
© The Author(s) 2021. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Cerebral Cortex, November 2021;31: 5239–5252

https://doi.org/10.1093/cercor/bhab154
Advance Access Publication Date: 23 July 2021
Original Article

O R I G I N A L A R T I C L E

Lost Dynamics and the Dynamics of Loss:
Longitudinal Compression of Brain Signal
Variability is Coupled with Declines in Functional
Integration and Cognitive Performance
Douglas D. Garrett1,2, Alexander Skowron1,2, Steffen Wiegert1,2,
Janne Adolf3, Cheryl L. Dahle4, Ulman Lindenberger1,2 and Naftali Raz2,4,5

1Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human
Development, Lentzeallee 94, Berlin 14195, Germany, 2Center for Lifespan Psychology, Max Planck Institute for
Human Development, Lentzeallee 94, Berlin 14195, Germany, 3Research Group of Quantitative Psychology and
Individual Differences, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven 3000, Belgium,
4Institute of Gerontology, Wayne State University, 87 East Ferry Street, Detroit, MI 48202, USA and
5Department of Psychology, Wayne State University, 87 East Ferry Street, Detroit, MI 48202, USA

Address correspondence to Douglas D. Garrett, Max Planck UCL Centre for Computational Psychiatry and Ageing Research and Center for Lifespan
Psychology, Max Planck Institute for Human Development, Lentzeallee 94, Berlin 14195, Germany. Email: garrett@mpib-berlin.mpg.de

Abstract

Reduced moment-to-moment blood oxygen level-dependent (BOLD) signal variability has been consistently linked to
advanced age and poorer cognitive performance, showing potential as a functional marker of brain aging. To date, however,
this promise has rested exclusively on cross-sectional comparisons. In a sample of 74 healthy adults, we provide the first
longitudinal evidence linking individual differences in BOLD variability, age, and performance across multiple cognitive
domains over an average period of 2.5 years. As expected, those expressing greater loss of BOLD variability also exhibited
greater decline in cognition. The fronto-striato-thalamic system emerged as a core neural substrate for these
change–change associations. Preservation of signal variability within regions of the fronto-striato-thalamic system also
cohered with preservation of functional integration across regions of this system, suggesting that longitudinal maintenance
of “local” dynamics may require across-region communication. We therefore propose this neural system as a primary target
in future longitudinal studies on the neural substrates of cognitive aging. Given that longitudinal change–change
associations between brain and cognition are notoriously difficult to detect, the presence of such an association within a
relatively short follow-up period bolsters the promise of brain signal variability as a viable, experimentally sensitive probe
for studying individual differences in human cognitive aging.
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Introduction
Typically, researchers conceive of variability as neural “noise,” a
nuisance factor that presumably interferes with the efficiency
of neural processes. However, growing evidence suggests that
various forms of neural variability may prove functionally bene-
ficial for neural systems (Garrett, Samanez-Larkin et al. 2013). In
a provocative review several decades ago, Pinneo (1966) posited
that ubiquitous neural variability “is not merely noise,” but
rather an essential substrate for the stable and functional output
of a neural system. Notably, computational modeling suggests
that networks formed in the presence of greater noise are more
robust to disruption, thus enhancing learning and environmen-
tal adaptation, and helping to maintain optimal performance
(Basalyga and Salinas 2006; Faisal et al. 2008). More generally,
variability may reflect greater neuronal dynamic range, which is
vital to the adaptability of neural systems by providing a greater
range of potential responses to a greater variety of stimuli. For
the past 10 years, we have examined these ideas in the context of
human aging, during which system flexibility and adaptability
are expected to degrade (Grady and Garrett 2013; Garrett et al.
2013a; Waschke et al. 2021). Indeed, in line with the assumption
that greater neural variability may confer functional benefits, we
continue to find that greater variability of blood oxygen level-
dependent (BOLD) signal is more typical among younger adults
and persons with better cognitive performance (Garrett et al.
2010, 2011, 2015, 2017; Grady and Garrett 2013, 2018; Garrett
et al. 2013a, 2013b; Burzynska et al. 2015; Nomi et al. 2017). As
a result, we and others have argued that brain aging may be
reconceptualized as a generalized process of “dynamic compres-
sion” that yields increased functional rigidity, thus limiting the
system’s adaptability to environmental demands and serving as
a potential harbinger of cognitive decline.

However, progress in understanding the role of brain
signal variability in cognitive aging has been hampered by
the exclusive reliance on cross-sectional designs in previous
work. Cross-sectional designs are ill-suited for evaluating
neural and cognitive change and individual differences therein
(Raz et al. 2005; Nyberg et al. 2010; Lindenberger et al. 2011;
Raz and Lindenberger 2011; Lindenberger 2014). Longitudinal
investigations have contributed significantly to understanding
of age-related change in “structural” brain properties, such
as regional volume and cortical thickness (Raz et al. 2005;
Fjell et al. 2009), white matter organization (Barrick et al.
2010; Bender et al. 2016) and iron accumulation (Daugherty
et al. 2015a). These studies confirm that the estimates of age-
related change derived from cross-sectional investigations do
not faithfully reflect temporal properties of the brain aging
process (Lindenberger et al. 2011; Raz and Lindenberger 2011;
Raz 2020). In comparison, the extant longitudinal evidence
from functional imaging is very sparse, and when available, is
typically limited to analyses of change in functional connectivity
and average brain signals (Nyberg et al. 2010; Salami et al.
2014; Pudas et al. 2017). Longitudinal studies demonstrate that
in healthy adults, aging-based change–change associations
between brain and cognition are subtle and difficult to detect,
especially at typically short follow-up periods of several years
at most (Raz et al. 2008; Daugherty et al. 2015b; Jäncke et al.
2019). In light of robust and well-replicated cross-sectional
associations between signal variability, aging, and cognitive
performance (Garrett et al. 2010, 2011, 2015, 2017; Grady and
Garrett 2013, 2018; Garrett et al. 2013a; Garrett et al. 2013b;
Burzynska et al. 2015; Nomi et al. 2017), it is important to
ascertain whether BOLD signal variability can also reveal

“change–change” associations between brain and behavior
over time. In other words, longitudinal studies of concomitant
changes in brain signal variability and cognition are essential for
integrating resulting insights into existing theories of cognitive
and brain aging.

