
A subgroup of microsatellite stable colorectal cancers has elevated
mutation rates and different responses to alkylating and oxidising
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An early step in the carcinogenesis of hereditary non-polyposis colorectal cancer (HNPCC) and some sporadic colorectal cancers
(CRCs) is the acquisition of a ‘mutator phenotype’ resulting from defects in DNA mismatch repair (MMR) genes, which normally
maintain genomic stability. This mutator phenotype causes an approximately 100–1000-fold increase in base substitutions and small
insertion/deletion mutations thereby driving carcinogenesis. It also causes genome-wide microsatellite instability (MSI) due to the
inability to repair mutations within these small, hard to replicate, repetitive DNA elements. In contrast, less is known about the role of
mutator phenotypes in microsatellite stable (MSS) CRC. In this report, we have measured the mutation rates in 11 MSS CRC cell
lines to obtain an estimate of the prevalence of mutator phenotypes in MSS carcinogenesis. Of the 11 cell lines, three of them (27%)
possess spontaneous hypoxanthine phosphoribosyltransferase mutation rates approximately 10–100-fold above background. When
challenged with alkylating and oxidising agents, the degree of survival and apoptotic responses are different, indicating that these cell
lines may represent more than one mutator phenotype. These data demonstrate that a significant portion of MSS CRC cell lines has
increased mutation rates and that this may play a role in MSS CRC carcinogenesis.
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Since the low spontaneous mutation rate in normal cells is difficult
to reconcile with the relatively large number of mutations observed
in tumours (Fearon and Vogelstein, 1990), Loeb and Nowell have
proposed that early in multistep carcinogenesis, cells first acquire a
‘mutator phenotype’ (Nowell, 1976; Loeb, 1991, 2001). Because of
their increased mutation rates, cells with mutator phenotypes can
produce requisite numbers of mutations in oncogenes and tumour
suppressor genes, which are subsequently selected for and
manifested in the final tumour (Nowell, 1976; Fearon and
Vogelstein, 1990). Mutator phenotypes should therefore be
thought of as carcinogenic because they accelerate mutation
production during tumorigenesis. The same oncogenes and
tumour suppressor genes that are mutated in the spontaneous
pathway may be similarly involved in mutator phenotype pathways
although the spectrum of mutations may be somewhat different
(Lipton et al, 2003).

The hypothesis of the role for mutator phenotypes in
tumorigenesis is supported by several human genetic disorders
where mutations in genome caretaker genes have been shown to

both elevate the cell’s mutation rate and predispose to neoplasia.
For example, xeroderma pigmentosum (XP)4 patients possess
inherited defects in nucleotide excision repair (NER) and a
predilection to skin cancer, and the mutation rate is significantly
elevated in their cells when exposed to UV light (Maher et al,
1979). Cells from hereditary non-polyposis colorectal cancer
(HNPCC) associated cancers and sporadic colorectal cancer
(CRCs), possess a mutator phenotype that arises from genetic or
epigenetic defects in the DNA mismatch repair (MMR) system
(Fishel et al, 1993; Leach et al, 1993; Kane et al, 1997; Veigl et al,
1998). This mutator phenotype increases the spontaneous rates of
base substitution and small insertion/deletion mutations approxi-
mately 100–1000-fold (Bhattacharyya et al, 1994, 1995; Eshleman
et al, 1995, 1996) and provides a plausible explanation for the high
rate of carcinogenesis observed.

We hypothesised that mutator phenotypes might occur com-
monly in microsatellite stable (MSS) CRC carcinogenesis and to
test this, we screened a panel of MSS CRC cell lines. To test this
hypothesis, we employed the classic selectable mutation marker for
human studies, hypoxanthine phosphoribosyltransferase (HPRT).
We report here that three out of 11 (3/11, 27%) MSS CRC cell lines
tested possess elevated HPRT mutation rates. The MSS CRC cell
lines with elevated mutation rates demonstrate unique patterns of
sensitivity to the cytotoxic chemicals N-methyl-N0-nitro-N-nitro-
soguanidine (MNNG) and hydrogen peroxide (H2O2). They are at
least in part independent of the recently reported MutY mutations
(Al-Tassan et al, 2002; Sieber et al, 2003). We propose that mutator
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phenotypes are common in MSS CRC, are likely more than one
type, and may play an important role in MSS CRC carcinogenesis.

