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Abstract: The contamination from perilous organic compounds (pesticide and dyes) in water gen-
erates a significant problem for the environment and humans. A modified textile was prepared by
a coating of anionic cyclodextrin polymer, obtained from the cross-linking between citric acid and
β-cyclodextrin in the presence of poly (vinyl alcohol), on the cotton cord for cationic pollutant removal
from an aqueous solution. Its physicochemical properties were also characterized by gravimetry,
titration, stereomicroscopy, SEM, TGA, 13C NMR, and ATR-FTIR. The CC2 system exhibited 79.2%
coating yield, 1.12 mmol/g COOH groups, 91.3% paraquat (PQ) removal, 97.0% methylene blue (MB)
removal, and 98.3% crystal violet (CV) removal for 25 mg/L of initial concentration. The kinetics was
fitted to the pseudo-second-order model using 6 h of contact time. The isotherm was suitable for the
Langmuir isotherm with a maximum adsorption of 26.9 mg/g (PQ), 23.7 mg/g (MB), and 30.3 mg/g
(CV). After 120 h of contact time in water and 5% v/v of HCI in ethanol, the weight loss was 7.5%
and 5.6%, respectively. Finally, the recyclability performance reached 84.8% (PQ), 95.2% (MB), and
96.9% (CV) after five reuses.

Keywords: adsorption; cyclodextrin; citric acid; poly (vinyl alcohol); cotton cord; methylene blue;
paraquat; crystal violet; Langmuir isotherm

1. Introduction

Clean water and sanitation are part of the sustainable development goal 6 (SDG 6),
which is an essential point in socioeconomic development and will enhance water quality
by reducing the contamination of water [1,2]. The presence of organic cationic contaminants
including dyes or pesticides pollutes water, which affects the ecosystems and humans. The
adsorption process is an ecofriendly technology to solve water pollution and various inno-
vative adsorbents have been elaborated from sustainable and cost-effective resources [3].
This method has gained significant attention in recent years because this process provides
many advantages such as ease of operation, minimal investment costs, reusability of adsor-
bent, low energy requirement, selectivity of adsorbent, and applicability for technology
transfer [4]. The disadvantage of this method is related to the cost of regeneration (solvent
use or energy consumption), the elimination of the adsorbent after its end of life, or the
cost of reactants.

Paraquat (PQ) is a water-soluble agrochemical substance used to increase crop yield
and safeguard the plants from pests. Nevertheless, this pesticide could menace both
health [5–8] and the environment [9,10]. A concentration of paraquat of 0.1 mg/L has
been the maximum permissible concentration for drinking water [11]. Different adsor-
bents have been elaborated for PQ adsorption such as kaolin [12], activated carbon [13],
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bentonite [14], cellulose nanofiber [15], biobased material [16–18], cyclodextrin polymers
coated on textile [19,20], and cyclodextrin nanosponges [21–24]. Methylene blue (MB)
is a hydrosoluble cationic dye with the chemical structure of thiazine that is used as a
dye for the textile coloration, a medication for the treatment of methemoglobinemia, a
stain for chromoendoscopy or different staining procedures, an antidote to potassium
cyanide poisoning, a redox indicator in analytical chemistry, and a treatment for fungal
infections in aquaculture [25]. The contamination of methylene blue in wastewater comes
from textile, leather, cosmetics, photography, and other industries which could impact
the environment and humans, because methylene blue is chemically stable, difficult to
degrade, toxic, and carcinogenic according to its complex aromatic structures [26,27]. A
concentration of methylene blue less than 1 mg/L has obviously been revealed as an aes-
thetic issue [28]. Various adsorbents have been prepared for MB removal such as hybrid
composite of cyclodextrin/activated carbon [26], cyclodextrin/silver nanoparticles [29],
hybrid adsorbent of cyclodextrin/silica [30], magnetic nanoparticles [31,32], cyclodextrin
modified filter paper [33], cyclodextrin grafting wood flour [34], and insoluble cyclodex-
trin [35,36]. Crystal violet (CV) is a water-soluble cationic dye with the chemical structure
of triarylmethane that is used as a dye, a histological stain, a topical antiseptic, and a
dermatological agent [37]. Moreover, CV shows antifungal, antibacterial, antitumor, and
other properties. The accumulation of CV in wastewater from various industries (tex-
tile, paper, plastics, printing, leather, paint, pharmaceutical, cosmetic, food, and paper
industries) could affect humans [38] and the surroundings [39], because crystal violet is
chemically firm, difficult to decompose, and toxic. A concentration of CV of 0.001 mg/L
could be toxic and mutagenic to humans and animals [40]. Multitudinous adsorbents
have been established for CV removal such as modified rice husk [41,42], tropical wild
fern [43], polyamide nanofiber [44], magnetic nanoparticles [45,46], EDTA/graphene ox-
ide functionalized corncob [47], EDTA/β-cyclodextrin insoluble [48], and cyclodextrin
nanofiber [49].

