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Abstract: The cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel belongs to
the ATP-binding cassette (ABC) transporter superfamily and regulates Cl− secretion in epithelial
cells for water secretion. Loss-of-function mutations to the CFTR gene cause dehydrated mucus on
the apical side of epithelial cells and increase the susceptibility of bacterial infection, especially in the
airway and pulmonary tissues. Therefore, research on the molecular properties of CFTR, such as its
gating mechanism and subcellular trafficking, have been intensively pursued. Dysregulated CFTR
trafficking is one of the major pathological hallmarks in cystic fibrosis (CF) patients bearing missense
mutations in the CFTR gene. Hormones that activate cAMP signaling, such as catecholamine,
have been found to regulate the intracellular trafficking of CFTR. Insulin is one of the hormones
that regulate cAMP production and promote trafficking of transmembrane proteins to the plasma
membrane. The functional interactions between insulin and CFTR have not yet been clearly defined.
In this review article, I review the roles of CFTR in epithelial cells, its regulatory role in insulin
secretion, and a mechanism of CFTR regulation by insulin.
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1. Introduction

Cystic fibrosis (CF) is the most frequent autosomal recessive lethal disorders in the Caucasian
population, and results from loss-of-function mutations in the cystic fibrosis transmembrane
conductance regulator (CFTR) gene [1–3]. This gene is located on the long arm of chromosome
7 in humans and encodes a polytopic integral membrane protein that functions as a cAMP-
and phosphorylation-regulated Cl− channel at the apical surface of secretory epithelia [4,5].
The CFTR Cl− channel is categorized as ABCC7, a member of the ATP-binding cassette (ABC)
transporter superfamily [2,3]. The molecular structure and channel gating regulation of the
CFTR Cl− channel has been extensively studied. The CFTR Cl− channel is composed of five
domains: (1) two membrane-spanning domains (MSD1 and MSD2) form the pore of the channel
with a permeability to Cl− and HCO3

−, secreting these ions across the membrane, and each
domain is composed of six transmembrane segments (TM1–TM6 and TM7–TM12); (2) two cytosolic
nucleotide-binding domains (NBD1 and NBD2), at which ATP is hydrolyzed, regulate channel
gating; and (3) a regulatory domain (RD) containing multiple phosphorylation sites controls channel
activity [3]. Further, the molecular mechanism causing CFTR Cl− channel dysfunction has been also
investigated in depth, and the dysfunction is classified into five types (Classes I−V) (Figure 1) [6].

Int. J. Mol. Sci. 2017, 18, 1767; doi:10.3390/ijms18081767 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://dx.doi.org/10.3390/ijms18081767
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2017, 18, 1767 2 of 11

Dysfunctions of CFTR Cl− channels, categorized as shown in Figure 1 [6], cause infection of bacteria
and viruses due to little or lack of water secretion driven by Cl− secretion through the CFTR Cl−

channel in epithelial tissues [7] as well as other disorders in non-epithelial tissues, such as pancreatic
insulin-secreting β cells [6,8]. In this review article, I review roles of the CFTR Cl− channel in the
regulation of epithelial water secretion, regulatory mechanisms of insulin secretion, and the insulin
action on the CFTR Cl− channel.
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2Cl− cotransporter (NKCC) located at the basolateral membrane, and (2) the second step is Cl− release 
from the intracellular space via CFTR Cl− channels expressed at the apical membrane [9–14]. 
Transepithelial Cl− secretion carries negative charges followed by the movement of cations, such as 
Na+ and K+ [15–24]. The secretion of NaCl and KCl generates osmotic gradients, which produce water 
secretion [15–24]. To elevate transepithelial Cl− secretion, at least one of these transporters and 
channels has to be stimulated [25–29]. On the one hand, functional deficiency of these transporters 
and/or channels leads to disorder in transepithelial Cl− secretion, which dehydrates the apical space 
of epithelial tissues resulting in an increase in bacterial and viral infectivity [25–29]. This means that 
the discovery of factors regulating transepithelial Cl− secretion [9–11] is essential to control the 
amount of apical surface-covering fluid and prevent infection of bacteria and viruses. 

Many studies indicate the physiological and pathophysiological roles of NKCC and CFTR Cl− 
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Figure 1. Classification of cystic fibrosis transmembrane conductance regulator (CFTR) mutations.
This figure has been published in “Koivula, F.N.; McClenaghan, N.H.; Harper, A.G.; Kelly, C.
Islet-intrinsic effects of CFTR mutation. Diabetologia 2016, 59, 1350–1355 [6]”. This figure is described in
this review article under the terms of the Creative Commons Attribution 4.0 International License.

