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Abstract

To what extent does our online activity reveal who we are? Recent research has demon-

strated that the digital traces left by individuals as they browse and interact with others online

may reveal who they are and what their interests may be. In the present paper we report a

systematic review that synthesises current evidence on predicting demographic attributes

from online digital traces. Studies were included if they met the following criteria: (i) they

reported findings where at least one demographic attribute was predicted/inferred from at

least one form of digital footprint, (ii) the method of prediction was automated, and (iii) the

traces were either visible (e.g. tweets) or non-visible (e.g. clickstreams). We identified 327

studies published up until October 2018. Across these articles, 14 demographic attributes

were successfully inferred from digital traces; the most studied included gender, age, loca-

tion, and political orientation. For each of the demographic attributes identified, we provide a

database containing the platforms and digital traces examined, sample sizes, accuracy

measures and the classification methods applied. Finally, we discuss the main research

trends/findings, methodological approaches and recommend directions for future research.

Introduction

We use the internet and digital devices in many aspects of our lives—to communicate, work,

shop, bank, etc. Approximately 50% of the world’s population now use the internet [1] and

current estimates predict that around 30 billion devices will be connected to each other by

2020 [2]. With every click or online interaction, digital traces (also known as ‘digital foot-

prints’) are created and captured (usually automatically), providing a detailed record of a per-

son’s online activity. This constant generation of digital data provides opportunities to harvest

and analyse ‘big data’ at an unprecedented scale and gain insights to an individual’s demo-

graphic attributes, personality, or behaviour. Such information can be incredibly valuable for

organisations (e.g. marketers, researchers, governments) hoping to understand digital data

and predict future outcomes. Computer and data scientists have used digital data to success-

fully predict events including: the spread of flu in the US [3], box office revenue for new films

[4], election results [5] and reactions or opinions to events such as the Arab Spring [6].

Predicting individuals’ demographic attributes has become a rapidly growing area of

research in recent years. However, the innumerable attributes, traces and platforms available,
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combined with diverse methodological approaches means that research is extremely disparate

and published in a variety of journals and conference proceedings. In this article we systemati-

cally review existing research to address the questions: (i) what demographic attributes can be

predicted from digital traces? (ii) what traces and platforms have been studied? and (iii) how

effective are current methodologies and predictions? In synthesising this information, we

review current findings and offer recommendations for future research.

Background

Inferring individuals’ demographic attributes has a long history in fields such as computer

forensics and marketing. For instance, computer forensic investigators seek to determine the

legitimacy of communications and online activities in order to prevent crimes such as bullying,

harassment, or the unauthorised conveyancing of information. Marketers seek to establish

who people are in order to target products and services to their desired audiences. In some cir-

cumstances, inferring certain attributes such as gender, approximate age and ethnicity may be

relatively easy if individuals disclose this information or if they are visible in photographs.

Conversely, if such information is absent, or if individuals try to masquerade as someone else,

inferring attributes accurately becomes much more difficult.

One way of addressing this challenge is to analyse digital traces that ‘objectively reveal’ a

person’s identity. For instance, personality researchers have suggested that individuals leave

behavioural residue (unconscious traces of actions that may objectively depict their identity,

e.g. web browsing histories) when they interact online (e.g. [7,8]). Thus, behavioural residue

such as language patterns, smartphone metrics and meta-data (e.g. no. posts, no. followers),

provide opportunities to infer demographic attributes with computational techniques (e.g. nat-

ural language processing, machine learning) that would be too complex for humans to process.

To date, numerous studies have predicted demographic attributes accurately from digital

traces including Facebook likes [9–11], smartphone logs [12–15], Flickr tags [16], and lan-

guage-based features [17–20].

Network analysis is another approach that can be useful for attribute inference. Researchers

studying social networks often examine if people who are similar in age, interests, location etc.

tend to be closely located in their social networks. Homophily–the notion that birds of a feather
flock together is incredibly useful within this context, because gathering data from a person’s

network may improve the predictive accuracy of individuals for whom we have little, or dis-

torted, data. The downside is that highly sensitive, or private attributes may be identifiable

from other people’s data. Indeed, this possibility raises numerous ethical and privacy concerns

about what true ‘informed consent’ is, and what can be considered ‘personally identifiable

information’ when hidden traits can be discovered using a combination of seemingly innocu-

ous unrelated digital traces. For instance, the data analytics company, Cambridge Analytica

recently came under scrutiny in the news for using data collected from approximately 87 mil-

lion individuals’ Facebook accounts without their explicit consent [21]. The data was suppos-

edly used to create targeted advertisements, which attempted to influence people’s voting

preferences in the ‘Vote Leave’ campaign in Britain’s European Referendum, and Donald

Trump’s 2016 presidential election [21,22]. If we are going to be able to critique such efforts,

and identify what information about a person should be considered ‘protected’, then it is

important that we know what the current state-of-the-art is in terms of predicting attributes

from digital traces. These joint concerns motivate the present systematic review.

Although demographic inference is almost entirely reported in computer science journals

and conferences, there is extensive social psychology research that has explored how demo-

graphic attributes (particularly gender and age) relate to certain behaviours, such as language
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[23], technology use [24–26] and social activities [27]. Unfortunately, the two fields tend to

remain distinct, with each adopting different conventions in terms of focus, methods and pub-

lishing. Computer scientists typically focus on improving methods and prediction outcomes,

whereas psychologists aim to understand people’s behaviour. As such, the majority of research

identified by our search was published within computer science outlets. However, we seek to

bridge this gap, wherever possible by discussing related psychology research. In the following

section we outline our methods and search criteria.

Method

Search strategy

We systematically searched for articles published up until October 2018 (i.e. our search had a

cut-off date of 30th September 2018) using four strategies. First, we performed searches in the

Web of Science, IEEE and ACM online libraries for all relevant articles by searching for key-

words and topic-related terms. These included (predict� or identify or detect� or Facebook or

Twitter or Instagram or YouTube) and (demographic� or age or gender) and (digital or inter-

net or online or computer-mediated) and (social� or web� or mobile� or sms or big data). Sec-

ond, we identified all first authors with 3 or more papers and individually searched for further

relevant papers written by these authors (identified via Google Scholar, Research Gate and

their personal university web pages). Third, we hand searched the references of the papers that

met our inclusion criteria and retrieved all further references. We performed this step itera-

tively on each paper added to the set, until no further papers were retrieved. Fourth, experts in

the field were contacted to request information about any other studies that we might not have

located. The search generated no studies that were in non-English languages. Our search strat-

egy and statistics are reported in accordance with the PRISMA (Preferred Reporting of Items

for Systematic Reviews and Meta-Analysis, www.prisma-statement.org) guidelines. The sup-

porting PRISMA checklist is available as supporting information (see the PRISMA checklist

included as S1 Table).

Inclusion criteria

To be included in the review, studies had to: (i) report findings where at least one demographic

attribute was predicted/inferred from at least one form of digital footprint, (ii) the method of

prediction had to be automated—this could include supervised, semi-supervised or unsuper-

vised machine learning and (ii) the digital footprints could either be public (e.g. tweets) or pri-

vate (e.g. clickstreams). All studies meeting these criteria were included in the review. The

search generated a total set of 327 papers. The PRISMA flow chart detailing the papers

retrieved and refined according to our criteria is displayed in Fig 1.

