycardia.
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false-positive detections per week to 1.24 false-positive
detections per week (82.3% reduction of false-positive
detections).

During SharpSense detection, there were 518 false-
positive detections for which we could associate device clas-
sifications, expert electrophysiologists classifications, and AI
algorithm classifications. In this sample of episodes, the AI
algorithm identified 507 of 518 false-positives; therefore,
AI would have reduced false-positive detections by 97.9%.
In particular, the AI algorithm identified 71 of 78 AT/AF
false-positives (false-positive reduction 5 91.0%); 5 of 6
VT false-positive episodes (false-positive reduction 5
83.3%); 38 of 38 bradycardia false-positives (false-positive
reduction 5 100%); and 393 and 396 asystole false-
positives (false-positive reduction 5 99.2%).
ICM-confirmed detections and clinical outcomes
Of the 20 patients (mean follow-up 23 months), 15 had car-
diac arrhythmias detected by the ICM. True arrhythmias
were confirmed in 11 patients, and 6 patients had confirmed
device detections that were clinically relevant to improving
diagnosis or treatment.

The ICM detected AT/AF episodes in 9 patients, and de-
tections were confirmed as true AT/AF episodes in 8 of 9



Figure 2 Examples of electrocardiograms from different patients showing events that were misclassified (false-positive [FP]) or undetected (false-negative
[FN]) by the WillemTM artificial intelligence algorithm (WillemTM FP & FN column). The annotations given by cardiologists also are shown (Cardiologist col-
umn). Abbreviations as in Figure 1.
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patients (88.9%). Patient-averaged PPV was 49%. Device
AT/AF classification accuracy improved as a function of
AT/AF duration. For any AT/AF episode duration, the raw
PPV of device detection on AT/AF episodes was 23%,
whereas for episodes with AT/AF duration longer than the
median (59 minutes) raw PPV was 58%; and for episodes
with AT/AF duration longer than the third quartile (4.5
hours) raw PPV was 100%.

Oral anticoagulation therapy was initiated in 1 patient who
received the ICM to detect cardiac arrhythmias after a stroke.
This patient had a CHA2DS2-VASc score of 5. During the
observation period, the ICM detected several AT/AF epi-
sodes with median duration of 10 minutes and longest dura-
tion of 66 minutes.
AF ablation was performed in a patient who received the
ICM to characterize the burden and frequency of AT/AF. In
this patient during an observation period of 19 months, 23
AT/AF episodes were detected, with median duration of 5
hours and longest duration of 27 hours.

Pacemaker implantation was indicated in a patient who
received the ICM for unexplained syncope after the ICM de-
tected 9 episodes of severe bradycardia, with a mean rate of
30 bpm, mean duration of 11 seconds, and a 5-second asys-
tole.

In 2 other patients who received the ICM for unexplained
syncope, true bradycardia episodes were detected, but the
bradycardia rate was .40 bpm and no clinical actions were
taken.



Figure 3 Examples of electrocardiograms from different patients showing events that were misclassified by theWillemTM artificial intelligence algorithm (Wil-
lemTM FP column). The annotations of the cardiologists also are shown (Cardiologist column). Abbreviations as in Figures 1 and 2.
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The ICM also detected a true asystole of 5-second dura-
tion in another patient who received the ICM for AF moni-
toring but had a presyncopal episode in his history.

The ICM detected true VT in 4 patients. In 2 of these pa-
tients, the ICM allowed an improved characterization of
ventricular tachycardias because VT was already known
in the patient history, and the ICM was implanted to
monitor threatening arrhythmias in these patients. In the
other 2 patients who received the ICM for unexplained syn-
cope, the VT episodes had a duration of 5 and 7 seconds,
respectively. No specific actions were taken in these 2
patients.

Patient-averaged PPV was not estimated for bradycardia,
asystole, and VT episodes because of the limited number of
true episodes per patient or of patients with those arrhythmia
type.
Discussion
The main finding of this study was that the evaluated AI al-
gorithm accurately classified episodes detected by ICM.
This result confirms that AI algorithms can be used to triage
ICM data with the aim of discarding ICM false-positive de-
tections and reducing health care staff workload.
AI detection accuracy
The Willem AI algorithm, which was developed and trained
on ECG and cardiac Holter data, when applied to our ICM
data classified arrhythmia SECGs with 95.4% overall accu-
racy, 97.19% sensitivity, 94.52% specificity, 89.74% PPV,
and 98.55% NPV.

