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The human body is a dynamic ecosystem consisting of millions of microbes which are often comprised
under the term microbiome. Compared to bacteria, which count for the overwhelming majority of the
microbiome, the number of human-associated fungi is small and often underestimated. Nonetheless, they
can be found in different host niches such as the gut, the oral cavity and the skin. The fungal community
has several potential roles in health and disease of the human host. In this review we will focus on intesti-
nal fungi and their interaction with the host as well as bacteria. We also summarize technical challenges
and possible biases researchers must be aware of when conducting mycobiome analysis.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. The mycobiome and its environment

The term mycobiome defines the fungal part of the microbiome
in the human body [1,2]. Its composition can differ extremely and
is influenced by environmental factors such as nutrients, oxygen
concentration and pH value. Until now, more than 390 fungal spe-
cies have been identified in a variety of host niches like the gas-
trointestinal tract, the skin, the respiratory and the urogenital
tract (Fig. 1) [3,4]. As more than 99% of all intestinal microbial
genes are of bacterial origin, fungi account for only a very small
amount of the resident gut microbiota [5]. However, they are gen-
erally much larger, expose a considerably larger surface to the
human host and possess specific routes of interaction with human
tissues and the immune system, indicating a distinct role for health
or disease of the host [6,7]. In contrast to the bacteriome, the over-
all fungal diversity within the human host is relatively low, but
more variable between different individuals or even between dif-
ferent samples from the same person [8–11].
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Fig. 1. Influencing factors and possible sources of bias in mycobiota analysis. The human mycobiome is shaped by different factors like diet, environmental fungi,
antibiotic use, and interaction with the resident human bacteriome. For mycobiome analysis, fungal DNA must be extracted from collected samples considering the essential
steps for successful fungal DNA extraction. The fungal diversity can be studied with the help of different amplicon production strategies in the fungal rRNA gene locus.
Commonly used markers are the 18S as well as the ITS1 & ITS2 regions. The amplified sequences are then processed in bioinformatical analysis, and the taxonomy is assigned
due to the comparison of the identified OTUs with available reference sequence databases. The figure was created with BioRender.com.
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Like the whole microbiome, the mycobiome of infants is highly
variable in the first year of life and heavily influenced by birth-
mode, breast-feeding practice, diet and increasing age [12–15].
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Recent work indicates that colonization of infants with Candida
yeasts is already established during birth and breast-feeding [16].
From infancy on, the diet of the human host constantly affects
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the intestinal microbiome as the human intestine is constantly
exposed to several food-borne microbes [17]. Shifts in the intesti-
nal bacteriome are driven by nutrient availability, while the myco-
biome is defined by food colonizers and uptake of environmental
fungi [18–21]. Especially the fat and sugar-rich ‘‘Western diet”,
leading to metabolic changes in the host, is suspected to influence
the intestinal microbiota composition and thereby contributes to
increasing numbers of chronic diseases like inflammatory bowel
disease [19]. Due to these various host-driven influences, a correct
distinction between resident and transient food-borne fungi is cru-
cial to characterize the gut mycobiome and maybe to define a ‘‘core
gut mycobiome” [22].

Especially Candida species were identified as key colonizers of
the human gut and are supposed to be involved in human health
maintenance and disease development [23,24]. C. albicans gut col-
onization has been identified as the major fungal inducer of human
antifungal immunity via Th17 signaling and seems to be regulated
by the adaptive host immune system in a similar manner as for
bacteria [25–27]. The mycobiota-induced secretory immunoglobu-
lin A (sIgA) preferentially targets fungal hyphae and thereby regu-
lates fungal commensalism in the human intestine. C. albicans
colonization in the gut was identified as a potent sIgA inducer
and seems to thereby influence its own hyphal morphogenesis to
maintain commensalism [28]. Shifts in Candida abundance can be
linked to multiple disease types such as inflammatory bowel dis-
ease, including Crohn’s disease and ulcerative colitis, alcohol-
associated liver disease and alcoholic hepatitis [29–32]. Patients
suffering from Crohn’s disease showed increasing levels of anti-
bodies targeting cell wall components of Saccharomyces and Can-
dida species (Anti-Saccharomyces cerevisiae antibodies (ASCA)) in
serum samples and an increasing abundance of Candida tropicalis
and Debaryomyces hansenii in the gut [30,33,34]. The latter is a
food-borne colonizer and might contribute to the development of
ulcerative colitis and colorectal cancer [29,35].