Data collection

For each demographic attribute we extracted the following data from each article: platform

and type of digital trace studied, classes used for classification (e.g. unemployed, employed for

‘occupation’; divorced, married, single for ‘family and relationships’), sample sizes, predictive

features, accuracy measures (including accuracy (%), area under the ROC curve (AUC),

F1-score, precision, and recall), types of classifier used, and publication data (i.e. year of publi-

cation, reference data, and the quality of the conference/journal). This data is available as a

series of tables in the supplementary materials (S2–S16 for each demographic attribute,

respectively).
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Study quality

To our knowledge, there are no existing protocols for assessing the quality of machine learning

studies. As such, we assessed the quality of the articles by classifying them on the rank of their

publication outlet (i.e. peer-reviewed conference proceedings and journals). We used highly

regarded ranking systems of scientific value, specifically the SCImago Journal Rank (SJR) indi-

cator (www.scimagojr.com) for journal articles, and the Excellence in Research in Australia

(ERA), Qualis (2012), and Microsoft Academic’s (MSAR 2014) field ratings for conferences

Fig 1. PRISMA Flowchart summarising study retrieval and selection.

https://doi.org/10.1371/journal.pone.0207112.g001
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databases for conference proceedings. All values were taken from the rankings made in 2018.

We scored articles across four categories as follows:

• High quality–journal articles in quartile 1 (Q1), and conference articles ranked as A, A1, or

A2

• Medium quality–journal articles in quartile 2 (Q2), and conference articles ranked as B, B1,

B2, B3, or B4

• Low quality–journal articles in quartile 3 (Q3) or quartile 4 (Q4), and conference articles

ranked as B5, or C.

• Not reported (NR)–journal and conference articles that were not indexed in any of the rank-

ing systems.

We assigned articles that were ranked in multiple categories or quartiles to the highest rank-

ing, for example, articles ranked as B and B5 were classified as ‘medium quality’ (rather than

‘low quality’). A similar approach was used by Azucar, Marengo and Settanni [28] in their

review of personality prediction from digital footprints.

Results

Our search generated a total of 327 articles examining 14 demographic attributes including:

gender (n = 241), age (n = 157), location (n = 32), political orientation (n = 33), sexual orienta-

tion (n = 7), family and relationships (n = 19), ethnicity and race (n = 20), education (n = 16),

income (n = 13), language (n = 9), health (n = 9), religion (n = 8), occupation (n = 22), and

social class (n = 1). Many of the articles studied multiple demographic attributes–Fig 2 displays

the proportion of attributes studied across our entire dataset.

One of the reasons the number of articles retrieved for gender and age were markedly

higher than the other attributes was because of a series of author profiling workshops (PAN) at

the Conference and Labs of the Evaluation Forum (CLEF) (https://pan.webis.de). The work-

shops were held annually and involved teams reporting their solutions to gender and age pro-

filing from a series of provided datasets. The results from the workshops resulted in 105

articles reporting gender, and 63 articles reporting age predictions.

Fig 3. displays the number of articles published per year (from 2000 up until Oct 2018)

along with number published per quality quartile. The findings highlight that over the last few

years, the majority of articles have been published in medium and high-quality journals and

conference proceedings. Although a reasonable number of articles were published in journals/

conferences that were not indexed in scientific databases, (i.e. we cannot assess the quality of

those studies), the number of low-quality articles appears to be very low. In the remainder of

this section we discuss the main research findings and trends for each demographic attribute.

Gender

Gender inference has a long history across numerous disciplines including computer forensics,

linguistics and social psychology. In contrast to many other demographic attributes (with the

exception of age), extensive research on inferring gender in offline contexts (e.g. conversations,

texts, essays) existed prior to the digital-based studies that have proliferated in recent years. As

such, it is perhaps unsurprising that gender is the most widely studied attribute within our set

(241 articles in total, 136 independent articles, and 105 from the PAN workshops) and is often

studied in tandem with age. Table 1 provides an overview of the articles published and associ-

ated references per platform. Table 2 provides an overview of the articles published and associ-

ated references per predictor. Because of the vast number of articles identified in the search,
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we discuss the main trends and findings identified over a series of sub-sections, outlined

below.

Language. An individual’s choice of language is largely related to their gender, a phenom-

enon that has been extensively studied by sociolinguists for decades, e.g. [263–265] in written

texts, such as essays, poems, scientific articles or speech transcripts, e.g. [266,267]. In general,

males and females have been found to differ in numerous ways; typically females tend to use

more emotion words, negations and hedges, and males tend to use more assertion, swear

words, and long words (over six letters in length), e.g. [268,269]. Lakoff [265] argued that these

differences were caused by power differences in society, where women’s lack of power would

cause them to adopt more polite and uncertain forms of language. For comprehensive discus-

sions on gender and language, see the work by Coates [270], Lakoff [271], or Holmes and

Mayerhoff [272].

On the internet, people’s interactions and communication patterns can change markedly

for numerous reasons: a) non-verbal and prosodic cues are lost, b) the design of social media

platforms, websites etc. influence the way people converse, and c) individuals may become

more conscious of how they present themselves towards others. Digital language traces, com-

bined with computational analytics or tools, such as natural language processing (NLP), and

Linguistic Inquiry Word Count (LIWC) [273] enable researchers to study language and gender

at mass scale, and in more naturalistic environments. In recent years, gender inference

Fig 2. Waffle chart highlighting the proportion of demographic attributes comprising our dataset.

https://doi.org/10.1371/journal.pone.0207112.g002

Fig 3. Number of articles published per year and by quality of publication.

https://doi.org/10.1371/journal.pone.0207112.g003

Digital footprints and demographics review

PLOS ONE | https://doi.org/10.1371/journal.pone.0207112 November 28, 2018 6 / 40

https://doi.org/10.1371/journal.pone.0207112.g002
https://doi.org/10.1371/journal.pone.0207112.g003
https://doi.org/10.1371/journal.pone.0207112


research has grown rapidly, with around 90 of the studies in our set performing some form of

predictive analysis across a variety of platforms including Twitter [65,81,84,134], blogs

[205,206,211,213], Facebook [157,159,160] and emails [235,236,240]. Researchers have also

analysed how language differs by style, [134,205,235,248] sentiment, [74,157,171,255] structure

[195,199,235] and content [18,67,84,199].

Overall, research has demonstrated that gender can be predicted from digital traces reason-

ably successfully, with accuracies often reaching 80% and above [66,72,81,112,193,195,207,

209,274]. Studies have highlighted similar trends to offline studies of language, in that females

are more likely to use pronouns, emotion words (e.g. happy, bored, love), interjections (e.g.

urgh, hmm), while males tend to use more practical dictionary-based words, proper names

(e.g. sports team names, numbers and technology words, e.g. [64,160,198,205]. Emoticons (e.g.

<3, ☺ and abbreviations (e.g. lol, omg) (which are more often associated with online dis-

course) tend to be used more frequently by females, whereas males are more likely to post

links to websites, videos etc. [67,160]. Gender prediction is also detectable at the level of

Table 1. Number of articles predicting gender, with associated platforms and references.

