
RESEARCH ARTICLE

Functional criticality in the human brain:

Physiological, behavioral and

neurodevelopmental correlates

Lili JiangID
1,2*, Kaini Qiao1,2,3, Danyang Sui1,2,3, Zhe Zhang1,2,3, Hao-Ming Dong1,2,3

1 CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China, 2 Lifespan

Connectomics and Behavior Team, Institute of Psychology, Chinese Academy of Sciences, Beijing, China,

3 Department of Psychology, University of Chinese Academy of Sciences, Shijingshan, Beijing, China

* jiangll@psych.ac.cn

Abstract

Understanding the critical features of the human brain at multiple time scales is vital for both

normal development and disease research. A recently proposed method, the vertex-wise

Index of Functional Criticality (vIFC) based on fMRI, has been testified as a sensitive neuro-

imaging marker to characterize critical transitions of human brain dynamics during Alzhei-

mer’s disease progression. However, it remains unclear whether vIFC in healthy brains is

associated with neuropsychological and neurophysiological measurements. Using the

Nathan Kline Institute/Rockland lifespan cross-sectional datasets and openfMRI single par-

ticipant longitudinal datasets, we found consistent spatial patterns of vIFC across the entire

cortical mantle: the inferior parietal and the precuneus exhibited high vIFC. On a time scale

of years, we observed that vIFC increased with age in the left ventral posterior cingulate

gyrus. On a time scale of days and weeks, vIFC demonstrated the capacity to identify a link

between anxiety and pulse. These results showed that vIFC can serve as a useful neuroim-

aging marker for detecting physiological, behavioral, and neurodevelopmental transitions.

Based on the criticality theory in nonlinear dynamics, the current vIFC study sheds new light

on human brain studies from a nonlinear perspective and opens potential new avenues for

normal and abnormal human brain studies.

Introduction

The human brain is one of the most complicated dynamical systems. It varies at multiple tem-

poral and spatial scales, from milliseconds and microns in neuron firing to seconds and centi-

meters in functional magnetic resonance imaging blood oxygen level-dependent time series of

brain regions and even to days, weeks, months and years during lifespan development. Criti-

cality is a state of being scale-free and may accommodate this multiscale phenomenon in the

human brain. Additionally, there have been studies showing that the human brain works near

criticality to accomplish the transitions of task states [1–4]. Is there any critical transition or

abrupt change in human brain dynamics at some spatiotemporal scale that may indicate
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neurodevelopment, physiology or behavior? vIFC, a recently proposed vertex-wise Index of

Functional Criticality of human brain resting state fMRI time series [5], provides us with a

possible opportunity to examine the critical transitions of the human brain and their associa-

tions with neurodevelopment, physiology, and behavior. vIFC has been proposed based on

nonlinear dynamical theory as an efficient neuroimaging marker that indicates probabilities

that a critical transition occurs in the absence of knowledge of the details of the realistic net-

work connections [6]. In more detail, vIFC was designed to integrate three properties of a cen-

ter manifold (subnetwork or a group of variables) in the abstract phase space of a complicated

human brain network: increased within-group correlations, increased temporal variations and

decreased between-group correlations. The dynamical network biomarker method deriving

from the three properties has been used for predicting critical transitions of diseases based on

biochemical and genomic data, including respiratory disease [7], depression [8], episodic

migraine [9] and type 1 diabetes [10].

In fact, critical transitions have been suggested to exist widely in ecosystems [11], climate

systems [12], economics and global finance [13]. Although the human brain is a rather compli-

cated system and varies at multiple time scales, few studies have focused on critical transitions

in the human brain. Applications of resting-state fMRI have greatly promoted the elucidation

of the developmental mechanisms of human brain structure and function from a time scale of

years. Converging neuroimaging evidence suggests that a local-to-distributed evolution of

organization occurs during development [14–17]. This conclusion, however, was deduced

from a linear hypothesis and statistics of phenomenal descriptions based on fMRI scanning

data of the human brain. Although indexes such as regional homogeneity (ReHo) [18], degree

centrality, and eigenvector centrality [19,20] have been widely applied in neuroimaging stud-

ies, they were heuristically raised without a theoretical basis and are difficult to understand in

terms of their biological and theoretical implications. In contrast, vIFC analysis has a solid the-

oretical background and is designed to represent the probabilities that critical transitions

occur in the human brain during a certain time period. Compared with traditional biomarkers

evaluating the system state in a rather static and linear manner, vIFC was used to predict

incoming critical transitions from the nonlinear hypothesis of the human brain.