Although C. albicans is a frequent colonizer of the human body,
it can also cause deadly opportunistic infections. Dissemination of
Candida spp. from the gut in high-risk patients has been shown to
be preceded by alterations of the mycobiome [36]. Additionally,
the C. albicans peptide toxine Candidalysin triggers a platelet-
mediated Th2 and Th17 cell activation which is contributing to a
protective allergic response in the lung [37]. Farnesol, a fungal quo-
rum sensing molecule, can modulate the maturation of human
dentritic cells [38,39].

Importantly, intestinal fungi do frequently engage in interac-
tions with other partners in multiple ways and the balance of these
interactions affects the human host. These triangle interactions
between bacteria, fungi and the human host can be protective or
pathogenic or even antagonistic between pathogens [40–43]. Pre-
vious reports showed that virulence of C. albicans can be enhanced
by the interaction with enterohemorrhagic Escherichia coli or
reduced by the interaction with Clostridium difficile and Enterococ-
cus faecalis [44–46].
2. Challenges in gut mycobiome analyses

Past microbiome research was mainly focused on the bacteri-
ome, thus many techniques are not standardized for the study of
the intestinal fungi. Therefore, such studies are hampered by
non-standardized protocols, technical difficulties, limited avail-
ability of reference data and possible biases in data analysis [47].
In the following parts of this review we will address the challenges
for gut mycobiome analyses.
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3. Donor recruitment

As all aspects of human life can affect the gut mycobiome com-
position, a precise definition of the donor cohort is essential
(Fig. 1). Samples must be obtained from donors under standardized
conditions. Relevant data on the donor’s lifestyle should be docu-
mented as potential confounders. Records should include the over-
all health state, diet, medical treatment prior to or during the
study. Especially the use of antibiotics must be recorded, as they
can heavily influence the abundance profile of intestinal fungi [48].
4. DNA extraction

Study outcome often depends on the methods used for the
recovery of fungal DNA. Direct freezing of samples after collection
from human individuals without any further additive is recom-
mended. Addition of RNA stabilizers to fecal samples before freez-
ing can negatively influence the abundance of some fungi as shown
for Penicillium spec. [11,49,50].

If the analysis should include the bacterial and fungal parts of
the microbiome, the extraction method must be optimized to
obtain the optimal yield and quality of the extracted fungal and
bacterial DNA to make sure possible differences are not caused
by an extraction bias [51]. Different methods can result in different
relative abundances of species like Penicillium, Malassezia and
Debaryomyces [49]. The International Human Microbiota Consor-
tium (IHMC) aimed to optimize and to standardize the bacterial
DNA extraction method to enable the comparison of data from dif-
ferent studies by generating the International Human Microbiota
Standard (IHMS) Protocols Q (based on the QIAGEN QIAamp DNA
Stool kit) and H (non-kit based protocol) [52,53]. In contrast to bac-
teria, fungi possess a robust cell wall which is normally composed
of chitin, ß-1,3-glucan, ß-1,6-glucan, mannans, several glycopro-
teins and can also contain components like melanin or a rodlet
layer [54–56]. As fungal DNA extraction relies on efficient cell wall
lysis, repeated beat-beating steps followed by enzymatic cell lysis
are essential for successful mycobiome analysis from any sample
type [50]. The best outcome for combined analysis of mycobiome
and bacteriome data from the same samples was achieved by
usage of the standardized IHMS Protocol Q with additional
repeated beat-beating steps [49,51]
5. Sequencing strategies

The fungal rRNA gene locus is a frequently used target for
amplicon sequencing [57]. This region includes the genes for the
ribosomal small subunit (18S) and the large subunit (26S) which
are separated by the internal transcribed spacer (ITS) regions
ITS1 and ITS2 (Fig. 1) [58]. In analogy to the bacterial 16SrRNA
gene, the fungal 18S rRNA gene was often used as a target for
amplicon production but it seems to be better suited for the dis-
crimination of higher taxonomic ranks [59,60]. The post-
transcriptionally removed ITS regions show a high sequence vari-
ability and thus allow a reliable discrimination of the most fungal
genera [61,62]. However, a comparison of ITS1 and ITS2 amplicons
showed that commonly used primers identified different fungal
species, leading to a different outcome in various studies and
thereby influenced the fungal community profile [63], as shown
for. Malassezia spec. [11,18,64]. ITS2 primers showed relatively
low bias against specific taxonomic groups, making them a more
suitable choice to avoid false-negative results [58]. Primer bias in
targeted amplicon sequencing can be circumvented by metage-
nomic shotgun sequencing approaches. These approaches assess
the total DNA from a sample and therefore include bacterial and
human DNA. Due to this, the analysis of the mycobiome relies on



Table 1
Overview of frequently used tools for amplicon and metagenomics sequencing data
analysis for intestinal mycobiome studies.