Category (n = no. articles) Platform (n = no. articles) References

Social Media (134) Twitter (106) [17,20,29–155]

Facebook (7) [10,156–161]

YouTube (2) [162,163]

Netlog (2) [164,165]

Flickr (3) [16,166,167]

Pintrest (1) [168]

Instagram (1) [169]

Sina Weibo (1) [170]

Social Media (General) (25) [93–100,102,103,127–133,135–142,171]

Digital Devices (22) Smartphones (25) [12–15,172–192]

Tablets (1) [193]

Websites (23) News sites (3) [194–196]

Websites (6) [179,197–201]

IMDB (1) [202]

Hotel Reviews (25) [93–100,102,103,127–133,135–142,171]

Movielens (2) [203,204]

Crowdfunding Essays (1) [88]

Blogs (58) Blogger.com (4) [18,205–207]

Blogs (General) (51) [88,93–100,102,103,127–133,135–142,171,208–232]

Vietnamese Blogs (1) [233]

Tumblr (1) [234]

Emails (9) NR (9) [196,235–242]

Radio (3) Last.fm (3) [243–245]

Search Engines (2) Yahoo! (1) [246]

Bing (1) [9]

Chat (20) Chat Logs (General) (18) [215,216,226–232,217–221,223–225]

Heaven BBS (2) [247,248]

Games (1) World of Warcraft (1) [249]

Other (18) Wi-Fi (1) [250]

NA (1) [251]

Professional Writing (1) [88]

Essays (15) [127–133,135–142]

https://doi.org/10.1371/journal.pone.0207112.t001
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individual words, word-stems (parts of words) and ngrams (sequences of items or letters, e.g. a

unigram = 1 letter, a bigram = 2 letters, a trigram = 3 letters and so forth) e.g. [64,70,72,252,

275]. For instance, Mueller and Stuemme [72] found that females tended to use bab, feel and

girl (word stems), aa, ah, ee (digrams), and aaa, aha, ee (trigrams), whereas males used scor,

team, win (word stems), er, in, re (digrams) and ent, ing, ion (trigrams). S2 Table provides

examples of the specific language markers that were particularly successful in predicting

gender.

Although these studies have consistently demonstrated trends in gender inference, we

should be careful not to generalise the extent to which gender manifests in digital-based lan-

guage. Most research treats gender as a binary classification task, and attempts to find markers

Table 2. Number of articles predicting gender, with associated predictors and references.

Category (n = no.

articles)

Predictors (n = no. articles) References

Social Media (134) Language (123) [20,29–65,67,70,72–76,78,80,81,83–89,91–100,102–144,146–149,151–155,158–160,162–

165,171,209,214,252–255]

Network Data (8) [51,61,62,66,69,78,162,252]

Colours (4) [79,90,101,163]

Meta-data (17) [61,63,66,69,72,74,78,134,159,171,209,210,252,256–259]

Names (13) [29,40,51,69,82,90,112,145,158,161,166,259,260]

Images (30) [37–39,41–60,76,77,82,166–169]

Locations (2) [29,209]

Facebook Likes (2) [10,156]

Tags (3) [16,167,169]

Activity (1) [169]

Check-ins (1) [170]

Digital Devices (22) Application Data (9) [12–14,172,178,182,188,189]

Call Logs/SMS Data (11) [14,15,174,178,181,182,187–189,191,192]

Location Data (4) [183–186]

Websites (23) Language (35) [62,93–100,102,103,127–133,135–142,171,194–196,198,199,202,204,208]

Website Data (1) [197]

Network Traffic Traces (1) [179]

Background Colours (1) [261]

Video Tags/Titles (1) [203]

Web Usage Data (1) [200]

Blogs (58) Language (55) [18,93–100,102,103,127–133,135–142,157,171,205–209,211–213,215–221,223–234,262]

Behavioural Data (1) [234]

Meta-data (3) [66,206,212]

Emails (9) Language (9) [196,235–242]

Radio (3) Meta-data, Listening Habits

(3)

[243–245]

Search Engines (2) Query Log Data (1) [246]

Facebook Likes, Profile Data

(1)

[9]

Chat (20) Language (20) [215,216,225–232,247,248,217–224]

Games (1) Behavioural Data (1) [249]

Other (17) Wi-Fi Traffic (1) [250]

Academic Researcher Emails

(1)

[251]

Language (15) [127–133,135–142]

https://doi.org/10.1371/journal.pone.0207112.t002
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that uniquely identify males and females. However, this disregards evidence and theoretical

arguments that gender can be expressed in diverse ways [112], and that gender may manifest

differently across social groups, cultures, and contexts. Another consideration is that research

is heavily skewed toward inferring gender from English, meaning that there is little exploration

of whether these trends extend to other languages. A small number of studies within our set

examined other languages including Arabic [194,195], Japanese, Indonesian, Turkish, French

[61], Vietnamese [233,276], Russian and Portuguese [63]. The construction of other languages

presents numerous challenges–verbs and nouns are either masculine or feminine in French

and Spanish for instance, and (to our knowledge), there is less theoretical/social psychology

research that explores language-gender differences in other languages and cultures. However,

there is evidence to suggest that gender prediction from other languages can be just as success-

ful as English-based approaches. Ciot et al. [61] found that their classifiers which predicted

gender from French, Indonesia, Turkish and Japanese tweets achieved similar accuracies to

English datasets (with accuracies of 76%, 83%, 87% and 63% for each language respectively).

Future research could therefore explore the nuances and effectiveness of gender prediction in

other languages.

Network data and meta-data. Communications technologies such as social media, smart-

phones and other digital devices have provoked researchers to question whether an individu-

al’s gender can be predicted from their meta-data (e.g. number of posts, frequency of logins

etc.) or through network data derived from their social connections. Researchers often com-

bine such data with language in their classification models in attempt to improve predictive

accuracy. In some circumstances, network data have helped to compensate for shortfalls in

language-based predictions. For instance, Bamman et al. [260] found that misclassified males

and females (i.e. males who were predicted to be female because of their predominant use of

‘feminine’ language and vice versa) were often connected to more members of the opposite

gender within their networks. In other words, males who tended to use words commonly asso-

ciated with females, often had more female followers/friends in their networks and vice versa.

As such, males’ different use of language in this context may result from individuals ‘accom-

modating’ their peers and strong ties by matching their language to maintain and build rap-

port [277,278].

Other research has used the homophily principle to infer gender directly. For instance, Al

Zamal et al. [252] used data extracted from a person’s network neighbours (rather than the

individuals themselves) to predict gender on Twitter. Using features such as frequently-used

words, stems, ngrams and hashtags, combined with popularity measures of an individual’s net-

work neighbours, Al Zamal et al. [252] inferred gender as accurately as when using the individ-

ual’s own data (highest accuracy using network data = 80.02%, accuracy using individual’s

own data = 79.50%). Similarly, Jurgens et al. [67] predicted individuals’ gender from their

incoming communications (communications directed to an individual), achieving 80% accu-

racy. Jurgens et al. [67] suggested that because individuals tend to be similar to those in their

networks (in terms of their demographic attributes), communication with others often focuses

on common ground. This results in reciprocal self-disclosure, meaning that the content, senti-

ment etc. conveyed by an individual’s friends, also becomes revealing of what an individual

may be like.

Age

The study of age is a vast area of research, encompassing developmental, aging, and social psy-

chology that examines how age is affected by various social processes and how people commu-

nicate over their lifespans. Age inference is commonly studied alongside gender and has
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received much attention from researchers trying to understand how online behaviour may sig-

nal how old a person is. Our search generated a set of 157 articles (94 independent articles and

63 articles from the PAN workshops) that reported some form of age inference from digital

traces. Table 3 provides an overview of the articles published and associated references per

platform. Table 4 provides an overview of the articles published and associated references per

predictor. We discuss the main trends and findings for age inference over the following sub-

sections.