Could vIFC reflect physiological, behavioral or neurodevelopmental properties at multiple

time scales? To this end, we used cross-sectional datasets of different ages to study the neuro-

developmental correlates of vIFC. Furthermore, the MyConnectome project in the openfMRI

database contributed by Russell Poldrack supplied us with great opportunity to study the asso-

ciations of vIFC with physiology and behaviors on time scales of days and weeks. In this study,

we first calculated vIFC maps of 442 lifespan healthy participants from the Nathan Kline Insti-

tute/Rockland sample, as well as vIFC maps of 82 scans of 1.5-year longitudinal data from a

single subject from the MyConnectome project. Then, we systematically analyzed vIFC pat-

terns in healthy human brains across spatial and temporal dimensions. We also studied the

correlations of human brain criticality vIFC with physiology and behaviors. Based on the criti-

cality theory in nonlinear dynamics, the current study might shed new light on human brain

studies from a nonlinear perspective and opens new avenues for normal and abnormal human

brain studies.

Materials and methods

Participants and MR imaging

Lifespan development study. A total of 442 healthy participants were scanned using Sie-

mens MAGNETOM TrioTim 3T scanners from two samples: (1) the Nathan Kline Institute/

Rockland sample (NKI-RS, N = 126) [21–23]; and (2) the Enhanced NKI-RS sample
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(N = 316). Details of the MRI and participant information are summarized in Tables 1 and 2.

Institutional Review Board (IRB) approval was obtained at the Nathan Kline Institute and

Montclair State University. Written informed consent was obtained from all the participants

or their legal guardian. All the data have been publicly shared and could be accessed via http://

fcon_1000.projects.nitrc.org/indi/enhanced/data.html.

Physiological and behavioral correlates study. Ninety resting-state functional images

and 14 structural images (sessions 14–104) were selected [26–28] from the publicly available

openfMRI database (https://openfmri.org/dataset/ds000031/), which is an intensive assess-

ment of a single human over a period of 18 months that includes magnetic resonance imaging

and assessments of psychological function and physical health. The datasets were collected at

two sites, first at the University of Texas and then at Washington University. The University of

Texas determined that institutional review board (IRB) approval was not necessary. The col-

lected datasets were transferred from the University of Texas to Washington University for

Table 1. MRI details of the two samples.

NKI-Pilot NKI-Enhanced

Scanner Manufacturer SIEMENS SIEMENS

Magnet 3T 3T

System TrioTim B15 TrioTim B17

M-PRAGE TR 2500 ms 1900 ms

TE 3.5 ms 2.52 ms

TI 1200 ms 900 ms

FA 8˚ 9˚

FoV 256 mm 250 mm

#Slices 192 176

Voxel Size 1×1×1 mm 1×1×1 mm

EPI TR 2500 ms 645 ms

TE 30 ms 30 ms

FA 80 60

FoV 216 mm 222 mm

#Slices 38 40

Voxel Size 3×3×3 mm 3×3×3 mm

#Time Points 260 900

Abbreviations: Repetition Time [24], Echo Time (TE), Inversion Time (TI), Flip

Angle (FA), Field of View (FoV).

https://doi.org/10.1371/journal.pone.0213690.t001

Table 2. Information of participants from the two samples.

NKI_Pilot

(N = 126)

NKI_Enhanced

(N = 316)

Combined

(N = 442)

Age (Years) 36.84±21.20 44.38±19.72 42.23±20.42

Age Range (Years) 7–85 8.30–83.36 7–85

Gender (Males) 68 112 180

mcBBR1 0.45±0.05 0.38±0.05 0.40±0.06

rmsFD2 [25] 0.14±0.07 0.06±0.03 0.09±0.06

1mcBBR is the minimal cost of the intrasubject coregistration with the boundary-based registration
2rmsFD is the root mean square of the frame-wise displacement for in-scanner head motion.

https://doi.org/10.1371/journal.pone.0213690.t002
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analysis, and all datasets collected at Washington University were approved by the Washington

University IRB. All of the images were collected on a 3T MRI scanner with a 32-channel head

coil. T1-weighted data were collected using an MP-RAGE sequence (sagittal, 256 slices,

0.7-mm isotropic resolution, TE = 2.14 ms, TR = 2400 ms, TI = 1000 ms, flip angle = 8 degrees,

PAT = 2, 7:40 scan time). Eyes-closed resting state fMRI was performed using a multiband

echo-planar imaging (MBEPI) sequence (TR = 1.16 seconds, TE = 30 ms, flip angle = 63

degrees, voxel size = 2.4×2.4×2 mm, distance factor = 20%, 68 slices, oriented 30 degrees back

from AC/PC, 96×96 matrix, 230 mm FOV, MB factor = 4, 10:00 minute scan length).