MATERIALS AND METHODS

Cell lines

The MSS CRC cell lines were either isolated and generously
provided by Dr James KV Willson (Case Western Reserve
University, those with Vaco prefixes) or purchased from the
ATCC. Other than there being microsatellite stable, there were no
other criteria for selecting these cell lines. One cell line was
excluded because it had a low cloning efficiency.

Cell culture, initial selection of 6-thioguanine (6TG)
resistant mutants, and fluctuation analysis

Cells were grown and selected in 6TG (Sigma, St Louis, MO, USA)
as published previously (Willson et al, 1987; Eshleman et al, 1995).
Briefly, after subculturing, cells were counted and plated in 96-well
plates to determine the cloning efficiency (CE) and at 10 000 cells
per well in 1.5–5 mg ml�1 6TG to test for mutations. Plates were fed
every 2 weeks and wells scored positive for growth by phase
microscopy after 6 weeks. This was repeated until approximately
30 million clonogenic units had been analysed (three of the cell
lines from the series, SW837, Vaco489 and Vaco576, have been
preliminarily analysed, but with only approximately 5 million
clonogenic units (Eshleman et al, 1995)).

Cell lines exhibiting mutations in the initial screen were
examined using fluctuation analysis as previously described
(Luria, 1943; Eshleman et al, 1995). Briefly, cells were purged of
pre-existing mutants by dilution and regrowth from 100 cells in 10
replicate cultures. These cultures were independently expanded to
approximately 10–30 million cells and plated for cloning efficiency
and mutation frequency as described.

Determination of cloning efficiency and calculation of
mutation rates and frequencies

CE was determined by seeding three and 10 cells per well in 96-well
plates in the presence of SW480 or native feeder cells lethally
irradiated with 8000 centi-Gy 137Cs at a concentration of 10 000
cells per well. CE was calculated using Poisson statistics as
described previously (Furth et al, 1981), where CE¼ [�ln (fraction
of negative wells)]/(number of cells seeded per well). The CE for
each cell line presented in Table 1 is expressed as the mean for all
replicate cultures of that line. Mutation frequency (MF) and

mutation rate (MR) calculations were performed essentially as
described (Eshleman et al, 1995). Briefly, mutation rates were
calculated using Poisson corrected counts (Furth et al, 1981) and
the tables of Capizzi and Jameson (Capizzi and Jameson, 1973).
For cell lines lacking mutations, mutation frequencies and rates
were calculated assuming that one hypothetical mutant had been
isolated and expressed as less than that value.

Microsatellite analysis

To test for microsatellite instability, cells were plated at 1–3 cells
per well, in 96-well plates, and expanded. In total, 10 independent
clones, per cell line, were analysed for microsatellite length using
the five nucleotide repeats recommended at the NCI-sponsored
conference on microsatellite instability (MSI) for CRC (Boland
et al, 1998) BAT25, BAT26, D5S346, D2S123 and D17S250 using
multiplex PCR and capillary electrophoresis (Berg et al, 2000).