Language. Similar to gender, extensive research has examined how language use is related

to age, e.g. [23,279,280] and how a person’s language is influenced by their emotional experi-

ences, identity, social relationships and cognitive abilities over time e.g. [281–284]. Research

on age and language has highlighted that individuals’ use of positive emotion, future tense and

cognitively complex words (causation words, insight words, long words) tends to increase

with age, whereas negative emotion, first-person singular self-references and past tense words

tends to decrease [23]. Around 60 articles in our set conducted some form of analysis related

to age inferences and language across numerous platforms including Twitter [134,252,255,

285,286], websites [197–200], smartphones [13,14,174,178,287], and emails [238,239,241].

Researchers have also analysed how language differs by style [18,74,205,288], content

Table 3. Number of articles predicting age, with associated platforms and references.

Category (n = no.

articles)

Platform (n = no. articles) References

Website (32) IMDB (1) [293]

Other (8) [62,171,179,197–199,214,294]

Hotel Reviews (24) [93–100,102,103,127–133,135–142]

Search Engines (2) Bing (1) [9]

Yahoo! (1) [246]

Blogs (54) Blogger.com (4) [18,205,207,295]

Blogs (General) (50) [94–100,102,103,127–133,135–142,157,171,209,211,212,214–233,292,296]

LiveJournal (1) [297]

Smartphones (18) NR (18) [13–15,172–174,177–179,181–184,188,189,191,287,298]

Forums (2) Vietnamese Forums (1) [276]

Breast Cancer Forum (1) [292]

Social Media (84) Twitter (75) [20,51,62,65–67,71,73–75,82,84,87,89,91,93–100,102–111,113–142,171,209,214,252,285,286,290,293,299–

303]

Social Media (General)

(25)

[93–100,102,103,127–133,135–142,171]

Facebook (5) [10,156,159,160,304]

Flickr (1) [166]

Netlog (2) [164,165]

YouTube (2) [162,163]

Instagram (2) [169,289]

Pokec (1) [305]

Sina Weibo (3) [170,288,306]

Emails (4) NR (4) [238–241]

Radio (3) Last.fm (3) [243–245]

Games (1) World of Warcraft (1) [249]

Chat (19) NR (19) [215,216,225–232,291,217–224]

Other (14) Essays (14) [127–133,135–142]

https://doi.org/10.1371/journal.pone.0207112.t003
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[18,62,67,205,289,290], sociolinguistics [75,255], and ngrams [164,291,292]. S3 Table provides

examples of the specific language markers that were particularly successful in predicting age.

Overall, research has demonstrated that age can be predicted from language reasonably suc-

cessfully, with accuracies often reaching 70% and above [18,164,205,233,252]. Studies have

highlighted numerous patterns related to language and age; in terms of content, younger peo-

ple (in their teens and twenties) used words related to school, work, socialising, computer

games and comedians, whereas older adults (over 30) tended to use more family related words

and words associated with the news or society [18,62,211]. In terms of style, younger people

tended to use more acronyms, slang, self-references, and varied forms of grammar, whereas

older adults tended to use more mature and polite language, with less linguistic variation

[67,207].

Although these findings seem to broadly align with research on language and age in offline

contexts, current methods are quite limited. There is a tendency for researchers to treat age as

categorical variables such as 13–17, 18–24, 25–35, and then simply using ‘over 35’ or ‘over 40’

when predicting older ages. This approach can severely undermine the accuracy of prediction,

especially for adults over the age of 30 –surprisingly, only 15 studies treated age as a continu-

ous variable, e.g. [160,177,189,287,305]. In some circumstances, obtaining a more approximate

age may be acceptable, for instance it is highly unlikely that a person’s choice of product will

change vastly from the age of 23 to 24. Another factor that may have hindered research thus

far is that younger people tend to use the internet more than older people, so it may have been

more difficult to obtain decent ground truth/training data. For instance, a survey by the Pew

Internet Centre, highlighted that as of 2018, 66% of US adults over 65 use the internet, com-

pared to 98% of 18-29-year olds. These figures have increased from 14% and 70% respectively

since 2000 [308]. Future research may therefore want to consider exploring more nuances in

language use across specific ages.

Network data. Network data has also been a reliable indicator of a person’s age, with stud-

ies highlighting that people of similar ages tend to congregate in the same networks e.g. [177,

252,287] and communicate more with each other on social media e.g. [67,209]. Research has

also identified patterns of homophily in smartphone records and applications [181,191,287]

that varies across different age groups. For example, Park et al. [287] found that children (9

year olds), and teenagers (14-18-year olds) sent most of their SMS messages to others their

own age and Dong et al. [191] found that 18–35 year-olds had more (same and opposite gen-

der) contacts than people over 35, who had smaller, same-gender social circles. Similarly, chil-

dren and teenagers were also identifiable from their communication patterns to people their

parents age [287], which subsequently decreased as individuals became older. Although spe-

cific explanations from social psychology for these patterns of behaviour do not exist (to our

knowledge), these types of findings highlight the potential to gain new understanding and

extend existing explanations of how relationships and communication change over different

age groups.

Location

Location-based services (LBS) are incredibly useful across many domains, including personal-

ised services (e.g. local restaurants, hospitals, events), coordinating responses to disease or

disasters, and detecting security intrusion. Using digital traces to infer location data enables

researchers to examine the relationship between online behaviour and individuals’ locations

(e.g. regional nuances, countries etc.), rather than relying upon IP addresses. Because location

or geo-location-based work is an area of research within itself, we were careful to restrict our

inclusion criteria to studies that predicted location data relating specifically to individuals’
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home cities, countries etc. (as opposed to analyses of where individuals were at particular

moments in time, e.g. [309]. For articles that cover geolocation prediction in more detail see

the work by Jurgens et al. [310] and Stefanidis et al. [311]. 32 articles reported some form of

location prediction, across a range of granularities (e.g. home, city, country), platforms (e.g.

Twitter, Facebook, Flickr, Foursquare) and traces (e.g. language, network data, location fields

in profiles) (see Table 5 and Table 6 for breakdowns of the platforms, predictors and

references).

Inferring location accurately can be challenging due to the complexity of information avail-

able, individuals’ personal circumstances and platform design. These challenges have been

acknowledged in much of the research conducted to date. For instance, many applications

enable individuals to self-report their location–Facebook provides the “Current City” and

“Hometown” fields, and Twitter provides the profile “Location” field. Often these fields are

Table 4. Number of articles predicting age, with associated predictors and references.

Category (n = no.

articles)

Predictors (n = no. articles) Reference

Website (32) Language (30) [62,93,103,127–133,135,136,94,137–142,171,198,199,214,95–100,102]

Website Data (3) [197,199,294]

Network Data (1) [62]

Network Traffic Data (1) [179]

Demographics, Names,

Followers (1)

[293]

Search Engines (2) Facebook Likes (1) [9]

Query Logs (1) [246]

Blogs (54) Language (54) [18,93,103,127–133,135,136,94,137–142,171,205,207,209,95,211,212,214–221,96,222–

231,97,232,233,292,295,297,98–100,102]

Meta-data (6) [157,207,209,211,212]

Smartphones (18) Application Use (7) [13,14,177,178,182,188,189]

Call/SMS Data (15) [13,14,183,188,189,191,298,15,172,174,177–179,181,182]

Location Data (8) [14,173,178,182–184,188,189]

Accelerometer Data (5) [14,178,182,188,189]

Network Data (7) [15,174,178,179,181,191,287]

Forums (2) Language (2) [276,292]

Social Media (84) Language (81) [20,51,84,87,91–98,62,99,100,102,103,105–110,65,111,114–122,66,123–132,67,133–142,71,159,160,162–

165,171,209,252,255,73,285,286,288–290,299,300,302,306,307,74,82]

Meta-data (7) [66,169,285,289,300,306]