Consequently, cyclodextrin-based adsorbents have been sparsely employed for en-
vironmental applications [50–59] because of the specific properties of cyclodextrin (CD)
molecules which could entrap organic compounds with a suitable size into the cyclodextrin
cavity to form an inclusion complex through host–guest interaction. Furthermore, citric acid
(CTR) is an ecofriendly trifunctional cross-linking agent, which was reticulated with CD to
obtain a three-dimensional cross-linked polymer for the enhancement of the adsorption
performance of organic compounds [22,23,26,32,35,36]. Cellulose is a linear water-insoluble
polysaccharide containing many glucose units, which is the most abundant renewable
biopolymer on earth existing in the form of cotton, wood, and other fibers. According to its
molecular structure, cellulose possesses good chemical reactivity, thermal behaviors, and
mechanical properties [60]. Cellulose has also been reacted with CD and CTR via in situ
polymerization to elaborate an effective adsorbent for aniline [61,62] and methylene blue
removal [33,34]. Poly (vinyl alcohol) or PVOH, which has unique properties (high degree
of swelling, biodegradability, and nontoxicity), has also been esterified with CD and CTR
to build nanosponges for paraquat adsorption [22]. The presence of PVOH segments as
new active sites could enhance the adsorption capacity according to the hydrogen bonding
between PVOH and pollutants [63].

Nevertheless, the coating of β−CD with CTR in the presence of PVOH has never
been applied on cellulose material and a β−CD/CTR/PVOH-functionalized cotton cord
has never been reported for the adsorption of these three soluble cationic pollutants (PQ,
MB, and CV). The objective of this work was to create an effective adsorbent for cationic
contaminant removal. In this study, the coating of anionic cyclodextrin polymer, issued
from the reticulation between CTR and β−CD in the presence of poly (vinyl alcohol), on a
cotton rope was first investigated. Then, the physicochemical properties of the modified
cord were also characterized by different techniques. Finally, an adsorption study with
different parameters (pH of a solution, initial concentration of pollutants (PQ, MB, and CV)
and time), a reusability study, and a stability study were examined.
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2. Materials and Methods
2.1. Materials

β-cyclodextrin (Acros Organics, Geel, Belgium), poly (vinyl alcohol) Mw = 89,000–98,000
with 99+% hydrolyzed (Sigma-Aldrich, Saint Louis, MO, USA), citric acid monohydrate
(RCI labscan, Bangkok, Thailand), cotton cord (Taisonghuad, Bangkok, Thailand), sodium
hypophosphite (Acros Organics, Geel, Belgium), crystal violet (PanReac, Barcelona, Spain),
methylene blue (CARLO ERBA Reagents S.A.S., Val de Reuil, France), and paraquat
dichloride hydrate (Sigma-Aldrich, Saint Louis, MO, USA) were obtained from commer-
cial sources. Ultrapure water was used for all experiments and other chemicals were
analytical grade.

2.2. Preparation of Adsorbents

A 1 cm thick and 15 cm length of cotton rope was cleaned with hot water for 30 min,
dried at 100 ◦C in a hot-air oven (UF10, Memmert), and measured as the initial mass
(noted mi). After that, it was immersed into 100 mL of a mixture containing 10% w/v
β−CD, 3% w/v sodium hypophosphite, the different quantities of CTR (2.5, 5 or, 10% w/v,
and the different compositions of PVOH (0.1, 0.5, 1, or 2% w/v) under stirring (150 rpm)
for 24 h at 30 ◦C, as noted in Table 1 for each formulation. The sample was drained before
being placed on aluminum foil, heated at 140 ◦C for 90 min in a hot-air oven, and rinsed
with hot water for 30 min to eliminate undesired products before drying at 100 ◦C in a
hot-air oven. Ultimately, the modified cotton rope was weighed as the final mass (noted
mf). The coating performance was expressed as a weight gain and calculated according to
this equation:

Weight gain (%) =
mf −mi

mi
× 100 (1)

where mi and mf relate, respectively, to the cotton cord weight before and after the curing.
Experiments were carried out in triplicate.

Table 1. Different formulations for cord coating.

Name
Composition (% w/v)

β−CD CTR PVOH

C2.5C 10 2.5 -
C2.5C2 10 2.5 2

C5C 10 5 -
C5C2 10 5 2

CC 10 10 -
CC0.1 10 10 0.1
CC0.5 10 10 0.5
CC1 10 10 1
CC2 10 10 2

2.3. Characterization of Adsorbents

The physicochemical characteristic of the modified cotton cord was characterized
by numerous methods. Fourier transform infrared spectroscopy (FTIR) experiments us-
ing attenuated total reflection (ATR) mode were performed on a Tensor 27 FTIR (Bruker,
Billerica, MA, USA), which was accumulated from 64 scans in the 700–4000 cm−1 range
with a resolution of 4 cm−1. The morphology of adsorbents was observed by a SMZ745T
stereomicroscope (Nikon, Melville, NY, USA) linked with a DS-Fi3 digital camera. The
thermogravimetric analysis (TGA) test was manipulated in an alumina pan with a Ther-
mal Analyzer—STA 449 F3 (NETZSCH, Waldkraiburg, Germany) with a heating rate of
10 ◦C min−1 under nitrogen. 13C NMR (nuclear magnetic resonance) spectra were operated
on an Ascend 400 WB spectrometer (Bruker, Billerica, MA, USA) at 100.62 MHz and 298 K
using the magic angle spinning (MAS) technique, a delay time of 8 s, and a contact time of
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1.5 ms. The scanning electron microscopy (SEM) observation was performed on a JEOL
6010 electron microscope (Tokyo, Japan) with an acceleration voltage of 15 kV.