Using BOLD variability for investigating the coupling between
cerebral and cognitive change in healthy aging requires
consideration of several fundamental properties of the aging
process, such as spatial heterogeneity and heterochronicity
of brain changes. Studies of age-related changes in brain
structure demonstrate relative sparing of the primary sensory
areas, while documenting age-related vulnerability of the
tertiary association cortices, neostriatum, and cerebellum, with
a particular emphasis on the prefrontal (PFC) regions (Raz
and Rodrigue 2006; Grady 2012; Lindenberger 2014). In accord
with these findings, one of the rare longitudinal functional
magnetic resonance imaging (fMRI) studies undertaken thus
far has documented differential decline in PFC activation over
time in a sample of healthy adults (Nyberg et al. 2010). Cross-
sectional work consistently shows greater BOLD variability
in the frontal lobes of younger, higher performing adults
(Garrett et al. 2010, 2011, 2015, 2017; Grady and Garrett 2013,
2018; Garrett et al. 2013a; Garrett et al. 2013b; Guitart-Masip
et al. 2016; Nomi et al. 2017), but it remains unclear whether
localized changes in frontal BOLD variability are associated
with changes in cognition. Further, whereas lower BOLD
variability in the cortex (including PFC) has often been
linked to older age and poorer cognitive performance, the
opposite is sometimes true for subcortical regions that are
connected to it, such as thalamus and striatum (Garrett et al.
2010, 2011; Samanez-Larkin et al. 2010; Guitart-Masip et al.
2016; Good et al. 2020). In other studies, however, elevated
BOLD variability in the subcortical nuclei confers functional
benefits (Garrett et al. 2013a; Burzynska et al. 2015; Garrett
et al. 2015, 2017; Nomi et al. 2017; Grady and Garrett 2018).
Clarifying this apparent discrepancy necessitates examination
of cortical versus subcortical characteristics of BOLD variability
over time.

Crucially, brain signal dynamics within subcortical regions
continue to draw substantial attention in their own right.
Recently, efforts have increased toward understanding how
“locally measured (within region) variability” may reflect synap-
tic input. Existing theory suggests that a more disconnected,
fractionated biological system should be less dynamic across
moments (Pincus 1994), but this had not been shown previously
in humans. Beyond work showing that the thalamus is highly
important for shaping functional brain dynamics in general
(Hwang et al. 2017; Garrett et al. 2018; Shine et al. 2019a, 2019b;
Kosciessa et al. 2021), we found recently that higher thalamic
signal variability represents perhaps the single most important

marker of higher (lower dimensional) system-wide functional
integration (Garrett et al. 2018). Similarly, moment-to-moment
variability in the neostriatum (caudate and putamen) also
appears to be an excellent indicator of the brain’s capacity for
functional integration (Garrett et al. 2018). However, as for BOLD
variability, longitudinal evidence for functional integration
does not yet exist. Importantly, the PFC, the neostriatum, and
the thalamus are linked by significant network of reciprocal
anatomical connections. Within this fronto-striato-thalamic
system, the medial dorsal (MD) nucleus has been proposed
as a key node, as it may be critical for integrating broad-
scale information within PFC via striatal input through the
pallidum (Mitchell and Chakraborty 2013; Mitchell 2015; Pergola
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et al. 2018) and for regulating plasticity and flexibility of PFC-
related cognitive functions (Baxter 2013), perhaps yielding
greater moment-to-moment signal variability. As a whole, the
fronto-striato-thalamic system may present a useful vehicle
for elucidating longitudinal change–change relations between
brain signal variability, functional integration, and cognitive
aging.

In the current study of healthy adults, we provide initial lon-
gitudinal evidence linking individual differences in changes in
BOLD variability (at rest) and broad-scale cognitive performance
over 2.5 years. We hypothesized that participants exhibiting
greater loss of BOLD variability over time would be more likely
to decline in cognition, and that this relationship would be
particularly salient in the fronto-striato-thalamic system.

Materials and Methods
Participants

The data for this study were collected within an ongoing longi-
tudinal investigation in a major metropolitan area of the United
States of America (Detroit, MI). Assessments occurred approx-
imately 2.5 years apart [mean = 2.51 years {1.92–3.91 years}].
The participants were community-dwelling volunteers recruited
through media advertisements and flyers. They were required
to be native English language speakers and have at least a
high-school education or an equivalence diploma. Persons who
reported a history of cardiovascular, neurological, endocrine, or
psychiatric disease, head trauma with a loss of consciousness
in excess of 5 min., history of drug or alcohol abuse, or the habit
of drinking 3 or more alcoholic drinks per day were excluded,
as were persons taking centrally acting medications (e.g., anx-
iolytics, antidepressants, benzodiazepines, antihistamines). All
participants were screened for depression using the Center for
Epidemiologic Studies Depression (CES-D) Scale (Radloff 1977)
with a cut-off of 15 and were right-handed as indicated by
a score above 75% on the Edinburgh Handedness Question-
naire (Oldfield 1971). The participants had a Mini-Mental State
Examination (Folstein et al. 1975) score of ≥26.

Participants in the current study came from 2 different
subsamples from the larger parent sample. All MRI data were
acquired using identical sequences on the same MRI scanner.
Subsample 1 underwent the first assessment in 2005 and
subsample 2 entered the study in 2011. However, the resting
state BOLD (rsBOLD) sequence (of key interest in the present
paper) was introduced in 2011. At that time, the third occasion
of data collection for subsample 1 was near its end, and for
subsample 2, baseline data collection was half-way through.
Participants were included in the current analyses if they had
2 consecutive waves of rsBOLD data, regardless of when their
own rsBOLD data were first collected (see Supplementary Fig.
1 for a sample flow chart). Thus, for example, a subsample 1
person may have had data available from their third and fourth
testing occasions, and a subsample 2 person from their first
and second testing occasions. For simplicity in the current
paper, we refer to the two available waves of resting-state data
as “Time 1” and “Time 2,” regardless of when the data were
actually collected. The total sample used in the current analyses
comprised n = 74 adults (see Supplementary Fig. 1). For both
subsamples examined here, identical cognitive test batteries
were used. See Supplementary Table 1 for descriptive statistics
and statistical comparisons of the two subsamples.