Network Data (12) [62,69,216,219,97,98,105,120,154,167,202,211]

Facebook Likes (2) [10,156]

Names (4) [51,82,166,301]

Images (4) [82,166,169,288]

Check-ins (1) [170]

Emails (4) Language (4) [238–241]

Radio (3) Music Meta-data/Listening

Habits (3)

[243–245]

Profile Information (1) [243]

Games (1) Character Features/Behavioural

Data (1)

[249]

Chat (19) Language (19) [215,216,225–232,291,217–224]

Meta-data (1) [291]

Other (14) Language (14) [127,128,138–142,129–133,135–137]

https://doi.org/10.1371/journal.pone.0207112.t004
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non-compulsory, and have no restrictions; as such, individuals can enter incorrect, non-exis-

tent or even fake information. For instance, Hecht et al. [313] found that 34% Twitter users

did not provide location information in their profiles, and those that did rarely provided detail

beyond their current city. Users who did provide data often replaced locations with false places

(e.g. “outta space”), sarcastic comments (e.g. “redneck hell”) or celebrities’ names (e.g. “Justin

Bieber’s heart”). Despite the limited reliability of profile location fields, numerous studies have

used them in their algorithms, but typically in combination with other digital traces such as

network data [312] name data [29] and tweet contents [315,316]

Other approaches have involved inferring location solely from language without consider-

ing other geospatial cues ([315,326,330]. Language may reveal aspects of an individual’s

demographic location if they directly reference particular venues, places or use certain collo-

quialisms or slang. For instance, people from Texas may use “howdy” frequently, or people

from London may reference Arsenal Football Club. Chang et al. [315] and Cheng et al., [325]

predicted individuals’ cities tweet location-related contents; their most accurate predictions

were 50.93% (within a 100 mile radius) and 78.80% (within a 536 mile radius) respectively.

Table 5. Number of articles predicting location, with associated platforms and references.

Category (n = no. articles) Platform (n = no. articles) References

Social Media (24) Facebook (2) [156,312]

Twitter (20) [29,67,75,82,87,89,313–326]

Flickr (3) [16,321,322]

Location-based Applications (5) Foursquare (3) [67,317,319,327,328]

Brightkite (1) [328]

Google+ (1) [319]

Gowalla (1) [328]

Blogs (1) NR (1) [233]

Emails (3) NR (1) [238,239,241]

Smartphones (2) NR (1) [179,329]

Forums (1) Webretho, Otofun, Tinhte (1) [276]

Search Engines (1) Yahoo! (1) [246]

Websites (1) NR (1) [179]

https://doi.org/10.1371/journal.pone.0207112.t005

Table 6. Number of articles predicting location, with associated predictors and references.

Category (n = no. articles) Predictor (n = no. articles) Reference

Social Media (24) Location Data (16) [19,31,322,69,312,314–319]

Network Data (7) [67,82,312,315,316,318,323]

Names (2) [29,82]

Facebook Likes (1) [156]

Language (16) [67,75,82,87,89,255,313–318,323–326]

Spatial, Visual, Temporal Features (1) [321]

Location-based Applications (5) Check-in Data (2) [327,328]

Location Data (3) [67,317,319]

Blogs (1) Language (1) [233]

Emails (3) Language (1) [238,239,241]

Smartphones (2) Applications (1) [179,329]

Forums (1) Language (1) [276]

Search Engines (1) Query Logs (1) [246]

Websites (1) Network Traffic Traces (1) [179]

https://doi.org/10.1371/journal.pone.0207112.t006
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Chang et al.’s method was particularly useful as it only required 250 local words, (selected by

unsupervised methods) in contrast to Cheng et al.’s approach which relied on 3,183 local

words (selected by supervised classification based on 11,004 hand-annotated ground truth

data).

Although these studies have demonstrated that inference from tweet content alone is possi-

ble, the language contained within tweets can be very noisy, as people may discuss varied top-

ics and may use language that does not readily link to specific locations (e.g. conjunctions,

prepositions, adjectives, or generic terms like ‘restaurant’, ‘city centre’). Network data may

therefore provide a more objective measure for predicting location. Numerous studies incor-

porated various forms of network data in their models including ‘friends” location data

[312,320] or network data combined with tweet contents or other meta-data, e.g. [82,310,315].

Traditionally, one would predict that people would tend to know (or be ‘friends’ with) more

people in close physical proximity to themselves, that is, they would be connected to people

who live in the same town or city. Although the internet has the ability to change this drasti-

cally, by connecting people over vast distances, research has highlighted that homophily still

holds within this context. Backstrom et al. [312] for instance found that the likelihood of

friendship reduced as a function of distance, and their model based on network associations

and address data was able to predict the locations of 69.10% of users within a 25-mile radius.

Finally, while the bulk of research has used Twitter data, other studies have examined other

platforms and devices, including smartphone applications [329] web traffic data [244] Four-

square e.g. [310,317,328] and Google+ [319]. Foursquare in particular, is designed to provide

users with personalised, location-based recommendations, based on their browsing histories,

purchases and check-in behaviour. Findings to date have demonstrated accuracies of 67.41%

for city [319,327], 80.92% for state, and 93.67% for country-level prediction [327].

Political orientation

In recent years, the internet has become a hotbed for publishing and promoting political activ-

ity. Social media in particular has become a forum where news stories are circulated, political

parties disseminate their agendas, and where any individual can express political opinions and

beliefs. As such, research exploring political related activity online has proliferated, with

researchers attempting to use online data to understand people’s political sentiments e.g.

[331,332] and predict election outcomes, e.g. [333,334]. Thus, inferring an individual’s politi-

cal orientation from their digital traces is just one area among a rapidly growing field of

research. Our search generated 33 articles that inferred political orientation from digital traces.

Twitter is the most studied platform, with language and network-based features most com-

monly used for inference (see Table 7 and Table 8 for overviews).

Inferring an individual’s political orientation accurately is particularly challenging because

it can vary in strength and change over time. This is particularly pertinent when external

Table 7. Number of articles predicting political orientation, with associated platforms and references.

Category (n = no. articles) Platform (n = no. articles) References

Social Media (25) Twitter (25) [19,20,293,299,302,335–341,62,342–346,75,82,84,86,252,255,274]

Facebook (2) [10,11]

Websites (3) IMDB (1) [293]

Search Engines (1) Bing (1) [9]

Blogs (4) Digg (1) [347]

Blogs (Other) (3) [348–350]

https://doi.org/10.1371/journal.pone.0207112.t007
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factors, such as societal events or political campaigns directly attempt to sway peoples’ ideolo-

gies. However, the subjective nature individuals’ political preferences has generally not been

reflected in existing research. The majority of studies in our set have treated prediction as a

classification problem, where individuals are categorised into two [10,86,252,338], three

[336,337], or four classes [341,342]. Given that most countries tend to be dominated by two

political parties, these approaches may seem logical for gaining a simplistic overview of indi-

viduals’ political preferences. However, the disadvantage is that such categorisations cannot

capture the strength or idiosyncrasies of individuals’ beliefs. Barberá [86] directly attempted to

address this problem by developing a model that estimated ideology on a continuous scale. By

using social ties (i.e. who individuals follow), Barberá [86] successfully inferred ideological

alignment (strength in terms of right vs. left leaning) across European countries and the US,

that correlated strongly with offline measures of voting records. As such, Barberá’s method has

since been widely adopted by other political scientists analysing political behaviour online, e.g.

[352,353].