The measurement of the ion exchange capacity (IEC) of adsorbents was executed by
pH-metric titration. The modified cotton cord (0.1 g) was soaked into 50 mL of a 2% w/v
calcium acetate solution for 24 h under agitation at 150 rpm. After sample elimination, the
existing acetic acid solution was titrated by NaOH solution (0.05 M) using phenolphthalein
as an indicator. The IEC was calculated in millimoles of COOH groups per gram of cotton
cord using the following equation:

IEC (mmol/g) =
CNaOH × VNaOH

m
(2)

where VNaOH and CNaOH correspond, respectively, to the equivalent volume (mL) and
concentration (mol/L) of NaOH. The symbol m refers to cord weight (g). Experiments
were run in triplicate.

The determination of the point of zero charge (PZC) of the modified cord was per-
formed by pH-metric titration using the salt addition method. A 0.1 M NaCl solution with
different pH from 3 to 10 using 0.1 M HCl and 0.1 M NaOH was first prepared. After that,
30 mL of each solution was filled into a bottle containing 50 mg of modified cord and it was
agitated for 48 h at 150 rpm. The final pH of each solution was measured before calculating
the ∆pH (the difference between the initial and final pH values). These ∆pH values were
plotted versus the initial pH and the PZC was quantified at ∆pH = 0.

2.4. Adsorption Study
2.4.1. Preliminary Adsorption Study

An amount of 10 mL of pollutant solution (PQ, CV, and MB) with a 25 mg/L of initial
concentration at various pH (2, 3, 4, 5, 6.5, 8, 9, and 10), which was previously changed with
0.1 M HCl and 0.1 M NaOH, was filled to a test tube containing 50 mg of modified cord
under stirring (150 rpm) for 360 min at 30 ◦C. The quantity of pollutants was measured by
a GENESYS 10S UV–vis spectrophotometer (Thermo Scientific, Vantaa, Finland) at 257 nm,
590 nm, or 664 nm for PQ, CV, or MB respectively. The pollutant removal was calculated in
percentage using the following equation:

% Removal =
(C 0 − Ct)

C0
× 100 (3)

where C0 and Ct relate, respectively, to the initial and real-time concentration of the con-
taminant. Experiments were executed in triplicate. The adsorption capacity (Q) was also
expressed using the following equation:

Adsorption capacity (mg/g) =
(C 0 −Ct) × V

m
(4)

where C0 and Ct relate, respectively, to the initial and real-time concentration of the con-
taminant, V refers to the solution volume, and m stands for the cord mass.

2.4.2. Kinetics Study

An amount of 10 mL of pollutant solution (PQ, CV, and MB) with a 25 mg/L initial
concentration and optimal pH was added into a test tube containing 50 mg of modified
cord under agitation of 150 rpm at various times (30, 60, 120, 180, 360 and 540 min) at 30 ◦C.
The quantification of contaminants was described in the previous section. Experimental
data were then fitted with two kinetics models:

Pseudo-first-order model:

ln (Qe − Qt) = ln Qe − k1t (5)
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Pseudo-second-order model:

t
Qt

=
1

k2Q2
e
+

1
Qe

t (6)

where Qe and Qt are the amount of pollutant adsorbed (in mg/g) at equilibrium and at
time t, respectively, k1 (/min) and k2 (g/mg·min) are the adsorption rate constants, and t is
the contact time (min). Experiments were investigated in triplicate.

The Chi-square test was used as a statistical analysis so as to evaluate the reason-
ableness of the kinetic models to the experimental data. The Chi-square value (χ2) was
expressed by the following equation:

Chi-square value:

χ2 = ∑
(Q e,exp − Qe,cal)

2

Qe,cal
(7)

where Qe,exp is the amount of pollutant adsorbed (in mg/g) at equilibrium calculated
from the experimental data and Qe,cal is the amount of pollutant adsorbed (in mg/g) at
equilibrium estimated from the models.

The quantity of pollutant adsorbed against the square root of time was plotted using
the intraparticle diffusion model as the following equation:

Intraparticle diffusion model:
Qt = k3it0.5 (8)

where Qt is the quantity of the pollutant adsorbed (in mg/g) at time t, k3i (g/mg·min0.5) is
the adsorption rate constant, and t is the contact time (min). Experiments were performed
in triplicate.

2.4.3. Isotherm Study

An amount of 10 mL of pollutant solution with various initial concentrations (PQ
(25, 50, 150, 250, and 300 mg/L), MB (25, 50, 150, 200, and 500 mg/L), and CV (25, 50,
150, 200, and 500 mg/L)) and optimal pH was filled into a test tube containing 50 mg of
modified cord under agitation of 150 rpm at equilibrium and 30 ◦C. The measurement
of the pollutants was previously described. Experimental data were then fitted with two
isotherm models:

Langmuir isotherm:
Ce

Qe
=

1
KLQm

+
Ce

Qm
(9)

Freundlich isotherm:
ln Qe = ln KF +

1
n

ln Ce (10)

where Ce is the equilibrium concentration of pollutant, Qe is the amount of pollutant
adsorbed (in mg/g) at equilibrium, Qm is the theoretical maximum adsorption capacity
(in mg/g), KL is the Langmuir isotherm constant, KF is the Freundlich isotherm constant,
and 1/n is a heterogeneity factor.

The Chi-square test (Equation (7)) was also applied to the experimental data to assess
the suitability of isotherm models.