Data Acquisition

MRI Data
Imaging was performed at the MRI Research Center at
Wayne State University on a 3-Tesla Siemens Verio (Siemens
Medical AG, Erlangen, Germany) full-body magnet with a 12-
channel head coil. The MRI scanning session, in addition
to other sequences of the longitudinal study not shown
here, included a resting state functional and an anatomical
scan. For the resting state functional scan, 200 volumes
of 43 axial slices were acquired sequential using a T2∗-
weighted echo-planar sequence with the following parameters:
repetition time (TR) = 2500 ms, echo time (TE) = 30 ms, flip
angle = 90◦, pixel bandwidth = 2298 Hz/pixel, GeneRalized Auto-
calibrating Partial Parallel Acquisition (GRAPPA) acceleration
factor PE = 2, field-of-view = 210 mm, matrix size = 64 × 64, and
voxel size = 3.3 × 3.3 × 3.3 mm. Participants were instructed
to lie still with their eyes open. For the anatomical scan,
a 3D T1-weighted magnetization-prepared rapid gradient-
echo sequence was acquired with the following parameters:
TR = 1680 ms, TE = 3.51 ms, inversion time = 900 ms, flip
angle = 9◦, pixel bandwidth = 180 Hz/pixel, GRAPPA acceleration
factor PE = 2; field-of-view = 256 mm, matrix size = 384 × 384, and
voxel size 0.67 mm × 0.67 mm × 1.34 mm.

Cognitive Measures

We assessed cognitive performance with a comprehensive test
battery comprised of paper-and-pencil and computerized tests
spanning 5 cognitive domains: fluid intelligence, crystallized
intelligence, episodic memory, working memory (WM), and per-
ceptual speed. The abbreviated description of the tests follows
below. For further details, see our previous publications (Raz
et al. 1998; Burgmans et al. 2011; Persson et al. 2016).

Fluid and Crystallized Intelligence

The Cattell Culture Fair Intelligence Test (CFIT, Form 3B; Cattell
and Cattell 1973) is known for its sensitivity to aging and is
commonly used as a marker of fluid intelligence (Gf) in studies
of lifespan development (Rabbitt and Lowe 2000). Each of the 4
subtests (CFIT1–CFIT4) consists of 10–14 items tapping different
nonverbal abstract reasoning domains covering a wide range of
difficulty, including detecting similarities in designs, sequence
completion, and solving nonverbal syllogisms. For each item, the
participant must derive the rule required to solve the problem.
The number of correctly completed items within the allotted
time limits (2.5–4 min per subtest) constitutes a subtest score,
whereas the total number correct across subtests serves as the
general index of performance. Crystallized intelligence (Gc) was
assessed through a multiple-choice vocabulary test (V) derived
from the Educational Test Services Kit of Factor-Referenced
Tests (Ekstrom et al. 1976).

Episodic Memory

Memory for names immediate (MNi) and delayed (MNd) recall
of the Woodcock–Johnson Psychoeducational Battery–Revised
(Woodcock and Johnson 1989) served as two measures of
episodic memory. A third measure, spatial recall task was
adopted from previous work (Salthouse 1994), with minor
modifications. Participants viewed a series of 5 × 5 grids with
seven shaded squares on a computer monitor and indicated the
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placement of these shaded squares on test sheets following the
disappearance of each grid.

Working Memory

WM was assessed via two paper-and-pencil tests, Listening Span
(LSPAN) (Salthouse et al. 1989) and Size Judgment Span (Cherry
and Park 1993), and two computerized versions of an n-back task
(Dobbs and Rule 1989; Hultsch et al. 1990). The index of perfor-
mance in LSPAN was the absolute span, calculated by summing
the number of correct items across blocks of trials on which
the participant answered all items correctly (Engle et al. 1992).
We used the number of errors on 3-back (most difficult) trials
of the verbal (NB3Ev) and nonverbal (NB3Env) n-back task as
additional indices of WM performance.

Perceptual Speed

Four tests of perceptual speed were administered, two paper-
and-pencil and two computerized. The paper-and-pencil tests,
Letter Comparison and Pattern Comparison were modified from
previously published material (Salthouse and Meinz 1995). The
computerized measures were response times for the 1-back
trials in the aforementioned verbal (NB1RTv) and nonverbal
(NB1RTnv) WM task.

Data Analysis

Estimation of Cognitive Constructs
To estimate latent representations of each of the above cognitive
domains, we computed principal component scores separately
for Time 1 behavioral scores, for Time 2 behavioral scores, and
for behavioral change (Time 2 minus Time 1 behavioral differ-
ence scores) using SPSS 26 (IBM, Inc.). Only single-component
models were estimated for each domain. Standardized loadings
for within-domain indicators are shown in Supplementary Table
2. The resulting behavioral component scores were used in the
multivariate PLS models reported below in the Results section
(Figs 1 and 2).

Preprocessing of MR Data

The resting-state fMRI data were preprocessed with FSL 5
(RRID:SCR_002823) (Smith et al. 2004; Jenkinson et al. 2012).
Preprocessing included motion-correction, smoothing (7 mm
kernel), detrending (up to second order) using SPM8, and
bandpass filtering (0.01–0.10 Hz; eight order Butterworth filter
as implemented in MATLAB version 2014b). Four volumes
(10 s) from the resting-state fMRI time series data were
discarded prior to preprocessing. We also utilized extended
preprocessing steps to further reduce potential data artifacts
(Garrett et al. 2010, 2011, 2015; Garrett et al. 2013b). Specifically,
we subsequently examined all functional volumes for artifacts
via independent component analysis within-run, within-
person, as implemented in FSL/MELODIC (Beckmann and Smith
2004). Noise components were identified according to several
key criteria: 1) the presence of spiking (components dominated
by abrupt time series spikes); 2) motion: prominent edge or
“ringing” effects, sometimes, but not always, accompanied by
large time series spikes; 3) Susceptibility and flow artifacts:
expressed as prominent air-tissue boundary or sinus activation,
these typically represent cardio/respiratory effects; 4) activation
in the white matter and the ventricles (Birn 2012); 5) low-
frequency signal drift (Smith et al. 1999); 6) high power in
high frequency ranges unlikely to represent neural activity

(≥75% of total spectral power present above 0.10 Hz); and 7)
spatial distribution: a “spotty” or “speckled” spatial pattern that
appears scattered randomly across ≥25% of the brain, with few
if any clusters with ≥25 contiguous voxels at 3.3 × 3.3 × 3.3 mm
voxel size.