To the best of our knowledge, before our analyses, only
Mittal et al19 had evaluated AI algorithm application to
improve accuracy of ICM detection of cardiac arrhythmias.
Our data add important insight into the field of applying AI
to ICM data, as Mittal et al19 evaluated a different AI algo-
rithm and a different ICM. Furthermore, they only evaluated
AI applied to AT/AF detections in patients with cryptogenic
stroke, patients with knownAT/AF, and patients who had un-
dergone AT/AF ablation, whereas we also applied AI to
bradycardia, asystole, and VT detections. Another important



Figure 4 Histogram showing the absolute number of false-positive episodes detected by the insertable cardiac monitor (ICM) (blue bars) and after application
of the WillemTM artificial intelligence algorithm (black bars). The reduction in false-positive detections is also expressed as percentage and indicated next to the
arrows for each episode type. Abbreviations as in Figure 1.
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difference with our research is that Mittal et al19 applied the
AI algorithm on ECG signals extracted from images of epi-
sodes stored in the ICM summary report, with the inherent
possibility of data distortion, whereas we extracted digital
data from the device diagnostics, which could have contrib-
uted to a better sampling frequency of our signals. Our find-
ings for AT/AF detections (PPV 86.59%, NPV 98.86%,
sensitivity 96.41%, specificity 95.44%) (Table 3) compare
favorably with the results reported by Mittal et al19 (PPV
58.7%–81.1%; NPV 96.8%–98.6%; relative sensitivity
98.1%–99.4%; specificity 39.5%–66.4%).

The AI algorithm used in our research failed to classify 24
arrhythmias (Table 2). However, if we had applied the AI al-
gorithm in our clinical practice, these classification failures
would have not caused clinical issues. For 3 of those epi-
sodes, the AI algorithm classified them as true arrhythmias
but assigned them to the wrong arrhythmia type, regardless
of this, the AI would have appropriately selected those epi-
sodes for clinician review. When considering the other 21
arrhythmia episodes, which were classified by expert cardiol-
ogists as 4 VT and 17 AT/AF and were classified by AI as
nonmajor cardiac arrhythmias (ECG examples in Figure 2),
all of these episodes occurred in patients who had previously
suffered those types of arrhythmias, so arrhythmia occur-
rence was already known to the cardiologists following those
patients.
Impact of AI algorithm on false-positive
arrhythmia reduction
The AI algorithm applied in our research, if used to review
SECGs collected in our patient population during the com-
plete observation period, would have reduced the number
of false-positive detections by 98.0% overall: 99.5% for
bradycardia, 98.8% for asystole, 94.0% for AT/AF, and
87.5% for VT. As discussed previously, our results on AI
application can be compared only with those of the study
by Mittal et al,19 which found that AI application decreased
the number of false-positive AT/AF episodes by 66.4% for
patients with cryptogenic stroke, by 66.2% for patients
with known AT/AF, and by 39.5% for patients who had un-
dergone AT/AF ablation. The finding that our false-positive
percent reductions with AI were higher may depend on
several potential factors, such as AI algorithm classification
accuracy, ICM detection accuracy, ICM detection yield,
and ICM programming in terms of how many detected epi-
sodes are stored in the device diagnostics. In a randomized
study, Ip et al5 demonstrated that Confirm Rx devices, such
as those used in our study, are associated with a faster and
higher detection yield and a higher number of episodes stored
in the device diagnostics compared with the devices used in
the study by Mittal et al.19
SharpSense detection algorithm
After enabling the SharpSense detection algorithm, the num-
ber of false-positive episodes detected by the ICM was
reduced by 82.3%. This result is in accordance with recent
findings described by Gopinathannair et al,13 who showed
that upgrade to the SharpSense detection algorithm signifi-
cantly reduced false-positive bradycardia episodes by
91.5% and false-positive pause episodes by 82.8%. Despite
the SharpSense detection algorithm being more accurate
than the previous detection algorithm, false-positive detec-
tions, especially for bradycardia and asystoles, also occurred
in the SharpSense detection period, likely due to R-wave
undersensing and/or transient loss of electrode–tissue con-
tact. Application of the Willem AI algorithm to triage



Figure 5 Examples of electrocardiograms from different patients showing events that were detected as arrhythmias by the insertable cardiac monitor (ICM FP
column) and then correctly reclassified by the WillemTM artificial intelligence algorithm according to the real cardiac alteration made by the cardiology experts
considered as the gold standard (WillemTM TP column). Abbreviations as in Figures 1 and 2.
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SharpSense detections improved detection accuracy, with a
97.9% reduction of false-positives.