2.4.4. Stability Study

The stability of the treated cord was performed in various solvents such as water
and in 5% v/v of HCI in ethanol. The functionalized cord (50 mg) was put into 10 mL
of each solvent under agitation (150 rpm and 30 ◦C). At the desired time, this cord was
evacuated, dried at 120 ◦C for 30 min, and finally weighed. The percentage of weight loss
was expressed using the following equation:

% Weight loss =
mi −md

mi
× 100 (11)
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where mi and md relate, respectively, to the modified cord weight and decomposed cord
weight. Experiments were performed in triplicate. Then, this textile was put back in the
new solvent with the previous step before remeasuring the weight loss.

2.4.5. Reusability Study

An amount of 10 mL of pollutant solution with 25 mg/L of initial concentration and
optimal pH was added into a test tube containing 50 mg of treated cord under agitation
of 150 rpm at equilibrium and 30 ◦C. The quantification of the pollutant was noted in the
previous part. The adsorbent was then removed and regenerated by washing in 5% v/v of
HCI in ethanol for pollutant desorption. After 6 h of immersion, the adsorbent was cleaned
with ultrapure water for 30 min and reconditioned for the adsorption process.

3. Results and Discussion
3.1. Preparation and Characterization of Adsorbents
3.1.1. Physicochemical Properties of Adsorbents

The coating of anionic cyclodextrin polymer was efficaciously established on the
surface of the cotton rope by in situ polymerization via an esterification reaction between
hydroxyl groups (β−CD, PVOH, and/or cellulose) and carboxylic groups of CTR, as
seen in Figure 1. The possible cross-linking reaction provided various forms such as CTR
reticulated with cellulose, CTR reticulated with β−CD, CTR reticulated with PVOH, and
CTR reticulated with PVOH, β−CD, and/or cellulose. The presence of available carboxylic
groups could be dissociated to carboxylate groups which displayed the anionic character of
functional textile and provided the adsorption towards cationic pollutants via electrostatic
interaction (route i). It was possible to entrap cationic molecules in the cross-linked structure
(route ii). The encapsulation of cationic pollutants also happened inside the β−CD cavity
by host–guest interaction (route iii). Moreover, the appearance of PVOH segments offered
the hydrogen bonding between hydrogen atoms of PVOH and nitrogen atoms of cationic
species (route iv). So, the benefit of the PVOH addition proposed an attractive adsorption
site for both the PVOH-reticulated structure and hydrogen-bonding resources on PVOH
polymeric skeletons.
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As seen in Figure 2, different coating formulations were investigated for the effect of
the cross-linking agent of CTR and the PVOH addition on the physicochemical properties of
modified cotton. For the modified cotton rope named C2.5C, C5C, and CC, the coating per-
formance enhanced from 14.2% to 49.4% with an amount of CTR from 2.5% w/v to 10% w/v,
which also expanded the ion exchange capacity from 0.51 mmol/g to 1.50 mmol/g because
the superior quantity of CTR could improve the polyaddition between CTR and β−CD
and/or cellulose, leading to a high coating rate and a prominent charge on the cotton
surface. The addition of 2% w/v PVOH on a similar system, noted C2.5C2, C5C2, and CC2,
displayed the same results, with the coating yield advancing from 19.5% to 79.2% and the
ion exchange capacity from 0.39 mmol/g to 1.12 mmol/g. Nevertheless, the appearance of
PVOH for each couple demonstrated a weight increase and a charge decrease because the
cellulose from the cotton cord and β−CD had reacted previously with CTR while PVOH
was esterified with available COOH groups from CTR to build the PVOH cross-linked
structure and the PVOH connected segments, which gave a dominant coating efficiency
although the loss of free COOH groups dropped the ion exchange capacity.
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As observed in Figure 3, the adsorption of cationic pollutants (PQ (from 25.7% to
80.5%), MB (from 81.8% to 93.1%), and CV (from 86.8% to 94.3%)) raised with the amount
of CTR from 2.5% w/v to 10% w/v according to the higher anionic charge on the surface to
interact with cationic species. Furthermore, the removal rate of these cationic contaminants
(PQ (from 55.6% to 91.3%), MB (from 91.1% to 97.0%), and CV (from 95.0% to 98.3%)) was
also enhanced with the presence of PVOH for the concentration of CTR from 2.5% w/v
to 10% w/v, respectively, due to the supplementary adsorption from hydrogen bonding.
Consequently, the 10% w/v of CTR with the presence of PVOH in the formulation was a
benefit for the coating performance and the adsorption with cationic pollutants.
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Herein, the different quantity of PVOH on 10% w/v of CTR in the formulation was
investigated, as observed in Figure 2. The increase of PVOH from 0.1 to 2% w/v enlarged
the coating rate from 49.4% to 79.2%, because the esterification of CTR with cellulose from
a cotton cord was favorable as the solid support for the cross-linking between CTR and
β−CD, and/or PVOH to create various structures. These results were in agreement with
the literature in which a higher quantity of PVOH has shown a great opportunity, in cross-
linking with pulp fibers, to enhance the mechanical properties [64]. However, the addition
of PVOH from 0.1 to 2% w/v dropped the ion exchange capacity from 1.50 mmol/g to
1.12 mmol/g because of the extinction of free COOH functions from CTR which was
attached to PVOH segments. This circumstance resulted in the improvement of adsorption
towards cationic pollutants (PQ (from 82.5% to 91.3%), MB (from 93.8% to 97.0%), and CV
(from 95.5% to 98.3%)) with the increase of PVOH from 0.1 to 2% w/v, as seen in Figure 3.
This result has been reported in the literature with the increase of PVOH in cyclodextrin
polymers improving the efficiency of aniline extraction [65].