Examples of these various components we typically deem to
be noise can be found in our previous work (Garrett et al. 2013a).
By default, we utilized a conservative set of rejection criteria; if
manual classification decisions were challenging due to mixing
of “signal” and “noise” in a single component, we generally
elected to keep such components. Two independent raters of
noise components were utilized; > 90% inter-rater reliability
was required on separate data before denoising decisions were
made on the current data. Components identified as artifacts
were then regressed from corresponding fMRI runs using
the regfilt command in FSL. Finally, we registered functional
images to participant-specific T1 images, and from T1 to 3-
mm standard space (MNI 152_T1) using FLIRT (affine). Prior
to registration, T1 images were brain extracted with ANTS
(version 2.2.0) using a reference template based on the OASIS
dataset (Avants and Tutison 2018). The resulting images were
masked using the gray matter values provided in FSL (probability
> 0.37) and constrained to voxels showing activation across all
subjects.

Voxel-Wise Estimates of Signal Variability

Brain signal variability was calculated using the standard devia-
tion (SDBOLD) from the filtered, detrended time series (see above)
for each voxel. This quantity is akin to the square root of the total
power from the exact same time series (Taylor et al. 2012).

Statistical Modeling Using Partial Least Squares

To examine multivariate relations between SDBOLD and cog-
nition/age cross-sectionally and longitudinally, we used the
multivariate behavioral PLS analysis framework (McIntosh
et al. 1996; Krishnan et al. 2011). As the model form is
effectively the same when running the cross-sectional model
(i.e., cross-sectional data are entered rather than change-
based data; see Fig. 1), we will focus on exemplifying the
longitudinal model here. This analysis begins by calculating
a between-subject correlation matrix (CORR) between voxel-
wise change in SDBOLD and cognition and age change. In the
next step, the singular value decomposition (SVD) of CORR is
computed.

SVDCORR (delta SDBOLD, delta behavior/age) = USV′ (1)

This decomposition produces a left singular vector of behav-
ior weights (U), a right singular vector of brain voxel weights (V),
and a diagonal matrix of singular values (S). Each resulting latent
variable (LV) contains a spatial activity pattern depicting the
brain regions that show the strongest change–change relation of
signal variability to behavior and age identified by the LV. Each
voxel weight (an element of V) is proportional to the voxel-wise
correlation between delta SDBOLD and delta cognition and age.

Significance of detected relations was assessed using 1000
permutations of the singular value corresponding to the LV, fol-
lowed by bootstrapping with 1000 resamples (Efron and Tibshi-
rani 1993) to evaluate the robustness of the results. By dividing
each voxel’s weight (from V) by its bootstrapped standard error,
we obtained “bootstrap ratios” (BSRs) as normalized estimates of
robustness. For the whole brain analysis, we thresholded BSRs at
values of ±3.00 [which exceeds a 99.5% confidence interval {CI}].

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab154#supplementary-data
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We also obtained a summary measure of each participant’s
expression of a particular LV’s spatial pattern (a within-person
“brain score”) by multiplying the model-based vector of voxel
weights (V) by each subject’s vector of voxel SDBOLD values (P),
thus producing a single within-subject value,

Brain score = VP′ (2)

Further, we obtained a summary measure of each partici-
pant’s expression of a particular LV’s cognitive/age-based pat-
tern (a within-person “cognition/age score”) by multiplying the
model-based vector of cognitive/age weights (U) by each sub-
ject’s vector of cognitive/age values (Q), thus producing a single
within-subject value,

Cognition/age score = UQ′ (3)

Estimation of Functional Integration

In line with our previous approach (Garrett et al. 2018), we com-
puted functional integration for each subject by running “spa-
tial” principal components analysis (PCA). This method decom-
poses a correlation matrix for all voxel pairs of interest from
each within-subject spatiotemporal matrix),

PCAvoxcorrs = USV ´ (4)

where U and V are the left and right eigenvectors, and S is a
diagonal matrix of eigenvalues. We then computed a simple,
tractable estimate of functional integration by taking the percent
variance accounted for by the first principal component (Garrett
et al. 2018; Shine et al. 2019a). The larger the variance accounted
for by the first principal component for a given subject, the more
the voxels correlate with each other across time points in a “uni-
fied” manner, and thus, the lower is the system’s dimensionality
across time points. PCAs on resting-state data were performed
within-subject for each of the 2 testing occasions separately.
Change in functional integration was then derived by computing
the Time 2 minus Time 1 difference in first component variance
accounted for.

Public Availability

All code necessary to reproduce the current results will appear
on Github at https://github.com/LNDG/Garrett_etal_2021_Cere
bralCortex. Because the MRI and cognitive data are still being
collected within an ongoing longitudinal study, they will be
made openly available only after completion of the study and
dissemination of results.

Results
Cross-Sectional Associations between BOLD Signal
Variability and Cognitive Performance/Age

We evaluated a single cross-sectional PLS model linking SDBOLD

to component scores for each cognitive domain and age at Times
1 and 2. This analysis revealed a single robust LV (permuted
P < 0.0001) showing that overall, better performing, younger
adults expressed higher SDBOLD (Time 1 latent r = 0.32; Time
2 latent r = 0.42). Such effects were particularly robust at Time 1
for Gf and WM and at Time 2 for Gf , memory, WM, and speed;
see Fig. 1). Age was a strong negative correlate at both Time
1 and 2. Peak effects (see Supplementary Table 3) spanned

multiple brain regions. The most prominent positive peaks were
evident in canonical default mode regions (precuneus/posterior
cingulate and medial PFC), lateral PFC, lateral temporal cortex,
and ventral visual cortex. Striatum (especially its ventral region)
was also present (see Supplementary Fig. 2), but the thalamus
was notably absent in this model. A single, small “negative”
peak (representing higher SDBOLD with older age and poorer
performance) was also noted, which we discuss in detail in
Supplementary Table 3.

Longitudinal Change–Change Relations between
SDBOLD and Cognition

Our primary goal in the present study was to examine the
relationship between longitudinal changes in SDBOLD, cognition,
and aging. Under the assumption that cognitive changes may be
shared across domains (Tucker-Drob et al. 2019), we fit a unified
behavioral PLS model using all change-based cognitive domain-
specific component scores to examine coupling between
changes in SDBOLD and cognition as well as with advancing age).
We found a single robust LV (permuted P < 0.0001) revealing
that participants who demonstrated greater loss of SDBOLD

also exhibited greater decline of cognition, whereas those who
maintained (or even increased) BOLD variability maintained
(or improved) cognitive performance (latent r = 0.34). Bootstrap-
stable model weights (i.e., weights for which bootstrap 95% CIs
did not contain zero) were evident for Gf , Gc, and Speed. Peak
effects (see Fig. 2, Supplementary Fig. 4, and Supplementary
Table 4) spanned a variety of cortical regions, mostly within the
frontal cortex, but also in anterior and posterior cingulate gyri,
precuneus, and superior parietal lobule.

