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Background: Anterior cruciate ligament (ACL) injury reduction training has focused on lower body strengthening and landing
stabilization. In vitro studies have shown that quadriceps forces increase ACL strain, and hamstring forces decrease ACL strain.
However, the magnitude of the effect of the quadriceps and hamstrings forces on ACL loading and its timing during in vivo landings
remains unclear.

Purpose: To investigate the effect and timing of knee muscle forces on ACL loading during landing.

Study Design: Descriptive laboratory study.

Methods: A total of 13 young female athletes performed drop vertical jump trials, and their movements were recorded with
3-dimensional motion capture. Lower limb joint motion and muscle forces were estimated with OpenSim and applied to a mus-
culoskeletal finite element (FE) model to estimate ACL loading during landings. The FE simulations were performed with 5 different
conditions that included/excluded kinematics, ground-reaction force (GRF), and muscle forces.

Results: Simulation of landing kinematics without GRF or muscle forces yielded an estimated median ACL strain and force of 5.1%
and 282.6 N. Addition of GRF to kinematic simulations increased ACL strain and force to 6.8% and 418.4 N (P < .05). Addition of
quadriceps force to kinematics þ GRF simulations nonsignificantly increased ACL strain and force to 7.2% and 478.5 N. Addition
of hamstrings force to kinematicsþGRF simulations decreased ACL strain and force to 2.6% and 171.4 N (P< .001). Addition of all
muscles to kinematics þ GRF simulations decreased ACL strain and force to 3.3% and 195.1 N (P < .001). With hamstrings force,
ACL loading decreased from initial contact (time of peak: 1-18 milliseconds) while ACL loading without hamstrings force peaked at
47 to 98 milliseconds after initial contact (P ¼ .024-.001). The knee flexion angle increased from 20.9� to 73.1� within 100 milli-
seconds after initial contact.

Conclusion: Hamstrings activation had greater effect relative to GRF and quadriceps activation on ACL loading, which signifi-
cantly decreased and regulated the magnitude and timing of ACL loading during in vivo landings.

Clinical Relevance: Clinical training should focus on strategies that influence increased hamstrings activation during landing to
reduce ACL loads.

Keywords: knee; finite element; musculoskeletal; modeling; strain; landing

Injury reduction is the optimal concept to avoid the
complications of extended rehabilitation, failure to return
to sport, and high rates of second injury that are associated
with anterior cruciate ligament (ACL) rupture.1,16,38,44 Lit-
erature indicates that incidence of ACL injury can be miti-
gated across a population by interventions targeted at
modifiable risk factors, such as neuromuscular control and
movement biomechanics.20,56 Specifically, implementation

of neuromuscular training programs that incorporate lower
body strength, landing stabilization, core strength, agility,
plyometrics, and balance39 influence muscle activations
in a manner that mitigates biomechanical risk factors asso-
ciated with ACL injury during landing tasks.17,18,39,49

However, the specific impacts of targeting muscular
recruitment and strengthening strategies on ACL loading
have not been well established owing to the difficulty of
assessing direct ACL loads in vivo.

In vitro experimental testing indicates that quadriceps
forces increase ACL loads, as opposed to hamstrings forces,
which reduce ACL strain.32,43,47 In quasi-static conditions,
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400 N of quadriceps tension was shown to increase ACL
strain by 3% to 5%.43,47 This is consistent with an in vivo
study that reported ACL strain increased with quasi-static
quadriceps contraction.4 Conversely, greater quadriceps
tension decreased (or did not change) ACL loading during
simulated in vitro landings.15,30 These studies suggested
that the response of ACL loading to quadriceps force would
be different between quasi-static and dynamic conditions.
The effect of muscle contractions on ACL loading during
in vivo landing tasks remains unclear, as multiple interac-
tions take place between dynamic kinematics, muscle
forces, and ground-reaction force (GRF). Specifically, the
magnitude of the effect of quadriceps and hamstrings forces
on ACL loading and its timing during landing remains
unexplored.