ICM PPV
ICM PPV is a quantity that characterizes ICM detection accu-
racy and usually is estimated as an average of each patient
detection PPV for each arrhythmia type. Only for AT/AF epi-
sodes did our data, from 9 patients with AT/AF episodes, allow
us to perform a good estimation of patient-averaged PPV
(49%). This value can be comparedwith similar estimations re-
ported by other investigators on the same ICM used in our
research or on different ICMs. In a randomized study
comparing the detection yield of 2 ICMs (Reveal LINQTM

[Medtronic, Minneapolis, MN] and Confirm Rx), 92 AT/AF
episodes were detected from 11 patients in the Reveal LINQ
group, and 1597 AT/AF episodes were detected from 20 pa-
tients in the Confirm Rx group.5 Patient-averaged PPVs were
52% and 38%, respectively (P5 .50).5

Mittal et al19 evaluated Reveal LINQ ICMs and found an
overall PPV for AT/AF detections of 53.9%, which differed
according to the patient population: 32.8% for patients with
cryptogenic stroke, 59.5% for patients with known AF, and
69.4% for patients who had undergone AF ablation.

For our data, PPV depended on arrhythmia duration for
AF episodes, with improved PPV being a function of AT/
AF duration.

Accurate estimation of patient-averaged ICM PPV for ar-
rhythmias other than AT/AF was not possible because of the
limited number of patients having those arrhythmias and/or
the limited number of episodes per patient for those arrhythmias.

Clinical implications
The clinical value of ICM depends on reliable
arrhythmia detection and fast transmission of data to cli-
nicians that enable them to take prompt medical action
and improve patient care. According to current clinical
practice, ICMs automatically transmit SECG data daily
using Bluetooth and Wi-Fi to a Web-based platform,
and clinicians can review data and classify arrhythmias.
Our results show that the evaluated AI algorithm can
improve this practice by providing accurate arrhythmia
classification. We showed that AI algorithms applied to
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ICM SECG data have high sensitivity and specificity in
detecting true-positive arrhythmias and discarding false-
positive detections. In this way, AI can be used to (1)
triage data, (2) reduce the workload of health care staff
in adjudicating transmitted information and discarding
false alerts, and (3) focus on clinically actionable data.
When confirmed in a larger cohort of patients, our re-
sults will be pivotal for the future application of AI
and its integration into the hardware of future ICMs or
in remote monitoring solutions.

Improved AI algorithm performance and new possibilities
for AI application likely will derive from attempts to train AI
algorithms on large SECG datasets using reinforcement
learning techniques.
Study limitations
Our results derive from a limited number of patients who
received a specific ICM and from application of a specific
AI algorithm. Therefore, our findings cannot be generalized
to all ICMs or to different AI algorithms. Our analyses
confirm and expand those previously reported for a different
ICM and a different AI algorithm19; therefore, we believe
they are important and strongly suggest the possibility of
improving ICM detection accuracy through AI application.
Our findings cannot be generalized to patients who receive
an ICM for different indications. Further research on larger
cohorts of patients is warranted to confirm our findings and
to evaluate whether AI application may translate into better
clinical outcomes compared with standard clinical practice.
Conclusion
Our research showed that AI algorithms, trained on ECG and
cardiac Holter data to detect cardiac arrhythmias, accurately
classify episodes detected by ICMs. The application of AI
may improve ICM detection accuracy and significantly
reduce health care staff workload by triaging ICM data.
This finding has relevant clinical implications for the use of
ICMs and more generally for remote care of patients im-
planted with insertable cardiac devices because AI may
reduce the data review burden, which currently hampers
the expansion of remote monitoring. In the future, it also
may improve arrhythmia detection and prediction.
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