hprt cDNA sequencing

To confirm the presence of mutations, RNA from 6TG resistant
colonies was isolated using the RNAgents Total RNA Isolation
System (Promega, Madison, WI, USA). The isolated RNA
(approximately 500 ng) was reverse-transcribed using 5 U AMV
reverse transcriptase (Boehringer Mannheim, Mannheim, Ger-
many) in a 20 ml buffered solution with 20 U of RNasin (Promega),
0.5mg of Oligo (dT)12 – 18 primer (GIBCO, Grand Island, NY, USA),
and 20 mM of dNTPs. After the incubation, 5 mM of M13 tailed
forward sense primer S-27 (�27 to �12 relative to the AUG) 50-
GTAAAACGACGGCCAG-TCAGCCCGCGCGCCGGC-30, 5 mM of
M13 tailed reverse primer AS661 (661-557) 50-CAGGAAACAGC-
TATGAC-TCAACTTGAACTCTC-30 and 1 ml of template DNA were
added to the Taq PCR Master Mix (Qiagen, Valencia, CA, USA)
and incubated for 10 min at 941C. The cDNA was amplified for a
total of 30 cycles with each cycle consisting of 1 min at 941C, 1 min
at 601C and 3 min at 721C. Final extension of the PCR amplified
product was for 10 min at 721C. PCR amplified samples were
sequenced using M13 primers and Big Dye cycle sequencing on an
ABI3700 sequencer (Applied Biosystems, Foster City, CA, USA).

Cell viability after treatment with N-methyl-N0-nitro-N-
nitrosoguanidine (MNNG) and hydrogen peroxide (H2O2)

For the cell viability assay, exponentially growing cells were
trypsinised and washed twice in serum-free minimal essential
medium (SF-MEM). Washed cells were suspended in SF-MEM and
treated with 0–5 mM MNNG (Sigma) for 45 min at 371C or with

Table 1 Mutation frequencies and mutation rates of MSS CRC lines

Name CE (%) No. of cells plated No. of CFUs selected MF MR

Mutators
SW948 23.0 97.4 M 22.4 M 20.477.6 40.0
Vaco411 32.2 47.9 M 15.4 M 77.0713.8 157.0
Vaco8 69.0 28.8 M 19.9 M 38.6715.0 90.0
Nonmutators
CACO2 19.5 176.1 M 34.2 M o0.3 o0.1
HT29 52.2 66.5 M 34.7 M o0.3 o0.1
COLO205 32.8 111.3 M 36.5 M o0.3 o0.1
SW837 14.0 237.9 M 33.3 M o0.3 o0.1
SKCO1 20.5 149.8 M 30.7 M o0.3 o0.2
Vaco364 52.2 58.4 M 30.5 M o0.3 o0.1
Vaco489 10.8 276.4 M 29.8 M o0.3 o0.1
Vaco576 34.2 96.5 M 33.0 M o0.3 o0.1

CE¼ cloning efficiency; CFU¼ colony-forming units; MF¼mutation frequency; MR¼mutation rate. The CE for each cell line presented here is expressed as the mean for all
replicate cultures of that line. No. of CFUs selected is the total number of CFUs plated into 6TG for assay of HPRT mutants. M¼ 106. Mutation frequencies are expressed as
10�7 mutants per CFU. Mutation rates are expressed as 10�8 mutations per locus per generation (Eshleman et al, 1995).
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0–300 mM H2O2 (Sigma) for 60 min at 371C. After treatment, the
cells were washed once with MEM2þmedia (Willson et al, 1987),
resuspended in fresh growth medium, and seeded (approximately
500 000 cells well�1 (200 000 for Vaco8) in six-well plates. The cells
were grown for 5 days (for H2O2) or 6 days (for MNNG),
subcultured and counted using trypan blue exclusion with a
haemocytometer. Experiments were performed three times, each in
triplicate.

Assessment of apoptotic response

Apoptosis was assessed after treating cells with either_5 mM MNNG
or 300 mM H2O2 as described above, and monitoring the cells at
various time points after treatment. Apoptosis was determined as
described (Wang et al, 1995) using DAPI as the vital dye and
propidium iodide as the excluded dye. Briefly, cells were washed at
various times after treatment and stained in MEM with 112 mg ml�1

DAPI (Sigma) for 10 min, followed by 60 mg ml�1 propidium iodide
(Sigma) and fluorescence microscopy. In all, 200 cells were
counted and the percent of cells that demonstrated apoptotic
bodies calculated.