The physical appearance of the functionalized and virgin cotton rope was characterized
by stereomicroscopy, as shown in Figure 4. The virgin cord appeared an ivory color. The
CC, CC0.1, CC0.5, and CC1 systems displayed an ivory color with a slim layer containing
polymer flakes on the rope surface. However, the CC2 systems demonstrated a pale-yellow
color with a reflective polymer lamina on the cord surface according to the high quantity
of PVOH, which was esterified at high temperatures and which increased the intensity
of color.
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The modified and virgin cotton ropes were also characterized by SEM to study the
surface topography of samples, as illustrated in Figure 5. The virgin cord showed a smooth
surface but the modified cord displayed a rough surface with a layer of the polymer coating.

Polymers 2022, 14, x 9 of 21 
 

 

 
Figure 4. Physical properties of virgin cotton cord, CC, CC0.1, CC0.5, CC1, and CC2. 

The modified and virgin cotton ropes were also characterized by SEM to study the 

surface topography of samples, as illustrated in Figure 5. The virgin cord showed a 

smooth surface but the modified cord displayed a rough surface with a layer of the poly-

mer coating. 

 

Figure 5. SEM images of virgin cotton cord and CC2. 

3.1.2. TGA Analysis 

The thermal endurance of the functionalized cord was studied by TGA, as shown in 

Figure 6, for CTR, PVOH, cotton cord, CC2, and β−CD. The weight loss under 100 °C 

indicated the dehydration of the materials, which corresponded to a loss of 1.4%, 2.9%, 

3.3%, 3.9%, and 10.7%, respectively. The thermal degradation began at 136.5 °C, 241 °C, 

259 °C, 195.8 °C, and 296 °C, respectively. The residue over 500 °C was consistent with the 

final mass of 22.1% and 33.4% for cotton cord and CC2, respectively. 

Figure 5. SEM images of virgin cotton cord and CC2.

3.1.2. TGA Analysis

The thermal endurance of the functionalized cord was studied by TGA, as shown in
Figure 6, for CTR, PVOH, cotton cord, CC2, and β−CD. The weight loss under 100 ◦C
indicated the dehydration of the materials, which corresponded to a loss of 1.4%, 2.9%,
3.3%, 3.9%, and 10.7%, respectively. The thermal degradation began at 136.5 ◦C, 241 ◦C,
259 ◦C, 195.8 ◦C, and 296 ◦C, respectively. The residue over 500 ◦C was consistent with the
final mass of 22.1% and 33.4% for cotton cord and CC2, respectively.
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3.1.3. ATR-FTIR Exploration

In Figure 7, The characterization of chemical groups on the functionalized cord was
investigated by ATR-FTIR. The native β−CD spectra exhibited unique peaks at 3288 cm−1

(OH stretching) and 2917 cm−1 (CH2 stretching) [66]. The cotton cord spectra revealed
specific peaks at 3298 cm−1(OH stretching) and 2896 cm−1 (CH2 stretching), as stated in the
literature [67–69]. The PVOH spectra exhibited in particular unique peaks at 3267 cm−1(OH
stretching), 2939 cm−1 (CH stretching), and 2907 cm−1 (CH2 stretching). The CTR spectra
displayed specific revealed peaks at 1744 cm−1 and 1692 cm−1, attributed to the C=O
stretching of carboxylic functions, as reported in previous works. The characteristic peak of
CC2 at 1707 cm−1 corresponded to the C=O stretching of carboxylic and ester functions
which were superposed to each other. Consequently, ATR-FTIR could prove the presence
of ester bonds which confirmed the esterification between CTR and β−CD, PVOH, and/or
cellulose, as informed in previous work [70].

3.1.4. NMR Characterization

The identification of the chemical structure of the modified cord and the virgin cotton
cord was characterized by 13C NMR spectroscopy, as seen in Figure 8. The chemical shift of
cotton cord was indicated as followed: at 65.0 ppm (for 6), 71.4 ppm (for 2 and 5), 74.7 ppm
(for 3), 88.7 ppm (for 4), and 104.9 ppm (for 1). The 13C spectra of CC2 revealed specific
peaks at 173.7 ppm (for a and d), 104.1 ppm (for 1 and 1′), 88.7 ppm (for 4 and 4′), 72.4 ppm
(for 2, 3, 5, 8, 2′, 3′, 5′, and 8′), 64.9 ppm (for 6 and 6′), and 42.5 ppm (for b, c, 7, b’, c’, and
7′). Thus, the esterification reaction between CTR and β−CD, PVOH, and/or cellulose was
approved by the slight change of chemical shift between unmodified and modified cotton
cords, as reported in the literature [23].



Polymers 2022, 14, 2312 11 of 21

Polymers 2022, 14, x 11 of 21 
 

 

 

Figure 7. ATR-FTIR spectra of β−CD, cotton cord, PVOH, CTR, and CC2. 