Another challenge for predicting political orientation is that gaining valid ground truth is

often difficult. Many individuals do not explicitly state their political affiliation online, and

those that do are likely to be more politically opinionated or active that the average person. For

instance, Priante et al. (2016) claimed that fewer than 5% of Twitter members state their affilia-

tion. Cohen and Ruths [338] suspected this may have caused studies that used explicit political

preferences as ground truth to be biased in favour of political activists or those with strong

political views. To examine this, Cohen and Ruths [338] constructed three separate Twitter

datasets (comprising tweets and hashtags), each representing different strengths of political

orientation: a) US politicians’ accounts, b) users who self-reported their political orientation in

their accounts, and c) ‘modest’ users who frequently mentioned politics in their tweets, (such

that their orientation could be manually inferred), yet without any explicit declaration.

Cohen and Ruths’ [338] findings demonstrated that classification accuracy decreased as vis-

ible political engagement decreased. In other words, US politicians’ preferences were the easi-

est to predict, with 91% accuracy, followed by politically active users at 84% and modest users

at 68%. Given that much of the previous research used self-reported political affiliation as

ground truth, e.g. [252,255,340], these findings suggested that many of the reported accuracies

were likely unrepresentative of the general population. Cohen and Ruths examined this further

by testing the transferability of their classifiers and found that accuracy reduced significantly–

to 11% when classifiers trained on political figures were tested on modest users.

Perhaps due to Cohen and Ruth’s (somewhat concerning) findings, subsequent research

has adopted more cautious approaches toward classification. Preotiuc-Pietro et al., [19] created

Table 8. Number of articles predicting political orientation, with associated predictors and references.

Category (n = no. articles) Predictors (n = no. articles) References

Social Media (25) Meta-data (4) [252,335,337,342]

Language (24) [19,20,299,302,335–342,62,343–346,75,82,84,252,255,274,293]

Network Data (10) [62,82,86,252,293,299,336,339,340,344]

Facebook Likes (2) [10,11]

Websites (3) Language (3) [62,293,351]

Network Data (2) [62,293]

Location Data (1) [293]

Name Data (1) [293]

Search Engines (1) Facebook Likes (1) [9]

Blogs (4) Language (4) [347–350]

https://doi.org/10.1371/journal.pone.0207112.t008
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a language-based model using individuals’ self-reported orientation, where individuals rated

the strength of their political ideologies on a seven-point scale (ranging from ‘Very Conserva-

tive’ to ‘Very Liberal’). This enabled them to account for varying strength of political prefer-

ences rather than limiting predictions to 2–3 classes. Similarly, obtaining self-reports in this

instance enabled them to avoid the biased and unrealistic forms of data inherent in the previ-

ously used methods. Their accuracies ranged from 22–27%, highlighting that realistic, fine-

grained political orientation is more nuanced and complex than that reported by previous

research. Future research may therefore want to be mindful of selecting appropriate training

data and examining degrees of political orientation to ensure that predictions are realistic.

Sexual orientation

To date, research on inferring sexual orientation has received little attention in comparison to

other demographic attributes, with 7 studies generated from our search (see Table 9 and

Table 10). Despite this, inferring an individual’s sexuality has many important implications,

especially with regards to individuals’ privacy and how their data may be used. Across many

types of social media, individuals have freedom over whether to disclose their sexual prefer-

ences, whereas in other platforms such as dating websites/applications, individuals may be

required to provide such data in order to use the service.

The notion that individuals may unintentionally ‘leak’ clues to their sexuality in their digital

traces may therefore be worrying to those who may want to keep such data private or hidden.

In fact, all of the studies within our set examined inference from data that was unintentionally

revealed by the individuals themselves or inferred through homophily [10,11,201,354–356].

For instance, Kosinski et al. [10] found that Facebook likes such as ‘Ellen DeGeneres’, ‘Mac

Makeup’ and ‘Wicked The Musical’ were highly predictive of homosexual males, and ‘Not

Being Pregnant’ and ‘No H8 Campaign’ were predictive of homosexual females. Further,

‘Being Confused After Waking Up From Naps’ and ‘Nike Basketball’ were highly predictive of

heterosexual males, and ‘Adidas Originals’ and ‘Yahoo’ were predictive of heterosexual

females.

Alternatively, research by Jernigan et al. [355], Sarigol et al. [356] and Garcia [354] used

data derived from other people to infer individuals’ sexuality—their findings highlighted accu-

racies of around 00.80 (AUC). In particular, Sarigol et al. [356] and Garcia [354] demonstrated

how such techniques could be used to infer the sexuality of non-users, also referred to as the

‘shadow profile hypothesis’. By analysing data from profiles on the (discontinued) social net-

working site Friendster, Sarigol et al. [356] and Garcia [354] found that sexual orientation

groups were affected by network size and disclosure parameters where, as size/disclosure

increases, so does the likelihood of inferring a non-user’s private data. Although there is lim-

ited work exploring shadow profiles, these findings highlight a concerning possibility that

future research may want to consider when studying networks and individuals’ privacy. That

is, whether it is possible to infer sexuality (or indeed any other attributes) from other peoples’

data, and in turn what can be done in order to protect peoples’ privacy.

Table 9. Number of articles predicting sexual orientation, with associated platforms and references.

Category (n = no. articles) Platform (n = no. articles) References

Social Media (6) Friendster (2) [354,356]

Facebook (3) [10,11,355]

Sina Weibo (1) [170]

Dating Website (1) NR (1) [357]

https://doi.org/10.1371/journal.pone.0207112.t009
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Other demographic attributes

Numerous articles reported multiple demographics that were distinct from the main traits out-

lined thus far. In most cases, these attributes were not studied independently and, (to our

knowledge) do not have extensive research histories or theoretical backgrounds from social

psychology. Nevertheless, we believe inferring these attributes forms an important part in pro-

filing individuals, and are likely to receive more research attention in the future. Because of the

limited literature surrounding the remaining attributes, we display the main findings for each

in the series of tables that follow and in the supplementary materials. The attributes identified

include: family and relationships (Table 11, Table 12, S7 Table), ethnicity and race (Table 13,

Table 14, S8 Table), education (Table 15, Table 16, S9 Table), income (Table 17, Tables 18 and

S10 Income), language (Table 19, Table 20, S11 Table), religion (Table 21, Table 22, S12

Table), occupation (Table 23, Table 24, S13 Table), health (Table 25, Tables 26 and S14) and

social class (Table 27, Table 28, S15 Table).

Discussion

The ability to predict individuals’ demographic attributes from their online activity has many

useful applications including marketing, criminal investigations, monitoring societal events

and tracking health. Academic research attempting to use computational methods to infer

attributes has proliferated in recent years and overall has demonstrated reasonable degrees of

accuracy. This systematic review has highlighted the current state-osf-the art with regards to

demographic prediction, in terms of the platforms, digital traces and methods currently

employed. To date, age and gender are the most studied demographics—perhaps this is due to

more established research histories within the social psychology literature, compared to other

attributes.

A key factor in predicting such information is the type of digital footprint from which this

information is derived. Many studies that perform linguistic analyses highlight trends in pat-

terns of language use (in terms of style, content, slang etc.) that seem common across platforms

and traits. For instance, females tend to use words such as shopping, excited, sooo, yay<3, e.g.