RESULTS

Three out of 11 MSS CRC cell lines possess elevated HPRT
mutation rates

We measured the spontaneous HPRT mutation rate in 11 MSS
CRC cell lines (Table 1, and Figure 1). For initial screening, these
cell lines were expanded and plated in the presence of 6TG, until
approximately 30 million colony-forming units (CFUs) had been
tested for 6TG resistance. Since many of the cell lines displayed no
mutants, we estimated the rate using a single hypothetical mutant.
The mutation rates of eight of the MSS CRC cell lines were o0.1–
0.2� 10�8 mutations per locus per cell division (Table 1) and
defined the baseline level of spontaneous mutation. We previously
reported a limited analysis of three of the nonmutator cell lines
(Eshleman et al, 1995), that we have analysed to a much greater
degree in the present study. To obtain the best estimate of the
overall prevalence of elevated mutation rates in MSS CRC, we
included the previously identified MSS CRC cell line Vaco411,
since it was part of an original series of sequential cell lines
expanded and examined in more detail in this report (Eshleman

et al, 1998). During the initial screen in 6TG, while most of the cell
lines yielded no HPRT mutants (Table 1, Figure 1), three cell lines
possessed an elevated mutation rate (approximately 100-fold above
background nonmutator cell lines). Statistical analysis confirmed
that the elevated mutation rates in these three MSS CRC cell lines
are significantly different from the baseline mutation rates in the
nonmutator CRC cell lines (P¼ 0.0013, unpaired t-test). Further-
more, the mutation frequency of one of them (Vaco411) appears to
be higher than the other two. Limited sequencing of the hprt cDNA
(Eshleman et al, 1996) from several mutants from each of the cell
lines exhibiting 6TG resistance confirmed that mutations within
hprt were indeed present (manuscript in preparation). The ages of
the patients when the tumours were diagnosed were 32, 56 and 81
years old for Vaco411, Vaco8 and SW948, respectively.

The MSS CRC cells with elevated mutation rates are
differentially sensitive to alkylation and oxidative chemical
challenge

A consistent feature of cells with elevated mutation rates due to
defective MMR has been the tolerance to alkylating agents such as
MNNG (Branch et al, 1993; Kat et al, 1993). We therefore asked
whether the MSS CRC cell lines with mutator phenotypes would be
altered in their responses to MNNG. As demonstrated previously
(Koi et al, 1994), the MMR deficient cell line, HCT116, was
relatively resistant to the cytotoxic effects of MNNG since this cell
line carries two defective mlh1 genes (Figure 2A, (Papadopoulos
et al, 1994)). In contrast and as expected, the SW480 MMR
proficient cell line was sensitive to the cytotoxic effects of MNNG
since it possesses a functional MMR system. Of the MMR
proficient mutators, Vaco411, was sensitive to MNNG similar to
SW480 (approximately 18% cell viability after treatment with 5 mM

MNNG), while SW948 and Vaco8 were both intermediate,
demonstrating more resistance than both SW480 and Vaco411
but less than HCT116 (compare 18% of cells remaining after 5 mM

MNNG, to 39% for SW948, 50% for Vaco8 and 75% for HCT116).
We have previously demonstrated that two of the three mutators

have elevated levels of the mutagenic base 8-oxoG (Parker et al,
2002). Since both Vaco411 and Vaco8 possesses low rates of 8-
oxoG repair and elevated genomic 8-oxoG levels (Parker et al,
2002), we hypothesised that a mutator phenotype, which affects 8-
oxoG repair, might affect their ability to repair oxidative DNA
damage induced by hydrogen peroxide (H2O2). Figure 2B shows
that both Vaco411 and the MutY proficient cell line SW948 were
more resistant towards H2O2 treatment (41 and 42% of cells
remaining respectively after 300 mM H2O2) than the other three cell
lines.