Musculoskeletal models are helpful, as they allow inves-
tigators to estimate in vivo muscle forces and ligament load-
ing, which is not experimentally measurable.24,28,35,36,51,53,55

A previous musculoskeletal modeling study revealed that
hamstrings force is more effective at decreasing anterior tib-
ial shear force during a drop vertical jump (DVJ) than quad-
riceps force at increasing it.36 However, that study did not
investigate ligament loading because ligamentous struc-
tures were not included in the model.

A validated knee joint model is necessary to provide
physiologic knee ligament loading because generic material
properties fail to account for the specimen-specific coupling
of shape and structural properties.34 Only some musculo-
skeletal modeling studies have reported ligament loading
with validated material properties and a 6 degrees of free-
dom (DOF) knee joint, which is optimal for the accurate
assessment of ligament loading.24,28,35,48,55 Once a muscu-
loskeletal model is validated, it can be used to simulate the
individual effect of multiple factors, including kinematics,
muscle forces, and/or GRF during landing.34 A similar tech-
nique utilizing a validated model was used in previous
studies to test other joints and tasks,13,23,24,29,35,48 but ACL
loading during a landing task has not been studied.

The purpose of this study was to employ a validated mus-
culoskeletal model to test the individual effect of kinemat-
ics, GRF, and muscle forces on ACL loading during a

simulated landing task. We hypothesized that isolated
quadriceps force would increase ACL loading, whereas
hamstrings would decrease ACL loading above and beyond
the effect of quadriceps contributions during landing simu-
lations.15,30,57 Furthermore, because ACL injury occurs at
40 to 60 milliseconds after initial contact with anterior tib-
ial translation,3,26,27,37,52 we hypothesized that hamstrings
would decrease ACL loading around this time range as an
agonist of ACL. This would shift the time of peak ACL load-
ing to the initial contact, at which time the knee flexion
angle is at its minimum.8

METHODS

Experimental Testing

The experimental data collection for this study was previ-
ously described in detail.53 In brief, 13 female high school
volleyball players (mean age, 15.6 ± 1.6 years; mean height,
169.8 ± 5.6 cm; mean weight, 62.6 ± 5.2 kg) participated in
this study. Each participant performed 3 DVJ trials from a
30 cm–high box. Individuals’ 3-dimensional body positions
and surface electromyography (EMG) data for the right leg
were recorded during the DVJ using 35 reflective markers
and a motion capture system and telemetry surface EMG
system.11 EMG was recorded for biceps femoris, semiten-
dinosus, rectus femoris, vastus lateralis, vastus medialis,
gastrocnemius medialis, hip adductors, and gluteus
medius.

Computational Simulations

Sequential OpenSim6 simulations and 2 finite element (FE)
simulation steps were conducted to estimate ACL strain and
force during landings. Joint kinematics and kinetics as well
as muscle forces were estimated with OpenSim simulations
and used as inputs to FE simulations. The individual effect
of kinematics, GRF, and muscle forces were investigated by
the inclusion/exclusion of these factors in separate simula-
tions of the same motion task (Figure 1).

*Address correspondence to Ryo Ueno, PT, PhD, Department of Sport Science, University of Innsbruck, Fürstenweg 185, A-6020 Innsbruck, Austria
(email: ryo.ueno@uibk.ac.at).

†Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.
‡Department of Sport Science, University of Innsbruck, Innsbruck, Austria.
§Smith & Nephew, San Clemente, California, USA.
kDepartment of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.
{Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA.
#Emory Sport Performance and Research Center, Flowery Branch, Georgia, USA.
**Emory Sports Medicine Center, Atlanta, Georgia, USA.
††Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA.
‡‡The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA.
§§Hewett Global Consulting, Rochester, Minnesota, USA.
kkThe Rocky Mountain Consortium for Sports Research, Edwards, Colorado, USA.
Final revision submitted March 15, 2021; accepted April 30, 2021.
One or more of the authors has declared the following potential conflict of interest or source of funding: This study was supported by funding from the

National Institutes of Health (grants R01AR049735, R01AR056259, R01AR055563, K12HD065987, and L30AR070273). A.N. is an employee of Smith &
Nephew. G.D.M. has received royalties from Human Kinetics and Wolters Kluwer and is an inventor of biofeedback technologies (2017 Non Provisional
Patent Pending- Augmented and Virtual reality for Sport Performance and Injury Prevention Application 62/420,119, software copyrighted) designed to
enhance rehabilitation and prevent injuries and has potential for future licensing royalties. AOSSM checks author disclosures against the Open Payments
Database (OPD). AOSSM has not conducted an independent investigation on the OPD and disclaims any liability or responsibility relating thereto.