An examination of subcortical regions revealed strong
bilateral contributions of the thalamus and striatum in our
change–change model. We first examine the thalamic effect
in greater detail. Given the prominence of the PFC in the
overall change–change model (Fig. 2 and Supplementary Fig.
3), it is plausible that thalamic nuclei known for their significant
projections to PFC may also feature prominently in the observed
effects. Indeed, our findings confirm this expectation. Using the
Horn et al. thalamic parcellation, which maps probabilistic white
matter connections from thalamus to cortex (Horn and Blanken-
burg 2016), we observed that in the change–change model, 63%
of the thalamic “PFC parcel” was covered by robustly activated
voxels (Fig. 3 depicts the dominance of the PFC thalamic parcel
within our change–change results). We further characterized
the presence of robust thalamic change–change voxels using
the Morel histological thalamic atlas (Krauth et al. 2010; Hwang
et al. 2017). Convergent with the Horn et al., PFC-centric thalamic
parcellation results (Fig. 3), a very large proportion of nucleic
coverage by our change–change voxels fell within the MD
nucleus (75% coverage; Supplementary Fig. 4). Also, the ventral
medial, ventral anterior, and ventral lateral nuclei (sometimes
collectively referred to as the “motor thalamus”; O’Reilly et al.
2014; Sieveritz et al. 2018) were very strongly represented as
well (Supplementary Fig. 4). Finally, dorsal and ventral striatum
(bilateral putamen, caudate, and nucleus accumbens) featured
prominently in our change–change results (Fig. 4).

It is possible that the observed change–change association
between BOLD variability and cognition per se may not imply sta-
ble longitudinal change. It is conceivable, for example, that daily
variations in SDBOLD and cognition are naturally coupled, and
do not represent long-term change. To clarify whether change–
change relations in our data truly reflect long-term effects, we
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Figure 1. Multivariate model representing cross-sectional relations between SDBOLD, cognition, and age. Scatter plots represent the full latent correlation between
cognition/age and SDBOLD (shown in Pearson r and Spearman’s rho). The bar plots represent how each of the cognitive and age variables contribute to the overall
multivariate solution (akin to normalized weights). Confidence intervals in bar plots represent bootstrapped 95% CIs (1000 resamples with replacement).

leveraged individual differences in retest interval (“age change”
in Fig. 2) under the expectation that those who returned at a later
interval should be more likely to show loss (range of retest inter-
val = 1.92–3.91 years). Indeed, greater age advancement (i.e., later
retest interval) reflected greater loss of SDBOLD, with an effect
size similar to other robust correlations within our multivariate
model (see Fig. 2).

Change–Change Associations are Not Attributable to
Metabolic Risk Estimates

As noted in past work (Ghisletta et al. 2019), metabolic syndrome
may reflect a mixture of correlated risk factors that may directly
promote the development of atherosclerotic cardiovascular
disease (Grundy et al. 2005). Unsurprisingly, advanced age is
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Figure 2. Multivariate model of longitudinal change–change associations between SDBOLD, cognition, and age. Confidence intervals in bar plots represent bootstrapped

95% CIs (1000 resamples with replacement). Age change represents length of retest interval, which varied between 1.92 and 3.91 years).

associated with increase in multiple indicators of metabolic
risk, which predict declines in cognition and brain structure and
function (Raz and Rodrigue 2006; Raz 2020). In past studies on
the population from which our current sample was drawn, we
observed moderate effects of metabolic risk on brain shrinkage,
white matter diffusivity properties, the regional iron content,
and cognitive performance (Swan et al. 1998; Bender et al. 2013,
2016; Daugherty et al. 2015a; Tortelli et al. 2017; Ghisletta et al.
2019). To test whether individual differences in metabolic risk
accounted for associations between BOLD variability, cognition,
and age in the current study, we first created a single PCA-
based “baseline metabolic risk” component (using only Time
1 data) using the following measures: systolic blood pressure,
fasting glucose, fasting triglycerides, high-density cholesterol,
and waist-to-hip ratio (Ghisletta et al. 2019). We then created a
second PCA component representing “change in metabolic risk,”
which was derived via the raw longitudinal change scores for
each of the indicator measures noted above. See Supplementary
Table 2 for loadings for both components (note that only n = 68
had complete metabolic risk data across measures). Next, we
re-examined the strength of the overall latent correlation noted
in Figure 2 (see scatter plot) by regressing SDBOLD change on
cognitive/age change while controlling for baseline (the first
measurement occasion) and change in metabolic risk. Neither
baseline metabolic risk (P = 0.21) nor change therein (P = 0.48)
accounted for significant variance in SDBOLD changes. After
further controlling for high leverage outliers in the model
(observations with Cook’s distance > 0.058 (i.e., surpassing a

Cook’s distance threshold rule of thumb of 4/n); n = 6 cases
held out), baseline (P = 0.67) and change in metabolic risk
(P = 0.65) were even less robust. Thus, metabolic risk does not
contribute to change–change associations between SDBOLD and
cognition/age in the current sample.