3.1.4. NMR Characterization 

The identification of the chemical structure of the modified cord and the virgin cotton 

cord was characterized by 13C NMR spectroscopy, as seen in Figure 8. The chemical shift 

of cotton cord was indicated as followed: at 65.0 ppm (for 6), 71.4 ppm (for 2 and 5), 74.7 

ppm (for 3), 88.7 ppm (for 4), and 104.9 ppm (for 1). The 13C spectra of CC2 revealed spe-

cific peaks at 173.7 ppm (for a and d), 104.1 ppm (for 1 and 1′), 88.7 ppm (for 4 and 4′), 72.4 

ppm (for 2, 3, 5, 8, 2′, 3′, 5′, and 8′), 64.9 ppm (for 6 and 6′), and 42.5 ppm (for b, c, 7, b’, c’, 

and 7′). Thus, the esterification reaction between CTR and β−CD, PVOH, and/or cellulose 

was approved by the slight change of chemical shift between unmodified and modified 

cotton cords, as reported in the literature [23]. 

Figure 7. ATR-FTIR spectra of β−CD, cotton cord, PVOH, CTR, and CC2.



Polymers 2022, 14, 2312 12 of 21

Polymers 2022, 14, x 12 of 21 
 

 

 

Figure 8. 13C NMR spectra of the cotton cord and CC2. 

3.2. Adsorption Study 

3.2.1. Preliminary Adsorption Study 

The unique characteristic of both adsorbate and adsorbent, which are involved in the 

pH of pollutant solutions, affected the adsorption efficiency of β−CD (18 g/L of solubility 

in water at 25 °C), PQ (pH-independent and 620 g/L of solubility in water at 25 °C [21]), 

MB (a pKa value of 5.6 [71] and 43.6 g/L of solubility in water at 25 °C [72], and CV (a pKa1 

value of 5.31 and a pKa2 of 8.64 and 4 g/L of solubility in water at 25 °C [44]). 

The optimization of the pH was firstly investigated, as shown in Figure 9a. The mod-

ified cord (CC2) revealed a low percentage of removal at pH 2 (23.2%, 54.0%, and 75.3% 

for PQ, MB, and CV removal, respectively), which might have occurred due to the host–

guest interaction, network entrapment, and hydrogen bonding. Herein, the absence of 

electrostatic interaction caused a low adsorption, because the carboxylic groups of CTR 

could not be activated when the pH of the solution was smaller than the pKa of CTR (3.13, 

4.76, and 6.40). After that, the percentage of removal increased with the pH until attaining 

a maximum at a pH of 6.5, 4, and 4 for PQ, MB, and CV adsorption, respectively, because 

the carboxylic groups of CTR could be dissociated to carboxylate functions when the pH 

of the solution was greater than some pKa values of CTR. This circumstance provided 

additionally an electrostatic interaction with pollutants, which could enhance the adsorp-

tion capacity. The pH of 6.5 was in agreement with the literature for CTR cross-linked 

Figure 8. 13C NMR spectra of the cotton cord and CC2.

3.2. Adsorption Study
3.2.1. Preliminary Adsorption Study

The unique characteristic of both adsorbate and adsorbent, which are involved in the
pH of pollutant solutions, affected the adsorption efficiency of β−CD (18 g/L of solubility
in water at 25 ◦C), PQ (pH-independent and 620 g/L of solubility in water at 25 ◦C [21]),
MB (a pKa value of 5.6 [71] and 43.6 g/L of solubility in water at 25 ◦C [72], and CV (a
pKa1 value of 5.31 and a pKa2 of 8.64 and 4 g/L of solubility in water at 25 ◦C [44]).

The optimization of the pH was firstly investigated, as shown in Figure 9a. The
modified cord (CC2) revealed a low percentage of removal at pH 2 (23.2%, 54.0%, and
75.3% for PQ, MB, and CV removal, respectively), which might have occurred due to the
host–guest interaction, network entrapment, and hydrogen bonding. Herein, the absence
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of electrostatic interaction caused a low adsorption, because the carboxylic groups of CTR
could not be activated when the pH of the solution was smaller than the pKa of CTR (3.13,
4.76, and 6.40). After that, the percentage of removal increased with the pH until attaining a
maximum at a pH of 6.5, 4, and 4 for PQ, MB, and CV adsorption, respectively, because the
carboxylic groups of CTR could be dissociated to carboxylate functions when the pH of the
solution was greater than some pKa values of CTR. This circumstance provided additionally
an electrostatic interaction with pollutants, which could enhance the adsorption capacity.
The pH of 6.5 was in agreement with the literature for CTR cross-linked with CD polymers
for PQ removal [22]. The pH of 4 was in agreement with the literature for CTR cross-linked
with CD polymers for MB removal [35].
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Figure 9. (a) Influence of pH on the pollutant removal (conditions: 5 g/L of adsorbent dosage,
25 mg/L of initial concentration, 360 min of contact time, and temperature at 303 K); (b) measurement
of the point of zero charge (PZC) of modified cotton.

As displayed in Figure 9b, the plot of ∆pH against the initial pH displayed a linear
relationship (R2 = 0.9940) and a straight curve (y =−0.9113x + 2.7648), from which the point
of zero charge (PZC) of the modified cord (CC2) was obtained from the intercept of this
line curve at a pH of 2.8. At pH 2, the surface charge of the modified textile was positive (if
pH < PZC) which provided a low adsorption efficiency, because of the repulsion between
cationic pollutants and adsorbent. At a higher pH (more than 2.8), the surface charge
became gradually negative (if pH > PZC), which could interact with cationic pollutants.