2. Roles of CFTR Cl− Channel in Epithelial Cl− Secretion

Transepithelial Cl− secretion from the interstitial space to the apical one is mediated via two steps:
(1) the first step is Cl− uptake into the intracellular space via Cl− transporters such as Na+-K+-2Cl−

cotransporter (NKCC) located at the basolateral membrane, and (2) the second step is Cl− release from
the intracellular space via CFTR Cl− channels expressed at the apical membrane [9–14]. Transepithelial
Cl− secretion carries negative charges followed by the movement of cations, such as Na+ and K+ [15–24].
The secretion of NaCl and KCl generates osmotic gradients, which produce water secretion [15–24].
To elevate transepithelial Cl− secretion, at least one of these transporters and channels has to be
stimulated [25–29]. On the one hand, functional deficiency of these transporters and/or channels
leads to disorder in transepithelial Cl− secretion, which dehydrates the apical space of epithelial
tissues resulting in an increase in bacterial and viral infectivity [25–29]. This means that the discovery
of factors regulating transepithelial Cl− secretion [9–11] is essential to control the amount of apical
surface-covering fluid and prevent infection of bacteria and viruses.

Many studies indicate the physiological and pathophysiological roles of NKCC and CFTR Cl−

channels in water secretion [30], cell differentiation [31–34], cell growth [35–39], gene expression,
and cell signaling [40–45]. More than 2000 mutations with functional deficiencies have been found in
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the CFTR gene, including the deficiency of intracellular trafficking of the CFTR Cl− channel, leading
to a variety of clinical symptoms in CF patients [46,47]. The ∆F508 mutation of CFTR is a deletion of
phenylalanine 508 in NBD1, and is the most common cause of CF [46]. The ∆F508 mutation occurs in
approximately 85% of CF patients, and presents a deficiency of intracellular translocation to the apical
(plasma) membrane due to CFTR misfolding and endoplasmic reticulum (ER) retention [5].

3. Action of Insulin in the Kidney and Lung under Conditions with Insulin Resistance

Insulin is a well-known hormone to reduce the level of blood sugar via the stimulation of
glucose uptake into muscle cells and adipocytes, etc. by binding to its receptor in the target
cells. Insulin receptor, a transmembrane protein with tyrosine kinase activity, is activated via
autophosphorylation by insulin binding, which transduces its signal into the intracellular space
through a phosphoinositide 3-kinase (PI3K)-Akt-dependent cascade [48]. PI3K-Akt-dependent
signals coordinate glucose metabolism [49], ion/glucose transport [48–58], cell growth [49], and cell
survival [49]. Insulin stimulates ENaC surface expression in the apical membrane of the distal
nephron [57,59,60] and elevates the activity of ENaC expressed in the distal nephron [53], leading to
an increase of ENaC-mediated Na+ reabsorption in the kidney. It is well known that hypertension is
frequently observed in type 2 diabetes mellitus (DM) [61], and this might be due to the hyper-elevation
of ENaC-mediated renal Na+ reabsorption in hyper-insulinemia. However, insulin resistance is
commonly observed in type 2 DM [62]. This means that insulin might not stimulate ENaC-mediated
renal Na+ reabsorption due to insulin resistance, even under hyper-insulinemia conditions in DM.
Aoi et al. reported that the pH of interstitial fluid is lower in type 2 DM than in healthy controls [61].
This lowered interstitial fluid pH causes insulin resistance via the reduction of insulin binding
affinity to its receptor [48,63–65], while the interstitial fluid pH in the kidney and lung might be
higher (normal) owing to a large amount of blood flow compared with the interstitial pH in skeletal
muscle cells and adipocytes. This means that hyper-insulinemia would elevate ENaC-mediated Na+

reabsorption in the kidney and lung with a normal interstitial fluid pH in type 2 DM patients, who
suffer from insulin resistance in skeletal muscles and adipocytes due to the lowered interstitial fluid
pH. This would be a reason why hypertension is frequently observed in type 2 DM: i.e., insulin could
elevate ENaC-mediated Na+ reabsorption in the kidney, overloading body fluid volume even under
conditions with insulin resistance, since insulin resistance might not be observed in the kidney due to
the normal interstitial fluid pH, unlike the lowered interstitial fluid pH that is found around muscles
and adipocytes.

4. Roles of the CFTR Cl− Channel in Insulin Secretion

It has recently been reported that most patients with CFTR gene mutations exhibit an insufficiency
of insulin secretion [66,67], causing DM in CF patients; this is referred to as CF-related diabetes
(CFRD) [68]. However, we found little information on the molecular mechanism that causes
insufficiency of insulin secretion in CF patients. Edlund et al. [69] reported that: (1) the CFTR Cl−

channel has a novel function as a regulator of insulin secretion and exocytosis in pancreatic β cells by
contributing to the glucose-induced membrane depolarization, and (2) the CFTR Cl− channel also plays
a role in the regulation of ANO1, which participates in glucose-induced membrane depolarization
(see Figure 2). The glucose-induced membrane depolarization due to Cl− efflux through CFTR Cl−