Comparison of Cross-Sectional and Longitudinal Brain
Patterns

A direct comparison reveals multiple points of divergence
between the cross-sectional and longitudinal models (see Figs 1,
2 and 5, and Supplementary Table 5). The coverage across
the frontal lobe appears more extensive across hemispheres
in the longitudinal (Fig. 5, blue) than in the cross-sectional
model (Fig. 5, red), especially across the bilateral superior
midline and left lateral PFC. The cross-sectional model revealed
far better coverage of classic default mode nodes (posterior
cingulate, ventromedial PFC) and primary and ventral visual
cortex. Interestingly, cross-sectional associations in the striatum
were a reasonable (although less spatially extensive) proxy
for longitudinal change–change coupling (Fig. 4). Putamen and
nucleus accumbens showed excellent coverage in both models,
although caudate and dorsal putamen was largely apparent only
in the longitudinal model. In contrast, despite no discernable
cross-sectional effects in thalamus, we observed extensive
thalamic coverage in the change–change model (Fig. 3). Overall,
overlap between cross-sectional and longitudinal model was
modest (Fig. 5, yellow).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab154#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab154#supplementary-data
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Figure 3. Thalamic change–change effects. Parcels are derived from probabilistic
white matter projections from thalamus to cortex (Horn et al., 2016). Following

intersection of each thalamic region with the Harvard-Oxford subcortical atlas
(Frazier et al. 2005), all bars represent proportions of total voxels within each
parcel expressed by above-threshold thalamic voxels within our change–change
model. For example, the prefrontal parcel (teal bar and spatial outline) contains

279 voxels, of which 175 were present in our change–change model result
(Figure 2 and Supplementary Fig. 3), accounting for 63% coverage. Proportions
for other parcels were derived from the following ratios: primary motor (5/39),

posterior parietal (7/101), temporal (9/140), sensory (3/102), occipital (0/16), and
premotor (0/25).

Figure 4. Striatal comparison of cross-sectional (red) and change–change effects
(blue), and their overlap (yellow).

Longitudinal Changes in Functional Integration Track
Changes in Cognition and age, Especially among
Regions that Express SDBOLD Effects

Previously (Garrett et al. 2018), we showed (in cross-sectional
data) that higher local variability (particularly in thalamus, but

also in striatum and frontal cortex) covaried strongly with higher
functional integration (i.e., “lower dimensionality” of functional
connectivity). As such, systems that express higher moment-to-
moment variability also have stronger functional connectivity
on the same time scale. However, stability of the association
between local dynamics and functional integration over time, or
association of changes in functional integration and cognitive
changes (as already seen for SDBOLD in the current study; see
Fig. 2) has not been gauged yet. For these comparisons, we first
quantified functional integration among the above-threshold
voxels that expressed change–change relations between SDBOLD

and cognition, which, as shown before, were dominated by
fronto-striato-thalamic regions (see Fig. 2 and Supplementary
Fig. 3). Functional integration was operationalized as the per-
centage of variance accounted for by the first component of a
spatial principal component analysis (PCA; see Materials and
Methods). PCAs were performed for each time point separately
and change in functional integration was derived by computing
the Time 2 minus Time 1 difference in variance accounted for.
We found that participants who exhibited greater loss in SDBOLD

also showed greater decline in functional integration over time
(r = 0.78, P = 2.43 e-16; see Fig. 6, left panel). We also found that
loss of functional integration was coupled with a loss of latent-
level cognition and older age (i.e., the same latent cognition/age
score estimated from our PLS model in Fig. 2; r = 0.36, P = 0.002;
see Fig. 6, right panel). Thus, those who showed greater func-
tional disintegration, mainly in the fronto-striato-thalamic sys-
tem, also showed more negative change in cognition over time.

Next, we examined the regional specificity of the association
between changes in functional integration and changes in
cognition and age. In the analysis above, we used the same
above-threshold voxels as noted for SDBOLD in the change–
change model, so that we could compare SDBOLD to functional
integration in the exact same regions when linking them to
changes in cognition and age. However, it is possible that
the relation between functional integration and cognition/age
changes is not regionally specific; if so, it should not matter
which voxels we use to compute changes in functional
integration. To examine this, we first drew 100 random samples
of the same number of voxels (as in the above threshold
pattern for SDBOLD noted in Fig. 2; n = 10 878 voxels) from all
available under-threshold voxels (n = 38 981 voxels); doing so
ensures that the total estimable dimensionality is equated. The
distributions of estimated changes in functional integration
from these samples were approximately normal for each
subject, and the SDs of these distributions were overall quite
small (median SD: 0.15; range: 0.11–.27). This shows that the
estimated changes in functional integration for each subject
are quite similar across the sampled voxels. We then selected
the sample with the smallest cumulative distance to each
subject’s estimated median change in functional integration
for further analysis. We chose a specific sample rather than
the median change in functional integration for each subject to
ensure that we compare the effect in the same set of regions
across subjects. We found that the relation between change
in functional integration and change in latent cognition/age
(r = 0.25, P = 0.04) weakened significantly relative to functional
integration change computed from above-threshold voxels
(Steiger’s (1980) Zdiff test = 2.48, P = 0.007). Given that voxels just
below threshold will be included in the random draws prior to
estimation of functional integration, it should also be the case
that estimating functional integration from voxels further away
from threshold should further weaken relations to cognitive

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab154#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab154#supplementary-data
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Figure 5. Comparison of cross-sectional (red) and longitudinal (blue) models, and their overlap (yellow).

Figure 6. Association between change in functional integration and change in SDBOLD (left panel) and change in cognition and age (right panel). The y-axis values here

are the same as those represented in Figure 2 (i.e., PLS change–change model results).

change. To estimate this, we selected an equally sized set
of voxels set furthest from threshold (which approximately
corresponds to the BSR range from 0 to 1.43) and computed
change in functional integration in the same way as above.
As expected, the correlation with cognitive change weakened
further still (r = 0.18, P = 0.14; Steiger’s Zdiff test = 2.79, P = 0.003)
relative to when within-threshold voxels are used to compute
functional integration. These results suggest that associations
between functional integration and cognitive/age change are
indeed spatially specific and predominantly driven by the
fronto-striato-thalamic system, just as they are for SDBOLD.

Discussion
In this study, we provide first longitudinal evidence for change–
change coupling between moment-to-moment BOLD variability,
cognition, and aging. In line with past work supporting the utility
of brain signal variability for elucidating neural correlates of
cognitive aging (Grady and Garrett 2013; Garrett et al. 2013b;
McIntosh 2019), we found that persons who showed greater lon-
gitudinal reductions in BOLD variability were more likely to evi-
dence degraded cognitive performance over time, whereas their
peers who exhibited stable (or increased) BOLD variability also
maintained (or improved) cognitive performance. In neuroimag-
ing studies, broad-scale change–change associations between
the brain and cognitive variables are strikingly difficult to detect
(Raz et al. 2008; Daugherty et al. 2015a; Jäncke et al. 2019).
Thus, the robust coupling effects observed here strengthen the

proposition that BOLD variability is a viable method for studying
individual differences in functional brain and behavioral change
in humans.