Moreover, the pKa values of MB and CV were also investigated for removal perfor-
mance. When the pH of the solution became lower than their pKa values, these two species
showed cationic charges by protonation, which could react with anionic charges from the
adsorbent via electrostatic interaction to improve the adsorption efficiency. As a result, the
optimal pH of the solution was 6.5, 4, and 4 for PQ, MB, and CV adsorption, respectively.

3.2.2. Kinetics Study

The kinetics of pollutant removal (PQ, MB, and CV) was studied at different contact
times. The adsorption enhanced rapidly for the initial 180 min before attaining the plateau
of adsorption at 360 min according to the unavailability of active sites, as noticed in
Figure 10a. Consequently, an optimal contact time of 360 min was opted for the rest of
the study.
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optimal pH, and temperature at 303 K).

The experimental data were subjected to the kinetic models to interpret the adsorption
process dealing with the chemical reaction, adsorption order, and mass transfer. In Table 2,
the correlation coefficients (R2) were larger for the pseudo-second-order model (R2 = 0.9968,
0.9997, and 0.9999) than for the pseudo-first-order model (R2 = 0.7766, 0.9552, and 0.9558)
for PQ, MB, and CV removal, respectively. The correlation coefficient of the pseudo-second-
order model was close to 1, which displayed as a straight line and confirmed the suitability
of the model to the experimental data, as illustrated in Figure 10b. The adsorption efficiency
was calculated by the pseudo-second-order model (Qe,cal = 4.56, 4.86, and 4.91 mg/g for
PQ, MB and CV removal, respectively). The Chi-square values for the pseudo-second-
order model were inferior to those of the pseudo-first-order model for all systems, which
also confirmed the reasonableness of the pseudo-second-order model with respect to the
experimental data.

Table 2. Pseudo-second-order and pseudo-first-order kinetics parameters (conditions: 5 g/L of
adsorbent dosage, 25 mg/L of initial concentration, optimal pH, and temperature at 303 K).

Qe (exp)
Pseudo-First-Order Pseudo-Second-Order Adsorption

Mechanism

R2 Qe (cal) χ2 k1 R2 Qe (cal) χ2 k2 h t1/2 k31 k32

PQ 4.56 0.7766 1.92 3.6311 0.0124 0.9968 4.73 0.0059 0.0118 0.3 18.0 0.3656 0.0191
MB 4.86 0.9552 1.56 6.9771 0.0205 0.9997 4.92 0.0006 0.0372 0.9 5.5 0.1793 0.0037
CV 4.91 0.9588 1.20 11.5611 0.0184 0.9999 4.95 0.0003 0.0509 1.2 4.0 0.1524 0.0053

As observed in Table 3, the diffusion pathway was elucidated by the intraparticle
diffusion configuration, which was separated into two parts: (i) the boundary layer diffu-
sion relating to a fast removal rate constant for the first step (k31) and (ii) the intraparticle
diffusion relating to a low removal rate constant for the second step (k32). Finally, the
pollutant removal was a complex procedure because the curve of the two sections did not
go through the origin.
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Table 3. Langmuir and Freundlich isotherm parameters (conditions: 5 g/L of adsorbent dosage, 360
min of contact time, optimal pH, and temperature at 303 K).

Qe (exp)
Langmuir Isotherm Freundlich Isotherm

R2 Qm (cal) KL χ2 R2 Qm (cal) Kf 1/n χ2

PQ 26.9 0.9969 28.3 0.10 0.077 0.8816 14.8 4.2 0.39 9.871
MB 23.7 0.9999 23.9 0.30 0.001 0.8413 15.5 7.0 0.25 4.423
CV 30.3 0.9996 30.6 0.23 0.003 0.8878 20.3 8.2 0.26 4.886

3.2.3. Isotherm Study

The experimental data were consigned to the Langmuir (Figure 11a) and Freundlich
(Figure 11b) isotherm models at 30 ◦C with different initial concentrations of pollutants to
evaluate these models’ reasonableness.
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of adsorbent dosage, 360 min of contact time, optimal pH, and temperature at 303 K).

The correlation coefficient (R2) was higher for the Langmuir isotherm model (R2 = 0.9969,
0.9999, and 0.9996) than for the Freundlich isotherm model (R2 = 0.8816, 0.8413, and
0.8878) for PQ, MB, and CV adsorption, respectively, as seen in Table 3. The linearity
of the Langmuir isotherm model (R2 near 1) was achieved for the pollutant removal,
which endorsed the adequacy of the model with the experimental data and explained the
monolayer adsorption for pollutants on the modified cord surface. The Chi-square values
for the Langmuir model were smaller than those of the Freundlich isotherm model for all
systems, which also confirmed the suitability of the Langmuir isotherm with respect to
the experimental data. The separation factor (RL) was between 0 and 1 for the PQ (0.292,
0.171, 0.064, 0.040, and 0.033 for the initial concentration of 25, 50, 150, 250, and 300 mg/L),
MB (0.119, 0.063, 0.022, 0.013, and 0.011 for the initial concentration of 25, 50, 150, 200, and
500 mg/L), and CV removal (0.150, 0.081, 0.029, 0.017, and 0.014 for the initial concentration
of 25, 50, 150, 200, and 500 mg/L). These values were reduced with the enhancement of
the initial concentrations, which displayed a vigorous affinity between the modified cord
and pollutants.