Image preprocessing

All data preprocessing was completed with the Connectome Computation System (CCS) [29].

Detailed descriptions of the computational system can be found in our previous publications

[29,30]. Preprocessing comprised both structural and functional image preprocessing. The

structural image preprocessing was mainly cortical surface reconstruction [31,32] using Free-

Surfer. The functional image preprocessing mainly involved the following steps: elimination of

the first 4 images, correction of slice timing, alignment of each volume to a ‘base’ volume, nor-

malization of the 4D global mean intensity into 10000, nuisance regression[33,34], bandpass

(0.01–0.1 Hz) filtering, removal of both linear and quadratic trends, and alignment of the indi-

vidual functional image to its anatomical image [35]. Finally, individual preprocessed 4D

rfMRI time series were projected onto the fsaverage5 surface with 10,242 vertices per hemi-

sphere and a spacing of approximately 4 mm [36]. Notably, for the single subject longitudinal

data, all functional images were registered to the average surfaces of the 14 T1 images, and no

slice timing correction was applied due to the use of multiband EPI.

Quality control procedure

Quality control is a key part of solid data analysis. We considered the following steps for qual-

ity control: 1) brain extraction or skull stripping, 2) brain tissue segmentation, 3) pial and

white surface reconstruction, 4) boundary-based functional image registration (BBR) to struc-

tural image, 5) head motion correction, and (6) consideration of outlier effects, and vIFCs

outside two standard deviations were removed. We acquired screenshots for the first four

steps and controlled their quality by visual checking. For images that brain extraction was not

very good, we used two types of thresholds for the FSL BET as well as FreeSurfer automated

skull strips to supply templates for further manual editing. Quantitative controls of BBR

(mcBBR< = 0.5) and head motion (maxTran< = 2 mm, maxRot< = 2˚, mean FD<0.2 mm)

were also used.

vIFC method

The vIFC method has been described in detail in our previous publication [5]. Considering the

three properties designed in vIFC, increased temporal variations, increased within-group cor-

relations, and decreased between-group correlations, the formula is as follows:

vIFC ið Þ ¼
STDðiÞPCCin

PCCout
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

n¼1
ðxiðtnÞ � <xiðtnÞ>Þ

2

q

�<PCCijðj 2 IÞ>

<PCCikðk=2IÞ>
ð1Þ

There are three types of vertices, {i}, {j 2 I}, and {k =2 I}. For a given vertex i, I stands for its

neighborhood cluster, j represents vertices in I, and k represents vertices outside the neighbor-

hood. xi [21] is the fMRI BOLD value of vertex i at time tn, PCC is the intervertex Pearson cor-

relation coefficient across time, STD is the standard deviation of the BOLD time series, and
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<> means averaging within the particular group. Here, we employed an assumption that spa-

tial neighborhoods were more likely involved in the dominant group of vertices, which is simi-

lar to the definition of local functional regional homogeneity (ReHo). The calculation was

repeated for each vertex, and we then obtained a vIFC map on the fsaverage5 surface for each

participant. All individual vIFC maps were spatially smoothed with a Gaussian kernel with a

10 mm FWHM on fsaverage5.

Neurodevelopmental correlates

We used the FreeSurfer Group Descriptor File (FSGD) for a general linear model that consid-

ered age, sex and sample as covariates with a DODS (Different Offset and Different Slope) set-

ting. In more detail, FSGD is a way to describe a group of subjects and their demographic and

behavioral data. FreeSurfer programs can automatically compute the design matrix from an

FSGD file, and then mri_glmfit was used to perform the general linear model statistics. Finally,

the vertex-wise significance values for each contrast of group comparisons were corrected with

the FDR method (FDR α = 0.05/2, corrected p = 0.05/2).

Physiological and anxiety correlates

Eighty-two resting state datasets with during-scan anxiety and after-scan physiological mea-

surements, including diastolic blood pressure, systolic blood pressure, and pulse (heart rate),

were used to study the physiological basis and behavioral correlates of vIFC. Anxiety during

scan was measured using a seven-point survey (1 was extremely anxious and 7 was extremely

good/not anxious). Similar to the above neurodevelopmental correlates study, a general linear

model was constructed using the FreeSurfer FSGD file with DODS, including the day of the

week, diastolic and systolic blood pressures, pulse, and anxiety as covariates. The vertex-wise

significance values for each contrast of group comparisons were corrected with FDR method

(FDR α = 0.01/2, corrected p = 0.01/2).