Comparison of Cross-Sectional and Longitudinal
Models

The extant literature reveals significant discrepancies between
cross-sectional and longitudinal models, confirming the limited
utility of using cross-sectional age-related differences as proxies
for change. This point has been repeatedly made in methodolog-
ical papers (Lindenberger and Pötter 1998; Hofer and Sliwinski
2001; Lindenberger et al. 2011; Raz and Lindenberger 2011) and
illustrated in neuroimaging studies (Raz et al. 2005; Raz 2020).
The current study reveals similar discrepancies between cross-
sectional and longitudinal models, now within the domain of
BOLD signal variability. Our cross-sectional and longitudinal
findings converged to demonstrate associations between higher
(cross-sectional) and better-maintained (longitudinal) SDBOLD

with better (cross-sectional) and better-maintained (longitudi-
nal) cognitive performance. A more detailed comparison, how-
ever, reveals diverging patterns of age- and cognition-related
associations with BOLD variability across cortical and subcor-
tical regions. In past work, lower cortical variability was nearly
uniformly associated with advanced age and poorer cognitive
performance (Garrett et al. 2010, 2011; Samanez-Larkin et al.
2010; Guitart-Masip et al. 2016; Good et al. 2020), whereas no
consistent pattern has emerged in subcortical nuclei. In some
studies, subcortical regions such as striatum and thalamus show
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the opposite association seen in cortex, with younger, higher
cognitive performers exhibiting “lower” SDBOLD (Garrett et al.
2010, 2011; Samanez-Larkin et al. 2010; Guitart-Masip et al. 2016;
Good et al. 2020); however, in other studies, signal variability
in both cortex and subcortical nuclei exhibit same direction
of effect (Garrett et al. 2013b; Burzynska et al. 2015; Garrett
et al. 2015, 2017; Nomi et al. 2017; Grady and Garrett 2018).
Convergent with the latter set of studies, we found no directional
discrepancy between cortical and subcortical regions in either
our cross-sectional or longitudinal model in the current study.
Higher cortical and subcortical variability was indicative of bet-
ter cognitive performance, and over time, better-maintained
variability was linked to better-maintained cognition. Thus, our
study provides and important example of how, despite the gen-
eral consistency of the direction of effects across cross-sectional
and longitudinal models, the results of analyses diverge in many
important ways.

Spatial Patterns

Two key sets of differences between cortical regions in our cross-
sectional and longitudinal spatial patterns were present, despite
modest overlap. First, classic default model nodes were far more
prominent when examining cross-sectional associations. This
difference may reflect greater long-term stability within the
classic default mode hubs when examined using BOLD variabil-
ity. It may also indicate that change in DMN signal variability is
simply a less sensitive marker of change–change relations with
cognition and age over the relatively short follow-up interval
(∼2 years) implemented in this study. Second, although the
current and past (Garrett et al. 2010, 2011, 2015, 2017; Grady and
Garrett 2013, 2018; Garrett et al. 2013a; Guitart-Masip et al. 2016)
cross-sectional work demonstrates that elevated BOLD variabil-
ity in the PFC is typical of younger, higher performing adults,
the broader fronto-striato-thalamic system became salient only
in our change–change model. In particular, thalamic regions
projecting directly to the PFC stood out in the evaluation of
change–change associations.

In line with the PFC-centric thalamic parcellation results
based on Horn and Blankenburg (2016), a very large proportion
of nucleic coverage by change–change voxels fell within the MD
nucleus. This conforms to the MD’s dense network of projections
to and from PFC association areas, and its role as a neural
substrate of learning and memory (Mitchell and Chakraborty
2013; Mitchell 2015; Pergola et al. 2018). The MD thalamus has
also been proposed as a key node within the generalized fronto-
striatal-thalamic circuitry, and as a recipient of striatal input
via the pallidum, it may be critical for integrating broad-scale
information within PFC (Mitchell and Chakraborty 2013; Mitchell
2015; Pergola et al. 2018). Notably, contrary to being a simple relay
to prefrontal cortex, MD may be more specifically involved in the
regulation of plasticity and flexibility of PFC-related cognitive
functions (Baxter 2013), perhaps yielding greater moment-
to-moment signal variability. Second, the ventral medial,
ventral anterior, and ventral lateral nuclei were also strongly
represented (Supplementary Fig. 4). These nuclei (comprising
the so-called “motor thalamus”) connect primarily to premotor,
motor, and supplementary motor cortices in the frontal lobe
(O’Reilly et al. 2014; Sieveritz et al. 2018), presumably conveying
information about movement and movement programs to
frontal cortex. Notably, each of these motor-based frontal
regions was also present in our change–change model (Fig. 2

and Supplementary Fig. 3). Finally, the presence of various
nonfrontal regions in the change–change model suggests that
thalamic nuclei projecting to a broader swath of the cortex
may also be involved. Indeed, intralaminar (IL) nuclei were
well represented in change–change (Supplementary Fig. 4).
Previous work suggests that calbindin-positive matrix cells
are prominent in the IL and other medial thalamic nuclei (e.g.,
ventral medial, as in the present results), a cell type that projects
diffusely to superficial layers across the neocortex and may even
constitute a thalamic “activating system” that drives effective
interactions among multiple cortical areas (Honjoh et al. 2018).

Further, the dorsal and ventral striatum (bilateral putamen,
caudate, and nucleus accumbens) featured prominently in the
observed pattern of change–change coupling (Figs 2 and 4, and
Supplementary Fig. 3). These nuclei have been linked to goal-
directed-action and motor program execution, to control of
motivation and response to reward (Hart et al. 2014), and are
vulnerable to aging (Raz et al. 2010; Daugherty et al. 2015b).
Importantly, both dorsal and ventral striatum communicate
with frontal cortex primarily via the same thalamic nuclei that
together dominate the change–change coupling in the thalamus
noted above (i.e., MD, ventral lateral, and ventral anterior nuclei)
(Hart et al. 2014; O’Reilly et al. 2014). Thus, our results place the
fronto-striato-thalamic system at the core of neural substrates
of change–change associations between BOLD signal variability,
cognition, and aging.