Ethical approval for this study was obtained from Cincinnati Children’s Hospital Medical Center (study ID: 2008-0023).

2 Ueno et al The Orthopaedic Journal of Sports Medicine

mailto:ryo.ueno@uibk.ac.at


OpenSim Simulations

Individual muscle forces were estimated in OpenSim as
previously described.53 Briefly, a generic musculoskeletal
model42 with additional DOFs added for knee abduction/
adduction and internal/external rotation as well as addi-
tional hip external rotator muscles was scaled to the
anthropometric parameters of each participant. These
scaled models were used to calculate joint kinematics and
muscle forces using EMG-informed direct collocation.5 The

objective function aimed to track participant-specific,
experimentally measured EMG signals. In the musculo-
skeletal modeling step, 2 of 39 trials did not achieve the
tolerance of muscle force optimization and were excluded
from the analysis.

FE Simulations

A musculoskeletal FE model was created in Abaqus/
Explicit (SIMULIA).34 A generic model of the pelvis was

Figure 1. Workflow of the computational modeling to estimate ligament loading during the drop vertical jump, in which individual
landing strategies were maintained. Joint motion and muscle forces were estimated using electromyography-informed optimiza-
tion in OpenSim simulations. Joint motion was input to a first FE simulation to simulate landing with patient-specific kinematics and
to obtain the trajectories of the knee and ankle joint centers. To simulate more physiologic knee joint mechanics, the joint center
position was kinematically driven and muscle forces from OpenSim simulation were applied in the second FE simulation. Black
arrows on the joint center indicate kinematically driven DOFs. Inferosuperior DOF on the ankle joint was unconstrained to apply
vertical GRF, whereas rotation on the transverse plane was kinematically driven to track toe direction. The pelvis was kinematically
driven according to the OpenSim inverse kinematics. This allowed hip internal/external rotation as well as knee abduction/adduc-
tion and the 3 translations of the knee to be unconstrained and dependent on muscle force, joint contact force, and GRF (see main
text for more detailed description). DOF, degrees of freedom; FE, finite element; GRF, ground-reaction force.

The Orthopaedic Journal of Sports Medicine Hamstrings Regulate ACL Loading During In Vivo Landing 3



added to 1 of 4 previously developed and validated
specimen-specific FE models of the knee (male, left leg in
Navacchia et al34). The model included a 3-DOF ball joint at
the hip, a 12-DOF knee joint, and a 1-DOF hinge joint at the
ankle. The knee joint included specimen-specific bone and
cartilage geometries and tibiofemoral and patellofemoral
ligaments. The material properties of the ligaments includ-
ing reference strain and stiffness were calibrated to match
simulated kinematics and ACL strain with in vitro experi-
mental testing measurements.14,34 The 24 muscles (iliacus,
psoas, 5 of adductors, 3 of gluteus maximus, 3 of gluteus
medius, piriformis, 4 of hamstrings, 4 of quadriceps, 2 of
gastrocnemius) that span the hip and knee joints were mod-
eled as unidimensional connectors consistent with the
OpenSim simulations.

The same landing tasks simulated with OpenSim were
also simulated with the FE model. The FE landing simula-
tion aimed to maintain physiologic mechanics at the knee
and individual landing strategies such as knee-in, toe-out
landing, which is determined by the knee and ankle joint
center locations and toe direction in this study (the toe
direction would not change during landing because of the
friction). In the first FE simulation, pelvic, hip, knee, and
ankle joint motions obtained from the OpenSim simulation
were applied in the musculoskeletal FE model. The position
in space of the knee joint center (midpoint between the
medial and lateral knee condyles) and ankle joint center
(midpoint between the medial and lateral malleoli) during
landing were recorded. In the second FE simulation, the
knee and ankle joint centers tracked their positions
recorded in the first FE simulation, while rotational and
translational DOF on the hip and knee joints remained
unconstrained. The inferosuperior position of the ankle
joint center was left free to transfer the ground force (ver-
tical component only, as the other DOFs were kinemati-
cally driven) to the knee. In addition, a node on the ankle
located 10 mm in front of the ankle joint center was kine-
matically driven in the mediolateral position to track the
toe direction during landing. The muscle forces estimated
in OpenSim and the vertical GRF were applied to each
muscle and to the ankle, respectively.