In Table 3, the maximum adsorption capacity from the Langmuir model was equal
to 28.3, 23.9, and 30.6 mg/g for PQ, MB, and CV adsorption, respectively. As seen in
Table 4, the removal of PQ from CC2 was quite good, compared with the other adsorbents.
However, the removal of MB and CV was low, compared with various materials. Although
the removal performance was mediocre, it could be recycled many times using a suitable
solvent. To valorize this modified cotton, it could be applied in other adsorption processes
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such as a semipilot scale, a continue system, or others. As illustrated in Figure 12, no
different change was observed after PQ adsorption. The modified textile (CC2) showed
blue color and violet color after MB and CV adsorption, respectively.

Table 4. Langmuir isotherm for pollutant removal by various adsorbents.

Adsorbent Adsorption
Dosage

Paraquat
Concentration

(mg/L)

Maximum
Adsorption

Capacity

PQ removal
CTR-CD-PVOH coated on cotton rope (this work) 0.05 g in 0.01 L 25–300 mg/L 26.9 mg/g
CTR-CD-PVOH nanosponges [23] 0.02 g in 0.01 L 25–300 mg/L 112.2 mg/g
CTR-CD coated on polyester textile [20] 0.02 g in 0.01 L 10–200 mg/L 21.9 mg/g
Bentonite [14] 0.04 g in 0.025 L 4–24 mg/L 11.75 mg/g
Activated carbon [13] 0.01 g in 0.01 L 1.5–45 mg/L 20 mg/g
MB removal
CTR-CD-PVOH coated on cotton rope (this work) 0.05 g in 0.01 L 25–500 mg/L 23.7 mg/g
CTR-CD polymer [35] 0.2 g in 0.2 L 4–1000 mg/L 248 mg/g
CTR-CD modified filter paper [33] 0.1 g in 0.1 L 50–500 mg/L 124.6 mg/g
CTR-CD modified wood flour [34] 0.25 g in 0.05 L 100–1000 mg/L 86.2 mg/g
CTR-CD-silica hybrid adsorbent [30] 0.01 g in 0.01 L 25–1250 mg/L 181.1 mg/g
CV removal
CTR-CD-PVOH coated on cotton rope (this work) 0.05 g in 0.01 L 25–500 mg/L 30.3 mg/g
EDTA/graphene oxide functionalized corncob [47] 0.01 g in 0.025 L 20–140 mg/L 203.9 mg/g
Modified rice husk [41] 0.02 g in 0.01 L 20–100 mg/L 97.7 mg/g
CD functionalized magnetic adsorbent [46] 0.005 g in 0.002 L 300–1500 mg/L 454.5 mg/g
EDTA/CD polymers [48] 0.01 g in 0.005 L 10–500 mg/L 114.2 mg/g
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3.2.4. Stability Study

The stability study of the modified cotton rope was operated in water and 5% v/v of
HCI in ethanol to assess the endurance of the polymer coating during the adsorption and
desorption processes, as shown in Figure 13. The weight loss of CC2 was observed after
6 h of contact time (4.8% and 3.6% for water and 5% v/v of HCI in ethanol, respectively).
The degradation of CC2 was continued after 24 h of contact time, which was equal to 7.1
and 5.6%, successively. The coating was slightly degraded because the anionic cyclodextrin
polymer was water-soluble and decayed comfortably in water via the breaking of ester
bonds presented on the polymer structure through hydrolysis. This result immediately
provided a drop in recyclability performance, which was found in previous works [20,73].
Nevertheless, the weight loss of 5% v/v of HCI in ethanol was smaller than in water.
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3.2.5. Reusability Study

The recyclability of the modified cord was investigated to estimate the cost-effectiveness
of the adsorption method. In Figure 14, the reusability efficiency dropped after five uses
(PQ (from 91.3% to 84.8%), MB (from 97.0% to 95.2%), and CV (from 98.3% to 96.9%)). This
diminution of pollutant removal might be due to the decomposition of the polymer coating
on the cotton surface after contact with solvents, as explained in the stability study.
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4. Conclusions

The coating of anionic cyclodextrin polymer was achieved by in situ polymerization
between β-cyclodextrin and citric acid in the presence of poly (vinyl alcohol) at 140 ◦C and
90 min. The modified cotton rope (CC2) revealed 79.2% coating performance, 1.12 mmol/g
COOH groups, 91.3% PQ removal, 97.0% MB removal, and 98.3% CV removal for 25 mg/L
of initial concentration. Various characterization methods were employed to confirm the
physicochemical properties of modified rope. The adsorption of cationic pollutants on
the modified cord was presented as four possibilities: host–guest interaction, electrostatic
interaction, polymer network entrapment, and hydrogen bonding. Thus, the presence of
poly (vinyl alcohol) provided supplementary adsorption sites to enhance the pollutant
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removal efficiency. The pseudo-second-order model and the Langmuir isotherm were
appropriate for the kinetics and isotherm study, respectively. The adsorbent was stable
after 24 h of contact time in water and 5% v/v of HCI in ethanol. After five regeneration of
the modified rope, the adsorption rate was 84.3% (PQ), 95.2% (MB), and 96.9% (CV). This
environmentally friendly material could be applied as an effective adsorbent for cationic
contaminants from an aqueous solution and the coating process could be utilized on various
supports for different kinds of applications.
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