Cognitive Effects

Although the overall direction of effects was similar in cross-
sectional and longitudinal estimates (higher/better-maintained
SDBOLD was generally cognitively beneficial), the strength and
prominence of cognitive domains differed between models. One
clear difference was that WM emerged as a relatively strong pos-
itive correlate of SDBOLD in cross-sectional analyses, in line with
previous work (Garrett et al. 2011, 2015; Garrett et al. 2013a; Gui-
tart-Masip et al. 2016; Alavash et al. 2018), but showed no robust
change–change coupling. Conversely, Gc was not associated with
SDBOLD in our cross-sectional data, whereas it evidenced a reli-
able change–change association. As demonstrated by a recent
meta-analysis (Tucker-Drob et al. 2019), individual differences
in Gc changes are common and contribute to a general factor
of cognitive change. Overall, we show here that the presence
or absence of cross-sectional effects does not necessarily signal
how cognition may reflect SDBOLD in change, demonstrating the
importance of longitudinal designs (Raz et al. 2005, 2010; Nyberg
et al. 2010; Lindenberger et al. 2011; Raz and Lindenberger 2011;
Lindenberger 2014) for understanding relations between brain
signal variability and cognition.

Declines in Functional Integration Mirrored Losses in
SDBOLD and Cognition

Expanding on previous cross-sectional work (Garrett et al.
2018), we observed first evidence that longitudinal declines in
functional network integration (i.e., loss of a lower-dimensional
functional network regime) were strongly linked to losses
in SDBOLD and to declines in cognition. These effects were
especially salient within the same fronto-striato-thalamic
regions that typified the SDBOLD-based change–change model
(Fig. 2). Our findings indicate that adults who were able to

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab154#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab154#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab154#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab154#supplementary-data
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maintain a functionally integrated (low dimensional) fronto-
striato-thalamic system also succeeded in maintaining higher
moment-to-moment brain dynamics and cognition. We argued
previously (Garrett et al. 2018) that there are several ways
in which higher local variability may emerge in a lower-
dimensional (more integrated) functionally connected brain.
Computational and animal models suggest that greater
moment-to-moment local variability may be driven by networks
with balanced excitation and inhibition (E/I), especially when
connections are clustered or structured (Shew et al. 2009, 2011;
Litwin-Kumar and Doiron 2012; Doiron and Litwin-Kumar 2014;
Doiron et al. 2016). “Clustering of connections” is precisely
what is captured by higher functional integration (lower
dimensional network structure) in the present study. Such E/I
balanced networks ensure that fluctuations in synaptic input
(via network connectivity) reliably produce output fluctuations
at the single-cell level (Shadlen and Newsome 1994; Doiron
and Litwin-Kumar 2014). That those who better-maintain high
levels of local variability and functional network integration also
succeed in maintaining cognition over time suggests that E/I
balance may undergird the ability of some persons to maintain
cognition in late life. Future longitudinal work using functional
magnetic resonance spectroscopy (Stanley and Raz 2018) and/or
pharmacological manipulations to probe glutamate and GABA
changes may provide a fruitful route for assessing this potential
mechanism of cognitive aging.

Limitations and Future Directions

The current study represents the first foray into establishing
change–change relations between brain signal variability, aging,
and cognition. Whereas our findings demonstrate the fruitful-
ness of this approach, several potential limitations need to be
addressed for this line of work to progress in the future. First,
the current study contained only two testing occasions. A third
occasion of data collection is still in progress, and its completion
will permit verifying the stability of the observed effects, as well
as the evaluation of potential nonlinearities in trajectories of
change. Additional measurement occasions will further enable
examination of lead–lag effects and discernment of whether
loss of brain signal variability precedes cognitive change (or
vice versa). It may also be likely that the effect sizes seen
in the present change–change model underestimate the true
magnitude of the associations that would emerge over a longer
follow-up, an expectation supported by our observation that
greater compression of SDBOLD was exhibited by participants
who returned for their follow-up at a later interval (see Fig. 2).
Second, although the current data support a promising initial
trait-level description of change–change relations between brain
signal variability, cognition, and aging, longitudinal “task-based”
fMRI data remain required to tap into cognitive processes more
directly, and to more specifically probe the nature of the fronto-
striato-thalamic system dynamics that are so prominent in our
results.

Finally, although the causality of the observed effects
remains unclear, evidence suggests that longitudinal brain
changes (in structure or function) can co-occur with changes in
brain vasculature and/or cardiovascular health. In the current
sample, we found no impact on change–change associations
between SDBOLD and cognition/age after controlling for both
baseline and change in metabolic risk. Despite this lack of
association with extra-experimental risk factors, only assess-
ment of the vascular factors concurrent with acquisition of the

BOLD signal can elucidate the impact of age-related changes in
vascular reactivity and other cerebrovascular properties. Such
assessment likely requires the collection of carbogen-based
hypercapnia data, which were unavailable in the current study.
Although we have found previously that such regional control
of aging-related vascular differences does not fully eliminate
cross-sectional age differences in SDBOLD (Garrett et al. 2017),
it remains unknown whether longitudinal hypercapnia-based
controls might reduce change-based associations between
SDBOLD and cognition to a greater or lesser extent than cross-
sectional associations. Although useful and interesting in
their own right (Tsvetanov et al. 2015, 2021; Millar et al.
2020), externally measured vascular and metabolic risk factors
that affect cerebral vasculature and associated responses are
insufficient for resolving these issues, especially when cross-
sectional comparisons and mediation models are used (Nyberg
et al. 2010; Lindenberger et al. 2011; Raz and Lindenberger 2011).
Direct measures of vascular contribution from the same brain
regions for which SDBOLD is estimated are absolutely necessary
for inference about local vascular versus neural variability
effects (Gauthier and Hoge 2012; Gauthier et al. 2013; Liu et al.
2013; Golestani et al. 2015, 2016). ASL-based cerebral blood
flow estimates are relatively straightforward to acquire, but
such data account for a negligible proportion of variance in
SDBOLD (Garrett et al. 2017), suggesting that a carbogen-based
hypercapnia approach likely remains required for a thorough
examination of these important issues.

Summary

We found that healthy adults who lost moment-to-moment
BOLD signal variability over a 2.5-year period also declined in
cognition and functional integration, whereas those who main-
tained/increased variability also maintained/increased their lev-
els of cognitive performance and functional integration. The
examination of BOLD variability thus represents a sensitive
and viable approach for understanding neural and behavioral
changes during adulthood and old age. In particular, the fronto-
striato-thalamic system emerged as a core neural substrate for
these change–change associations and may present an impor-
tant target in future investigations of the dynamic functional
neural bases of human cognitive aging.
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Supplementary material can be found at Cerebral Cortex online.
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