Tool Short Description Link Ref.

CONSTAX Command line tool for
improved taxonomy
assignment.

Installation via conda
package. Documentation:

https://constax.

readthedocs.io/en/latest/

index.html

[94]

Cutadapt Tool for pre-processing of
raw reads which allows
trimming of primer and
adapter sequences.

https://cutadapt.

readthedocs.io/en/stable/

[69]

DADA2 Pre-processing of reads
obtained in ITS amplicon
sequencing with
implemented sequencing
error modelling and
correction.

https://github.com/

benjjneb/dada2

[70]

DAnIEL Web server-based pipeline
for fungal ITS amplicon
sequencing data analysis,
which allows data analysis,
visualisation & statistical
analysis as well as
comparison of obtained
data to publicly available
datasets.

https://sbi.hki-jena/daniel [93]

FastQC Tool for quality control
check of raw reads which
allows for monitoring of
sequencing errors.

https://www.

bioinformatics.babraham.

ac.uk/projects/fastqc/

[72]

FindFungi Pipeline for fungal
sequence identification in
metagenome datasets.

https://github.com/

GiantSpaceRobot/

FindFungi

[91]

LEfSe Algorithm for statistical
analysis, linear modelling
and visualisation of
mycobiome data (OTUs).

https://github.com/

SegataLab/lefse

[92]

LotuS2 Pipeline designed for 16S,
18S & ITS amplicon analysis
with implemented quality
filter.

http://lotus2.earlham.ac.

uk/

[88]

mothur Pipeline originally designed
for analysis of 16S rRNA
amplicon data, but it is also
suitable for ITS amplicon
analysis.

https://mothur.org/ [86]

PipeCraft Flexible pipeline with
graphical user interface for
analysis of 16S, 18S and ITS
amplicon sequencing data.

Available via PlutoF

system: https://plutof.ut.

ee/#/datacite/10.15156%

2FBIO%2F587450

[89]

PIPITS Pipeline designed for ITS
amplicon analysis.

https://sourceforge.net/

projects/pipits/

[90]

QIIME 2 Pipeline originally designed
for analysis of 16S rRNA
amplicon data but also
suitable for ITS amplicon
analysis.

https://qiime2.org/ [87]

UNITE Reference database for
sequence-based
identification of fungi.

https://unite.ut.ee/ [85]

VSEARCH Pre-processing of reads
obtained in metagenomics
sequencing.

https://

github.com/torognes/

vsearch

[71]
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an accurate filtering of low abundant fungal DNA in these samples,
making it more expensive and time-consuming than targeted
amplicon sequencing [65].
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6. Data analysis

Several tools have been developed in the past for the analysis of
amplicon or metagenomic data and can clearly influence output
and data quality (Table 1) [66,67]. The key steps in typical data
analysis are pre-processing of raw data and operational taxonomic
units (OTU) picking followed by taxonomic classification and visu-
alization with statistical analysis (Fig. 1) [4]. Pre-processing of the
raw reads and conversion to high-quality output data is crucial and
must be carefully conducted as unspecific noise should be reduced
but highly conservative filtering could lead to underestimation of
specific OTUs [4,66].

The bioinformatic analysis of raw ITS amplicon data is influ-
enced by primer bias, sparsely annotated fungal databases and
cannot simply rely on tools established for 16S rRNA data analysis
due to the highly variable fungal ITS region [60]. For the analysis of
shotgun metagenomics datasets extensive filtering is needed to
exclude human or bacterial sequences and identify the rare fungal
sequences [68].

The pre-processing of raw reads includes filtering of read
length, denoising (e.g. removal of sequencing errors), removal of
chimera and singletons/doubletons as well as quality filtering [4].
Several tools have been developed for this pre-processing like
Cutadapt for adapter & primer sequence trimming or DADA2 which
allows for amplicon error correction (Table 1) [69,70]. However,
most tools were developed for ITS amplicon analysis but some
can also be used for metagenomic data sets like VSEARCH [71].
Read quality should be cautiously checked in each approach by
tools like FastQC to avoid error accumulation [72].