Results

vIFC in the left ventral posterior cingulate gyrus increases with age

vIFC patterns for three subjects aged 13, 41, and 71 years are shown in Fig 1(A), 1(B) and 1(C),

respectively. The older participant exhibited low vIFC values. This is consistent with our com-

mon sense that young brains contained more dynamical changes. For all three subjects, the

inferior parietal lobule, precuneus, occipital pole and insula were special regions with high

vIFC values. Fig 1D shows the vertex-wise significance of age effects on vIFC using GLM statis-

tics. The vIFC of the left ventral post cingulate gyrus increased with age. For a more intuitive

illustration of vIFC and age, we also plotted scatterplots of the partial correlations of vIFC with

age.

Physiological basis and anxiety correlates

To give an intuitive illustration of vIFC variations across the entire cortical mantle of the single

subject, Fig 2A & 2B respectively show vIFC patterns for sessions 21 (on Monday) and 42 (on

Tuesday) of the resting state scans. Similar to vIFC during lifespan, the inferior parietal lobule

and the precuneus exhibited high vIFC. Fig 2C & 2D show significant correlations of vIFC

with physiology and anxiety, and we only found significant positive correlations represented

by the warm color. In more detail, vIFC of the right S_orbital_med-olfact exhibited significant

positive correlations with pulse. Similar to the significant pulse correlations, a heteromodal

association region exhibited significant correlations between vIFC and anxiety, namely, vIFC
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of the right middle frontal gyrus exhibited significant positive correlations with anxiety. Addi-

tionally, for an intuitive illustration of the magnitudes of vIFC, pulse, and anxiety, Fig 2E and

Fig 2F, respectively, show the scatterplots between vIFC and pulse as well as vIFC and anxiety.

The red color represents positive correlations.

Fig 1. vIFC variations across the lifespan development of the human brain. (A), (B) and (C), respectively, illustrate vIFC patterns for three different subjects

with ages of 13, 41, and 71 years. (D) The vertex-wise significance of age effects on vIFC using GLM statistics as well as scatterplots of the partial correlations of

vIFC with age.

https://doi.org/10.1371/journal.pone.0213690.g001
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Discussion

vIFC has successfully detected abnormalities in human brain dynamics during AD progression

[5]. However, it remains unclear whether vIFC in healthy brains is associated with

Fig 2. Physiological basis and anxiety correlates of vIFC. (A) and (B), respectively, illustrate vIFC patterns for sessions 21 (on Monday) and 42 (on Tuesday)

of the resting state scans; (C) and (D) show significant correlations of vIFC with physiology (pulse) and anxiety. (E) Illustrated scatterplots between vIFC and

pulse. (F) Illustrated scatterplots between vIFC and anxiety [37].

https://doi.org/10.1371/journal.pone.0213690.g002
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neurodevelopment, physiological or behavioral measurements. Using 442 lifespan cross-sec-

tional images and a single participant longitudinal dataset, we found stable spatial patterns of

vIFC across the entire cortical mantle: the inferior parietal lobule and the precuneus exhibited

high vIFC. On a time scale of years, we observed that vIFC increases with age in the left ventral

post cingulate gyrus. On a time scale of days and weeks, vIFC demonstrated the capacity to

identify links between anxiety and the pulse of a single participant over an 18-month period

(N = 82 scans). These results suggest that vIFC can serve as an efficient neuroimaging marker

for detecting physiological, behavioral, and neurodevelopmental transitions. Traditional neu-

roimaging indexes, such as ReHo, are mostly based on linear correlations or linear statistical

models. However, the realistic architecture of the human brain exhibits several spatiotemporal

scales and could not be such a simple linear relationship. The current vIFC study based on

nonlinear dynamics in physics may shed new light on human brain studies from a nonlinear

perspective and opens new avenues for normal and abnormal human brain studies.

Functional criticality of the human brain across lifespan development

Previous studies generally used morphological measurements, such as gray matter volume

[38], cortical thickness [39], or functional measurements (i.e., ReHo and EC) [40], to construct

the developmental trajectory of the human brain. However, all these measurements lack direct

dynamical meanings. Thus, we used vIFC, which has a solid theoretical basis, to explore the

functional criticality of the human brain across a lifespan from a dynamical and nonlinear per-

spective. Generally, vIFC have a decreasing trend with age. However, we did not find signifi-

cant negative correlations of vIFC with age using either region-wise or vertex-wise analysis.