Two of the three mutator cell lines undergo apoptotic cell
death after chemical challenge

Having demonstrated this differential toxicity, we next asked
whether the cell death occurred through apoptosis. We challenged
the cell lines with either MNNG or H2O2 at the highest doses tested
above, and monitored the cells for apoptosis after 0, 1, 2, 3 and 24 h
after treatment. Harvested cells were stained with DAPI and
propidium iodide and directly scored for the presence of apoptotic
bodies by fluorescence microscopy (see Materials and Methods
(Wang et al, 1995)). When challenged with MNNG, two of the
mutator cell lines (Vaco411 and SW948) showed significant
apoptosis, while the other mutator (Vaco8) and the MMR
proficient and deficient controls demonstrated little, if any,
apoptosis (Figure 3A). In response to peroxide treatment, the
same two mutator lines exhibited apoptosis, although the degree of
apoptosis and the timing of it varied from that seen in response to
MNNG (Figure 3B). Again, the other three cell lines demonstrated
little, if any, apoptosis.
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Figure 1 Mutation rates of the MSS CRC cell lines Vaco8, Vaco411 and
SW948 are increased. Mutation rates in the 11 MSS CRC cell lines as
described. The mutators were compared to the nonmutators using the
unpaired Student’s t-test.
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The three MSS CRC cell lines with elevated mutation rates
are microsatellite stable

To confirm that the elevated mutation rates were not due to
defective MMR activity and that the cell lines possess stable
microsatellite DNA, a panel of five microsatellite markers, two
mononucleotides and three dinucleotides, were analysed. In all, 10
independently derived clones, from each of the three MSS mutator
cell lines and HCT116 as a positive control, were analysed using
these five microsatellite markers recommended at a US NCI-
sponsored conference on MSI for CRC (Boland et al, 1998) BAT25,
BAT26, D5S346, D2S123 and D17S250 using multiplex PCR and
capillary electrophoresis (Berg et al, 2000). All five loci that were

PCR amplified and had stable lengths confirming that Vaco411,
Vaco8 and SW948 are microsatellite stable (data not shown) and
therefore likely MMR competent. For Vaco411, we have previously
reported that its mutation spectrum is inconsistent with an MMR
defect and that it is functionally MMR competent when directly
challenged with mispaired DNA substrates (Eshleman et al,
1998b).

DISCUSSION

The current study suggests that mutator phenotypes may play a
significant overall role in MSS CRC carcinogenesis since, from a
panel of 11 MSS CRC cell lines, three possessed elevated mutation
rates (27%). The majority (eight out of 11, 73%) however, showed
normal baseline rates.

In MMR-deficient CRC, the spontaneous mutation rates are
generally elevated at least 100– 1000-fold above the baseline
normal rate. In contrast, the increased HPRT mutation rates we
report in this current study in the MSS CRC cell lines are
approximately 10–100-fold increased relative to control levels in
nonmutator MSS CRC cells and accordingly are designated as
‘intermediate’ elevated levels. It is noteworthy that intermediate
mutation rates are present in other diseases such as Bloom’s
syndrome (approximately 10-fold higher than normal patients)
(Warren et al, 1981) and Werner syndrome (10–50-fold higher
than normal cell lines) (Fukuchi et al, 1989), and we interpret the
intermediate elevated mutation rates observed here as likely
biologically significant.

Given the differences in mutation rates, the differential
responses to MNNG and H2O2, and the differences in the levels
of genomic 8-oxoG, it seems likely that there is more than one
underlying defect responsible for these novel MMR-independent
mutator phenotypes. The cell line characteristics from this study
are shown in Table 2. Vaco8 possesses elevated levels of genomic
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8-oxoG and low levels of MutY protein which may explain the
elevated mutation rate since yeast and Escherichia coli (E.coli)
defective in mutY possess elevated mutation rates approximately
30-fold above the background rate (Nghiem et al, 1988; Chang and
Lu, 2002). However, Vaco8 possessed intermediate resistance to
MNNG, but was appropriately sensitive to H2O2, suggesting
instead that repair of alkylated DNA damage may be impaired. A
partially impaired MMR system, one which can maintain normal
microsatellite length but cannot detect or signal for apoptosis
could be responsible, but it is also possible that intermediate level
of resistance to MNNG and oxidative damage may be due to
defects in another DNA repair system. Recently levels of smad4/
dpc4, a transcription factor frequently lost in pancreatic cancer,
have been shown to be defective in this cell line (Fink et al, 2003).