This strategy was adopted to simulate the physiological
knee joint mechanics while maintaining the individual
landing strategies. Skin marker–based joint motions con-
tain skin artifacts31 and do not take into account the
mechanical equilibrium of forces at the knee. Therefore, the
knee joint motion obtained from OpenSim simulation in
this study was not physiologic enough to assess ACL load-
ing. The first FE simulation was necessary to obtain the
joint center location of the FE model in the simulation of
motion from OpenSim. The second FE simulation was sep-
arately conducted to satisfy mechanical equilibrium of
forces at the knee joint. While hip flexion/extension, hip
abduction/adduction, knee flexion/extension, and knee
internal/external rotation were constrained owing to the
kinematically driven knee and ankle joint centers, the posi-
tions of internal/external hip rotation, knee abduction/
adduction, and translational DOF depended on muscle, lig-
ament, contact forces, and GRF.

ACL strain and force were averaged and summed across
the 4 modeled fibers (2 fibers each in the anteromedial and
posterolateral bundles of the ACL), respectively. ACL
strain was calculated as 100 � (L – L0)/L0, where L and
L0 are current length and reference length9 (slack length
determined by optimization in the validation study34),
respectively. The FE simulation was conducted under 5
different conditions to sequentially investigate the individ-
ual effect of GRF and muscle forces on ACL loading with
respect to the kinematics-only condition:

1. Kinematics condition (no application of GRF and mus-
cle forces)

2. GRF condition (kinematics þ GRF)
3. Quadriceps condition (kinematics þ GRF þ quadriceps)
4. Hamstrings condition (kinematics þ GRF þ

hamstrings)
5. Normal condition (kinematics þ GRF þ all muscles)

Statistical Analysis

The Friedman test with post hoc Nemenyi multiple compar-
ison test was used to examine the differences in ACL load-
ing and peak time between the 5 conditions. Statistical
tests were performed with R, package “PMCMR”41 using
jamovi V 1.2 (The jamovi project, https://www.jamovi.org).
Statistical significance was set at P < .05.

RESULTS

The peak values for the landing kinematics are presented
in Table 1, and Figure 2 shows the median ACL strain and
force plotted across time for the 5 study conditions. For the
kinematics condition, the median peak ACL strain and
force were 5.1% (interquartile range [IQR], 4.3%-6.1%)
and 282.6 N (IQR, 241.1-379.7 N), respectively (Table 2 and
Figure 3, A and B). Significant increases in ACL strain
and force were seen in the GRF condition compared with
the kinematics condition, by 33% (P ¼ .017) and 48%
(P ¼ .011), respectively. Nonsignificant increases in ACL
strain and force were seen in the quadriceps condition com-
pared with the GRF condition, by 5% (P ¼ .824) and 14%
(P ¼ .890), respectively. ACL strain and force were

TABLE 1
Peak Values for Landing Kinematicsa

Variable Peak Value, deg

Knee flexion 73.1 (66.2 to 76.1)
Knee abduction 4.8 (3.8 to 6.0)
Knee internal rotation 21.4 (18.7 to 28.7)
Hip flexion 40.0 (34.5 to 44.9)
Hip adduction –2.5 (–5.4 to –0.2)
Hip internal rotation 6.1 (2.4 to 10.2)
Lateral pelvic tilt 1.4 (–0.7 to 2.8)
Lateral lumber bending 2.3 (–0.7 to 3.9)

aData are reported as median (interquartile range).
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Figure 2. Median waveforms of ACL (A) strain and (B) force across time for the 5 different study conditions. Time zero indicates the
time of initial contact with the ground. ACL, anterior cruciate ligament; GRF, ground-reaction force.