One of the most surprising findings was that the inferior parietal lobule and precuneus

exhibited high vIFC. It is well known that the inferior parietal lobule and the precuneus are

parts of the default mode network in resting state fMRI studies [25,41,42]. This result aligned

with previous studies using other resting-state fMRI measurements and proved that vIFC is a

sensitive index for detecting functional criticality in the human brain. vIFC in the inferior pari-

etal lobule, more specifically, the angular gyrus, showed positive correlations with age using

region-wise analysis (r = 0.1968, p = 3.23e-4<0.05/76/2). Angular gyrus has been linked to sen-

sory integration and is vital for both social cognition and cognition [43]. Our results may

underly enhancing social cognition and cognitive ability with aging. We believe that this is dif-

ferent from traditional aging but may indicate a more open-minded and optimistic attitude

toward life itself.

We found significant positive correlations of vIFC with age in the left ventral posterior cin-

gulate gyrus. The posterior cingulate cortex forms a central node in the default mode network

of the brain and communicates with various brain networks [44]. Indeed, the posterior cingu-

late cortex is highly connected and one of the most metabolically active regions in the brain.

Cerebral blood flow and metabolic rate in the posterior cingulate cortex are approximately

40% higher than average levels across the entire brain. Moreover, considering the posterior

cingulate gyrus as a hub of brain, increased vIFC with age may reflect changes in development.

This finding confirmed our algorithm and suggested vIFC as an efficient and sensitive neuro-

imaging marker in healthy populations.

Physiological basis and anxiety correlates

The above results demonstrated that the vIFC method could detect a link between brain

dynamics and neurodevelopment on a time scale of years. However, some disorders are char-

acterized by onsets over a short period. Thus, we used a long-term neural and physiological

phenotyping of a single subject [28] to explore the physiological basis and behavioral correlates
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of vIFC. Our analysis revealed that vIFC in the right S_orbital_med-olfact exhibited significant

positive associations with pulse. Studies have considered pulse as a confounding factor in

fMRI output [45]. There were also some studies that considered pulse as a meaningful mea-

surement and correlated it with functional connectivity [46]. Thayer et al. even proposed heart

rate variability as a marker for stress and health [37]. Our results here, based on correlations of

heart rate with vIFC, elucidated the physiological basis of functional criticality in the human

brain. Generally, high vIFC and moderate heart rate indicate good health. The positive correla-

tions of vIFC with pulse in the right S_orbital_med-olfact may correspond to a subtle body

workout.

Similar to the pulse correlations, a heteromodal association region exhibited significant cor-

relations between vIFC and anxiety: Positive correlations were found in the right middle fron-

tal gyrus. In this study, anxiety was measured with a short-term state after the fMRI scan.

Previous studies consistently reported that anxiety was related to anterior cingulate cortex

[47], insula [48] and prefrontal cortex [49]. Our study testified that the dynamical characteris-

tics in the middle frontal gyrus were associated with anxiety. The middle frontal gyrus is a part

of the prefrontal cortex, and the prefrontal cortex is known to be associated with executive

function. Feelings of anxiety were largely related to social experiences, emotions, self-referen-

tial and collection of prior experiences, and finally these feelings of anxiety need to call on

executive function to make a decision. In this condition, anxiety was involved in the emotional

network and executive network, and the association between anxiety and the middle frontal

gyrus was reasonable. Our study was not only consistent with a previous study [50] but also

gave anxiety a dynamical underpinning of the human brain. In summary, our study confirmed

vIFC as an efficient biomarker for human brain studies and emphasized the importance of

human brain criticality in shaping cognitive abilities.

Conclusions

In this work, we applied the vIFC method to explore the associations of human brain criticality

with physiology, behavior, and neurodevelopment. We found consistent vIFC patterns in

healthy human brains across a lifespan: high vIFC in the inferior parietal and precuneus. Pat-

terns characterized by vIFC were largely similar to patterns identified by other resting state

fMRI metrics. We also confirmed the associations of vIFC with base heart rate, anxiety and

age. Combining nonlinear dynamics and fMRI methodologies, our vIFC study sheds new light

on human brain studies from the perspective of nonlinearity and indicates the neuropsycho-

logical and neurophysiological meanings of vIFC.
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