[20,160,207], and males tend to use words such as I’ve, fuck, league, youtube.com, system, soft-
ware, e.g. [18,20,160]. Younger adults tend to use shorter sentences and words such as cuz,

haha, school, don’t, office, beer, e.g. [20,160], and older adults (typically classified as over 30)

tend to use words such as kids, family, daughter, don’t, e.g. [160,207]. However, rarely are dif-

ferences in either age or gender connected to theoretical perspectives on either life span devel-

opment, or gender. For instance, there is considerable previous (earlier) work on the use of

hedges and tag questions (e.g. it’s a nice day, isn’t it?) by female speakers, and how such lan-

guage may reflect power differentials and inequalities in a patriarchal society, e.g. [265].

Similarly, differences in the challenges faced across life stages have been widely theorised,

e.g. [376], as have the changing goals that people strive for as they age, e.g. [377,378]. However,

it was rare to find consideration of what the predictive features might mean to a social scientist

Table 10. Number of articles predicting sexual orientation, with associated predictors and references.

Category (n = no. articles) Predictors (n = no. articles) References

Social Media (6) Network Data (2) [355,356]

Gender, Relationship Status, Sexual Orientation (1) [354]

Facebook Likes (2) [10,11]

Check-ins (1) [170]

Dating Website (1) Images (1) [357]

https://doi.org/10.1371/journal.pone.0207112.t010
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within the papers reviewed, and often the predictive features were not even mentioned in the

paper, making connection to social theory impossible. Instead, much of the time the approach

taken was to compare classifiers, and to allow the machine learning program to identify the

best features (or to include as many as possible in a training set, and then replicate with the

‘best’ features in a kept back sample for validation purposes. Although in many cases this likely

results from conventions in different research fields–computer science approaches tend to

focus more on successful methods and prediction, whereas psychology emphasises causes and

explanations (for a detailed discussion of this, see the work by Yarkoni and Westfall [379]).

Network data, in the form of metrics derived from social network neighbours, structural

features and popularity (e.g. mentions, follows) were also useful for predicting a range of attri-

butes including age, gender, location and sexual orientation, e.g. [252,312,315,355]. The ability

to use network data to infer attributes can be incredibly useful in identifying information that

may not be disclosed directly by an individual. However, this has serious implications for pri-

vacy–individuals may want to keep their political beliefs, sexuality etc. private and may not

realise they are inadvertently revealing them through their digital activity. Alternatively, the

extent to which this is a concern is dependent on who the individual would want to conceal

such information from–computer algorithms may be able to detect such information; how-

ever, it is unlikely that the average human or people within their network would be able to

make such inferences accurately from looking at this type of data.

One aspect that was noticeable from the studies presented is that there was no focus on the

more complex modes of interaction, such as deception or attempts by individuals to present

themselves differently at different points in time/in different contexts. For instance, an individ-

ual’s language is likely to differ when talking to friends in comparison to writing an online

review. Would a computer be able to identify their demographic attributes as being the same

across both contexts? Research on communication accommodation demonstrates that individ-

uals co-ordinate their language use with those they are conversing with, e.g. [279,380], suggest-

ing that the assessment of demographics from, say, the language used, should be more difficult

Table 11. Number of articles predicting family and relationship status, with associated platforms and references.

Category (n = no. articles) Platform (n = no. articles) References

Social Media (8) Facebook (3) [10,11,156]

Friendster (1) [354]

Twitter (4) [20,84,87,358]

Sina Weibo (1) [170]

Smartphone (9) NR (9) [13,14,177,178,182,184,189,329,359]

Websites (1) NR (1) [200]

https://doi.org/10.1371/journal.pone.0207112.t011

Table 12. Number of articles predicting family and relationship status, with associated predictors and references.

Category (n = no. articles) Predictors (n = no. articles) References

Social Media (8) Facebook Likes (2) [10,156]

Language (4) [20,84,87,358]

Relationship Status (1) [354]

Network Data (1) [358]

Check-ins (1) [170]

Smartphone (9) Application Data, Behavioural Data, Call Data (8) [13,14,177,178,182,189,329,359]

Location Data (1) [184]

Websites (1) Web Usage Data (1) [200]

https://doi.org/10.1371/journal.pone.0207112.t012
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in the context of interactions if one person’s use of specific language is influenced by their con-

versational partners’ use of the same linguistic features. Moreover, the degree to which people

accommodate towards their conversational partner is influenced by a number of factors,

including power differentials [381]. Indeed, there is evidence that deception in text-based

communication can be identified by the language used by the person being lied to as well as via

changes in the language of the deceiver [382] suggesting that analysing language from interac-

tions as individual data points needs to be treated with particular caution. Future work could

attempt to decipher whether computer models are able to use similar sociolinguistic

Table 13. Number of articles predicting ethnicity or race, with associated platforms and references.

Category (n = no. articles) Platform (n = no. articles) References

Social Media (15) Twitter (12) [17,20,360,361,29,62,253,274,288,299,301,302]

Facebook (3) [10,158,330]

Websites (3) News (1) [362]

Other (2) [62,294]

Devices (2) Smartphone (1) [13]

Tablet (2) [193]

Radio (1) Meta-data, Listening Habits (1) [243]

https://doi.org/10.1371/journal.pone.0207112.t013

Table 14. Number of articles predicting ethnicity or race, with associated predictors and references.

Category (n = no. articles) Predictors (n = no. articles) References

Social Media (15) Names (6) [29,51,158,301,330,360]

Language (11) [17,20,361,51,62,158,253,274,299,302,360]

Network Data (2) [51,62]

Location Data (2) [29,360]

Meta-data (1) [360]

Facebook Likes (1) [10]

Profile Images (2) [17,51]

Websites (3) Names (1) [362]

Web Browsing Histories (1) [294]

Language, Network Data (1) [62]

Devices (2) Application Data (1) [13]

Actions, Keystrokes, Timestamps (1) [193]

Radio (1) Meta-data, Listening Habits (1) [243]

https://doi.org/10.1371/journal.pone.0207112.t014

Table 15. Number of articles predicting education level, with associated platforms and references.

Category (n = no. articles) Platform (n = no. articles) References

Social Media (8) Twitter (6) [20,62,84,253,254,358]

Facebook (1) [363]

Sina Weibo (1) [170]

Websites (4) NR (4) [62,197,200,294]

Email (4) NR (4) [238–241]

Wi-Fi (1) NA (1) [250]

https://doi.org/10.1371/journal.pone.0207112.t015
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techniques to infer attributes from these types of interactions, and to unpick individual level

characteristics from those dependent on the nature of the interaction or audience.

We also suspect that rather than simply comparing the effectiveness of classification algo-

rithms, or mechanical turk workers vs. a classifier, in the future authors may wish to take a

Table 16. Number of articles predicting education level, with associated predictors and references.

Category (n = no. articles) Predictors (n = no. articles) References

Social Media (8) Language (7) [20,62,84,253,254,358,363]

Network Data (2) [62,358]

Meta-data (2) [358,363]

Facebook Likes (1) [363]

Check-ins (1) [170]

Websites (4) Language (1) [62]

Network Data (1) [62]

Website Data (1) [197]

Meta-data (1) [197]

Web Browsing Histories (1) [294]

NR (1) [200]

Email (4) Language (4) [238–241]

Wi-Fi (1) Wi-Fi Traffic (1) [250]

https://doi.org/10.1371/journal.pone.0207112.t016

Table 17. Number of articles predicting income, with associated platforms and references.

Category (n = no. articles) Platform (n = no. articles) References

Social Media (6) Twitter (6) [20,84,253,285,302,364]

Smartphone (5) NR (5) [13,187,365–367]

Websites (2) NR (2) [200,294]

https://doi.org/10.1371/journal.pone.0207112.t017

Table 18. Number of articles predicting income, with associated predictors and references.