TABLE 2
Magnitude and Timing of Peak ACL Strain and Force by Study Conditiona

Kinematics GRF Quadriceps Hamstrings Normal

Peak ACL strain, % 5.1 (4.3 to 6.1) 6.8 (5.5 to 8.3) 7.2 (5.7 to 9.7) 2.6 (–1.8 to 3.6) 3.3 (–1.5 to 5.0)
Peak ACL force, N 282.6 (241.1 to 379.7) 418.4 (352.4 to 575.6) 478.5 (369.9 to 915.3) 171.4 (61.5 to 291.8) 195.1 (69.9 to 331.5)
Timing of peak ACL strain, ms 87 (45 to 99) 98 (73 to 100) 73 (58 to 97) 17 (1 to 87) 18 (1 to 56)
Timing of peak ACL force, ms 47 (7 to 97) 84 (56 to 85) 59 (46 to 80) 7 (1 to 85) 1 (1 to 45)

aData are reported as median (interquartile range). ACL, anterior cruciate ligament; GRF, ground-reaction force.

Figure 3. (A, B) Magnitude and (C, D) timing of peak anterior cruciate ligament (ACL) strain and force compared across the 5 study
conditions. Dots indicate outliers. Asterisks indicate statistically significant differences: *P < .05; **P < .01; ***P < .001. GRF,
ground-reaction force.
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significantly decreased in the hamstrings condition com-
pared with the GRF condition, by 62% and 59%, respec-
tively (P < .001 for both). Similarly, strain and force were
significantly decreased in the normal condition compared
with the GRF condition, by 51% and 54%, respectively (P <
.001 for both), as well as the quadriceps condition, by 45%
and 41%, respectively (P < .001 for both).

The timing of peak ACL strain and force after initial
contact was significantly later in the kinematics, GRF, and
quadriceps conditions compared with the hamstrings and
normal conditions (P ¼ .024-.001) (Table 2 and Figure 3, C
and D). The median knee flexion angle at initial contact was
20.9� (IQR, 15.9�-27.7�) and reached 73.1� (IQR, 66.2�-
76.1�) at 100 milliseconds after initial contact.

DISCUSSION

To our knowledge, this was the first study to investigate the
effect of muscle forces on ACL loading during simulations of
in vivo landing with a validated musculoskeletal model.
The hypothesis tested was that quadriceps force would
increase ACL loading whereas hamstrings force would
decrease ACL loading in this model. The hypothesis was
partially supported, as the application of hamstrings force
significantly decreased ACL loading during landing. Con-
versely, application of quadriceps force did not induce a
statistically significant increase in ACL loading. Accord-
ingly, relative to ACL loading, these observations indicate
that the agonist effect of hamstrings contraction is larger
than the antagonist effect of quadriceps during a landing
task.

The results of the quadriceps condition did not directly
support or contradict the previously cited in vitro literature
that ACL loading remained unchanged when stiffness or
preloading of quadriceps muscles was increased.15,30 In a
previous study,30 the knee flexion angle was decreased
because of higher quadriceps force. However, the FE simu-
lation of the present study was designed to keep the knee
flexion motion regardless of the quadriceps force or any
other force. Therefore, the relationship between ACL
strain, quadriceps force, and knee flexion angle found in
the previous study30 was not accounted for in the FE sim-
ulation. The kinematics þ quadriceps condition without
GRF was not tested in this study. ACL loading in such a
condition is not expected to exceed the results of the quad-
riceps condition (kinematics þGRFþ quadriceps) since the
GRF significantly increased ACL strain when added to joint
kinematics.

The result of the hamstrings condition was consistent
with previous in vitro landing simulations.57 The results
of the normal condition indicated that the hamstrings com-
pensated for most of the ACL loading that was incurred
from GRF and quadriceps. These data indicate that ACL
loading can be effectively regulated through hamstrings
contraction, even when the applied hamstrings force is
smaller (956.5 ± 232.0 N) than the quadriceps force
(7278.4 ± 1308.1 N). This is consistent with a previous study
that stated 55% of hamstrings force turned into posterior
tibial force, whereas only 15% of quadriceps force turned

into anterior tibial shear force.36 These findings provide
evidence that hamstrings muscle activation contributes to
protection of the ACL during landing tasks. At the same
time, they indicate that isolated quadriceps force is not
likely sufficient to induce ACL rupture on its own during
landing.7 Rather, the lack of hamstrings contraction com-
bined with risky kinematics and GRF would be the most
likely factors to induce ACL injury.