Vaco411, similar to Vaco8, also possesses elevated levels of
genomic 8-oxoG and low levels of MutY protein, however this cell
line is relatively resistant to H2O2 and unlike SW948, HCT116 and
Vaco8, it was fully sensitive to MNNG suggesting that repair of
oxidative DNA damage may be the more important defect.
However, the spectrum of mutations in this cell line (Eshleman
et al, 1998) is not fully explained by a single defect in MutY (Al-
Tassan et al, 2002; Jones et al, 2002; Sieber et al, 2003), strongly
suggesting that a second gene defect may also be present.

SW948, unlike the other four cell lines, is relatively resistant to
both H2O2 and MNNG. The cell viability studies with MNNG
suggest that although its MMR system is sufficient to maintain
stable microsatellite length, it may not provide fully appropriate
sensitivity to the methylating agent MNNG, as previously reported
(Claij and Te Riele, 2002) and similar to that suggested for Vaco8
(Table 2). Resistance to oxidative stress, is also potentially
consistent with an altered but semifunctional MMR system since
msh2�/� (mut S homolog 2) mouse cells contain increased levels
of oxidative DNA damage (DeWeese et al, 1998) and MMR-
deficient cells can be somewhat resistant to H2O2 (Glaab et al,
2001). The spectrum of mutations in these novel MSS mutator
phenotypes will likely provide insight to identify the genes
responsible and comprehensive sequencing of the hprt cDNA
from the mutator cell lines is currently underway.

It is interesting that the majority of cell lines (eight out of 11,
73%) did not possess elevated hprt mutation rates. There are three
potential possibilities for this: (1) There is a mutator phenotype
but it was not detected. This seems unlikely since the HPRT assay
detects such a wide range of mutations (Albertini, 2001) (though
not changes in chromosome number, see possibility #3 below).

Further, we have established that when X-ray-induced HPRT
mutant cells are spiked into wild-type cells, they are efficiently
recovered (Eshleman et al, 1995). (2) There was a functional
mutator phenotype expressed in these cells early during carcino-
genesis, but it was transient and by the time of diagnosis and
resection, the pre-existing mutator phenotype is no longer present,
for example, due to transient methylation (Loeb, 2001). (3) Finally,
there is in fact no functional mutator phenotype in the majority of
MSS CRCs during carcinogenesis. This is consistent with the
results of () although the cell lines and assays employed are
substantially different.

One problem with possibility #3 is that most investigators
consider genomic instability the fundamental (or at least one
fundamental) feature of malignancy, because it explains how
malignant cells acquire many of the critical features that
distinguish them from their normal counterparts (e.g. ability to
metastasise and acquire resistance to chemotherapeutics). One
possible explanation is that most of the cell lines without a
functional HPRT mutator phenotype manifest the chromosome
instability (CIN) phenotype (Lengauer et al, 1997; Eshleman et al,
1998b). Since the CIN phenotype is assayed by centromeric
fluorescence in situ hybridisation, it reports for changes in
chromosome number whereas the HPRT assay is not expected to
detect such changes. However, because CIN (production of
aneuploidy) occurs at substantial rates, it can easily produce the
second hit in tumour suppressor genes through loss of hetero-
zygosity, and is therefore probably appropriate to consider CIN a
mutator phenotype (Cahill et al, 1998).

In conclusion, these data demonstrate that a significant
subgroup (approximately one-quarter) of MSS CRCs exist with
elevated mutation rates that are likely independent of one another.
This suggests that mutator phenotypes may also play a role in MSS
CRC carcinogenesis.
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