After pre-processing reads are clustered into OTUs with the
help of reference-based and non-reference-based methods. For
the closed reference approach, reads are aligned to a reference
database and grouped into OTUs based on best match values of
the pairwise alignment. De novo OTU picking is characterized by
clustering of reads against each other without an external data-
base. The open reference approach is a combination of closed ref-
erence and de novo approaches, therefor reads are first clustered
with the help of an external database and afterwards remaining
reads undergo the de novo approach [73].

For ITS amplicon sequencing the closed reference approach
might be the best choice as comparative classification of an ITS
mock community with different pipeline strategies clearly showed
improved taxonomic classification for this approach [74].

Mycobiome sequencing data analysis must deal with sparsely
annotated reference databases and the question of fungal taxon-
omy. Different names for the same fungus are commonly in use
and can lead to confusion [75]. Additionally, some fungal genera
such as Candida are not monophyletic. Some medical important
species like C. albicans, belong to a clade within the Saccharomyc-
etales which is characterized by an alternative translation of the
CTG codon [76–78]. This clade includes however also species
which are no longer called Candida such as Clavispora lusitaniae
(formerly Candida lusitaniae) and Meyerozyma guilliermonidii (for-
merly Candida guilliermondii) [78]. In contrast, other prominent
‘‘Candida” pathogens like C. glabrata, Pichia kudriazevii (formerly
Candida krusei) and Kluyveromyces marxianus (Candida kefyr) are
not part of this clade, were partially renamed and regrouped into
other genera [79–81]. Well curated, high quality databases are
essential for a reliable taxonomic classification [82,83]. Therefore,
widely used databases like UNITE are constantly updated, e.g. by
implementation of the ISHAM-ITS reference databases (Table 1)
[84,85].

For the data analysis several pipelines including multiple work-
steps and analysis tools were generated. Pipelines designed for 16S
rRNA analysis like QIIME2 & mother can be used for ITS amplicon
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analysis but need to be carefully treated as ITS region shows higher
variability than the 16S rRNA region and therefore the error poten-
tial is elevated [86,87]. Specific pipelines generated for ITS ampli-
con analysis like LotuS, PipeCraft & PIPITS circumvent this
aforementioned problem and clearly outperform the pipelines
with 16S rRNA data analysis origin [67,88–90] For metagenomic
datasets pipelines like FindFungi enable sequence classification
and due to specific false-positive curation they are highly sensitive
and specific [91]. Although multiple filters and optimizations are
included in these pipelines, errors originating from sample prepa-
ration and sequencing cannot be completely removed [60,67].

For evaluation of mycobiome profiles based on the obtained
OTU clusters, data can be examined by e.g. Shannon-index calcula-
tion for alpha-diversity measurement and visualization by princi-
ple coordinates analysis (PCoA) plots for evaluation of beta-
diversity [4]. Several tools like LEfSe enable statistical analysis of
the datasets for linear modelling or differential abundance analysis
combined with visualization of the data [92]. Recently, the web
server DAnIEL has been developed, which includes all steps of ITS
amplicon sequencing analysis. Therefor it not only allows data
analysis, visualization and extensive statistical analysis but also
comparison of the obtained results to publicly available datasets
(Table 1) [93]. Extensive pipelines or web servers like this could
help to standardize bioinformatics analysis and reduce bias result-
ing from varying workflows. However, a crucial point in data anal-
ysis still is the taxonomic assignment, which should always be
checked by multiple tools like e.g. CONSTAX to improve predic-
tions [94].
7. Conclusions

Recent studies of the intestinal mycobiome revealed a complex
network of fungal, bacterial and human cell interactions. This net-
work has an important influence on the balance between health
and disease of the human host. A further standardization of fungal
DNA isolation, sequencing methods and bioinformatics data analy-
sis will definitively ease the comprehensive analysis of mycobiome
data. A continuous problem for gut mycobiome analyses is the
inter- and intraindividual variability. More longitudinal studies
will help to characterize stable fungal colonizers in the gastroin-
testinal tract and to define the resident and transient mycobiome
[22,95]. As illustrated by novel findings for C. albicans and D. hanse-
nii, frequent gut colonizers might play a crucial role in the develop-
ment of human disease, inflammation and systemic immune
regulation. Such results will improve our knowledge of host-
fungus-interactions and might help to develop new therapeutic
approaches in the future.
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