The time of peak ACL loading was delayed when ham-
strings force was removed from the simulation. The ham-
strings activation presented an increasing trend
throughout the landing (see Ueno et al53), whereas the time
of peak vertical GRF, knee abduction, internal tibial rota-
tion, and anterior tibial translation, which induce higher
ACL strain, were observed from 50 to 90 milliseconds (see
Ueno et al54 for more detailed knee kinematics). When
hamstrings force was applied, 17 of 37 trials presented the
peak ACL strain within 10 milliseconds after initial ground
contact, where the knee flexion angle was at its minimum.
These details indicate that kinematics, GRF, and quadri-
ceps force strained the ACL from 50 to 90 milliseconds
while hamstrings force canceled out these forces and
shifted peak ACL loading to immediately after initial con-
tact (0-10 ms) for the majority of trials. Note that peak ACL
loading in the hamstrings condition was significantly smal-
ler than in the other conditions. The time of peak ACL
loading with hamstrings activation is consistent with pre-
vious fluoroscopic studies.8,50 This result supports the fact
that the hamstrings force regulates knee joint kinematics
and ACL loading.

A limitation of this study was that the effect of the gas-
trocnemius was not tested. Fleming et al10 reported that
the gastrocnemius acts as an antagonist to the ACL as it
pulls the femur backward relative to the tibia with an in
vivo quasi-static study. Similarly, Navacchia et al36

reported a musculoskeletal modeling study showing that
the gastrocnemius induces anterior tibial shear force more
than the quadriceps during landing. However, the similar
effect was not simulated because of the constraints used in
the FE analysis of this study. In addition, previous studies
indicated that the gastrocnemius and quadriceps may con-
tribute to stabilize the knee joint under a complexity of co-
contraction.2,25 These points should be improved and tested
further in a future study.

Second, the magnitude of the effect of high-risk kinemat-
ics (such as higher knee abduction and internal tibial rota-
tion with laterally leaned trunk) on ACL loading during
landing remains unclear.19,53 This concept should be exam-
ined in future studies to clarify the causal effects of individ-
ual landing strategies, including asymmetrical landing in
the frontal plane and upright landing by changing landing
posture.21,45,46,53 However, these strategies will affect mus-
cle force estimations. Therefore, muscle estimations must
be reprocessed with respect to altered landing kinematics.
Third, the effect of the anteroposterior and mediolateral
components of GRF was not investigated since these DOFs
were kinematically driven at the ankle to maintain individ-
ual landing strategies. Although the strategy used in this
study maintains mechanical equilibrium without the appli-
cation of horizontal GRFs, those ankle DOFs must be
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unconstrained to address this limitation. However, the nat-
ural landing kinematics would be affected when kinemati-
cally driven ankle DOFs were unconstrained. Finally, the
muscle force estimation would involve errors. Even though
the EMG-informed method helped to account for the co-
contraction of quadriceps and hamstrings,36 surface EMG
information would contain errors from crosstalk33; in addi-
tion, the estimation was not calibrated to be specific for
patients as conducted in a previous study.22,40 Uncoupled
modeling between OpenSim and the FE model in this study
would be another factor for the potential errors in the esti-
mation of muscle force and subsequent ACL
loads.12,24,29,35,48

CONCLUSION

The effect of quadriceps force on increasing ACL loads was
smaller than the effect of GRF, whereas relatively small
hamstrings force significantly decreased ACL loads during
landing. ACL loading was effectively regulated by ham-
strings force in a landing simulation model with kinemat-
ics, GRFs, and quadriceps co-contraction. The hamstrings
muscle was a more influential agonist to ACL loading than
any other input parameter was an antagonist. Clinicians
should ensure appropriate hamstrings contraction and
avoidance of risky kinematics and large GRF to reduce the
relative risk of ACL injury.
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