Category (n = no. articles) Predictors (n = no. articles) References

Social Media (6) Language (6) [20,84,253,285,302,364]

Smartphone (5) Application Data (1) [13]

Call/SMS Data (4) [187,365–367]

Network Data (1) [187]

Websites (2) Web Usage Data (2) [200,294]

https://doi.org/10.1371/journal.pone.0207112.t018

Table 19. Number of articles predicting language, with associated platforms and references.

Category (n = no. articles) Platform (n = no. articles) References

Devices (2) Smartphone (1) [329]

Tablet (1) [193]

Blogs (1) Blogger.com (1) [295]

Email (3) NR (3) [237–239]

Social Media (3) Twitter (3) [29,89,92]

https://doi.org/10.1371/journal.pone.0207112.t019
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more theoretically driven approach to feature selection. For instance, there is considerable evi-

dence that pronoun use can be linked to a number of social and psychological theories–includ-

ing ingroup (‘we’) and outgroup (‘they’) identification (e.g.[383]), leadership ([384]) and

gender bias [385]. Given the existing body of work identifying differences between groups

based on these features, one would expect that a classifier should be able to distinguish between

categories based on existing theory. It would also further our understanding of an existing

body of work if a theoretically derived model were compared against a ‘best feature’ model

derived from a machine learning approach.

Finally, in reviewing the papers herein it became clear that summarising the results of stud-

ies across labs is particularly difficult. In many cases multiple, different algorithms are used,

the most discriminating features aren’t reported, or simple accuracy statistics are reported

without the full confusion matrix or recall / sensitivity information provided. We would

Table 20. Number of articles predicting language, with associated predictors and references.

Category (n = no. articles) Platform (n = no. articles) References

Devices (2) Application Data (1) [329]

Actions, Keystrokes, Timestamps (1) [193]

Blogs (1) Language (1) [295]

Language (3) [237–239]

Names, Location (1) [29]

Language (2) [89,92]

https://doi.org/10.1371/journal.pone.0207112.t020

Table 21. Number of articles predicting religion, with associated platforms and references.

Category (n = no. articles) Platform (n = no. articles) References

Social Media (6) Twitter (4) [20,67,84,368]

Facebook (2) [10,11]

Search Engines (1) Bing (1) [9]

Smartphones (1) NR (1) [329]

https://doi.org/10.1371/journal.pone.0207112.t021

Table 22. Number of articles predicting religion, with associated predictors and references.

Category (n = no. articles) Platform (n = no. articles) References

Social Media (6) Language (4) [20,67,84,368]

Facebook Likes (2) [10,11]

Search Engines (1) Facebook Likes, Profile Data (1) [9]

Smartphones (1) Application Data (1) [329]

https://doi.org/10.1371/journal.pone.0207112.t022

Table 23. Number of articles predicting occupation, with associated platforms and references.

Category (n = no. articles) Platform (n = no. articles) References

Social Media (10) Twitter (10) [66,73,87,89,91,92,209,358,369,370]

Blogs (2) NR (2) [209,233]

Smartphones (8) NR (8) [14,177,178,182–184,188,189]

Websites (1) NR (1) [197]

Forums (1) NR (1) [276]

https://doi.org/10.1371/journal.pone.0207112.t023

Digital footprints and demographics review

PLOS ONE | https://doi.org/10.1371/journal.pone.0207112 November 28, 2018 21 / 40

https://doi.org/10.1371/journal.pone.0207112.t020
https://doi.org/10.1371/journal.pone.0207112.t021
https://doi.org/10.1371/journal.pone.0207112.t022
https://doi.org/10.1371/journal.pone.0207112.t023
https://doi.org/10.1371/journal.pone.0207112


strongly advise that the field consider methods to standardise reporting across studies and

labs, enabling replication and for future studies to build more ably from the basis of earlier

work.

Table 24. Number of articles predicting occupation, with associated predictors and references.

Category (n = no. articles) Platform (n = no. articles) References

Social Media (10) Language (9) [66,73,87,91,92,209,358,369,370]

Network Data (3) [66,358,370]

Meta-data (5) [66,209,303,358,370]

Blogs (2) Language (2) [209,233]

Meta-data (1) [209]

Smartphones (8) Application Data (6) [14,177,178,182,188,189]

Call Data (5) [14,178,182,188,189]

Location Data (2) [183,184]

Websites (1) Time/Day Data, Website Data (1) [197]

Forums (1) Language (1) [276]

https://doi.org/10.1371/journal.pone.0207112.t024

Table 25. Number of articles predicting health, with associated predictors and references.

Category (n = no. articles) Platform (n = no. articles) References

Social Media (7) Twitter (5) [20,67,84,371,372]

Facebook (1) [10]

MyFitnessPal (1) [373]

Reddit (1) [374]

Smartphones (2) NR (2) [176,201]

https://doi.org/10.1371/journal.pone.0207112.t025

Table 26. Number of articles predicting health, with associated predictors and references.

Category (n = no. articles) Predictors (n = no. articles) References

Social Media (7) Language (5) [20,67,84,371,372]

Images (1) [374]

Facebook Likes (1) [10]

Behavioural Data (1) [176]

Smartphones (2) Application Data (2) [176,201]

Network Data (1) [201]

https://doi.org/10.1371/journal.pone.0207112.t026

Table 27. Number of articles predicting social class, with associated platforms and references.

Category (n = no. articles) Platform (n = no. articles) References

Social Media (1) Twitter (1) [375]

Foursquare (1) [375]

https://doi.org/10.1371/journal.pone.0207112.t027

Table 28. Number of articles predicting social class, with associated predictors and references.

Category (n = no. articles) Platform (n = no. articles) References

Social Media (1) Language (1) [375] [375]

https://doi.org/10.1371/journal.pone.0207112.t028
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100. Villena-Román J, González-Cristóbal JC. DAEDALUS at PAN 2014: Guessing tweet author’s gender

and age. CEUR Workshop Proceedings. 2014.

101. Alowibdi J. S., Buy U. A., & Philip SY. Say it with colors: Language-independent gender classification

on twitter. In Online Social Media Analysis and Visualization. 2014. p. 47–62.

102. Castillo E, Cervantes O, Vilariño D, Pinto D, León S. Unsupervised method for the authorship identifi-

cation task: Notebook for PAN at CLEF 2014. CEUR Workshop Proceedings. 2014.

103. Amigo E, Carrillo-De-albornoz J, Chugur I, Corujo A, Gonzalo J, Meij E, et al. Overview of RepLab

2014: Author profiling and reputation dimensions for Online Reputation Management. CEUR Work-

shop Proceedings. 2014. https://doi.org/10.1007/978-3-319-11382-1_24

104. Alvarez-Carmona, M. A., Lopez-Monroy, A. P., Montes-y-Gomez, M., Villasenor-Pineda, L., Jair-Esca-

lante H. INAOE’s participation at PAN’15: Author profiling task. Working Notes Papers of the CLEF.

2015.

105. Arroju, M., Hassan, A., Farnadi G. Age, gender and personality recognition using tweets in a multilin-

gual setting. In 6th Conference and Labs of the Evaluation Forum (CLEF 2015): Experimental IR

meets multilinguality, multimodality, and interaction. pp. 22–31.

106. Bartoli A, Dagri A, Lorenzo A De, Medvet E, Tarlao F. An Author Verification Approach Based on Dif-

ferential Features Notebook for PAN at CLEF 2015. Work Notes CLEF. 2015; https://doi.org/10.1007/

s00256-005-0933-8
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