channels and ANO1 stimulates downstream priming of insulin granules prior to the fusion and release
of insulin [69] (Figure 2). Thus, impaired insulin secretion in CF patients would be caused by an
insufficiency of membrane depolarization due to the lack of Cl− efflux via CFTR Cl− channels and
ANO1. Guo et al. [70] similarly reported that the glucose-induced insulin secretion and membrane
depolarization are abolished or reduced by the knockdown or application of CFTR Cl− channel
inhibitors such as CFTRinh-172 and glyH-101 in primary mouse pancreatic β cells or RINm5F
β cell line. Their study [70] also indicated that glucose-induced insulin secretion and membrane
depolarization are significantly diminished in CFTR mutant ∆F508 mice compared with wild-type
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mice. These observations imply that CFTR Cl− channels play an important role in glucose-induced
membrane depolarization, which stimulates insulin secretion in pancreatic β cells via the elevation of
the cytosolic Ca2+ concentration [Ca2+]c.Int. J. Mol. Sci. 2017, 18, 1767  4 of 11 
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the membrane depolarization [70]. Moreover, the expression of loss-of-function-mutated ΔF508 
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Figure 2. Potential mechanisms by which CFTR regulates insulin secretion from the β cell. Glucose
enters the β cell through GLUT2 and is rapidly metabolized to glucose 6-phosphate, ultimately
resulting in the generation of ATP, which causes the ATP-sensitive KATP channel to close. Membrane
depolarization and the opening of voltage-dependent Ca2+ channels (VDCCs) ensue and calcium fluxes
into the cell, resulting in insulin exocytosis. Recent studies have suggested that this process is hampered
in the absence of CFTR, which may result from defects in ATP-generated cAMP activation of the CFTR
channel. Indeed, pronounced reductions in insulin secretion are observed in response to forskolin- and
GLP-1-stimulated increases in the cAMP level. In addition, evidence suggests that CFTR (in conjunction
with ANO1) may be involved in the priming of the insulin granule or in the regulation of the calcium
flux within the β cell. The regulation of ANO1 by CFTR is denoted by the horizontal arrow between
the two channels; dotted lines represent proposed mechanisms yet to be confirmed. This figure has
been published in “Koivula, F.N.; McClenaghan, N.H.; Harper, A.G.; Kelly, C. Islet-intrinsic effects
of CFTR mutation. Diabetologia 2016, 59, 1350–1355 [6]”. This figure is described in this review article
under the terms of the Creative Commons Attribution 4.0 International License.

Guo et al. [70] also measured the intracellular Cl− concentration ([Cl−]i) using
N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE), a Cl−-sensitive fluorescent dye,
which has been established to be useful for measurement of [Cl−]i [71–74]. They [70] reported that
the [Cl−]i of RINm5F β cell line is about 100 mM under the basal condition, and application of
CFTRinh-172 (an inhibitor of the CFTR Cl− channel) increases [Cl−]i about 26 mM [70]. This means
that the electrochemical potential of Cl− in the intracellular space is larger than that in the extracellular
space. The membrane potentials of pancreatic β cells expressing wild-type CFTR Cl− channels are
−61~−67 mV [70]. CFTRinh-172 or ∆F508 expression causes the membrane to be more hyperpolarized
to −75 mV [70]. Thus, CFTR Cl− channels function as a Cl−-permeable, Cl−-releasing pathway
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maintaining the membrane depolarization [70]. Moreover, the expression of loss-of-function-mutated
∆F508 CFTR Cl− channels diminishes the glucose-induced membrane depolarization and elevation of
[Ca2+]c due to the activation of voltage-dependent Ca2+ channels [70]. This results in an insufficiency
of insulin secretion. An interesting point is the higher intracellular Cl− electrochemical potential
in pancreatic β cells. In general, Cl− uptake into the intracellular space is mediated via active
Cl− transporting systems, such as Na+-Cl− cotransporter (NCC) and/or NKCC, driven by the
Na+,K+-ATPase-generated Na+ chemical potential difference between the intracellular and extracellular
spaces: the intracellular Na+ chemical potential < the extracellular Na+ chemical potential. Therefore,
if we could increase the [Cl−]i by elevating the NCC- and/or NKCC-mediated Cl− uptake, the
insufficiency of insulin secretion would be improved via membrane depolarization due to elevation of
Cl− efflux from pancreatic β cells of ∆F508 CFTR-expressing CF patients.

5. Roles of the CFTR Cl− Channel in Insulin Action on Glucose Uptake and the Transepithelial
Resistance in Epithelial Tissues

Recently, it has been reported that glucose transporter (GLUT) 4 is expressed in normal human
primary airway epithelial cells, and that insulin stimulates the GLUT-mediated glucose uptake in
airway epithelial cells similar to skeletal muscle cells via the activation of GLUT translocation to
the plasma membrane [75]. Molina et al. [75] also reported that insulin increases airway barrier
function detected as transepithelial electrical resistance associated with a decrease in paracellular flux
of small molecules in normal primary human airway epithelial cells. However, in human airway
epithelia expressing ∆F508-CFTR, insulin shows no stimulatory action on glucose uptake, no elevating
action on the transepithelial resistance, and no diminishing action on paracellular flux of small
molecules [75]. Further, Akt1 and Akt2, which are the most important signaling cascades of insulin,
show smaller responses to insulin in ∆F508-CFTR airway cells than that in wild-type CFTR airway
cells [75]. These results indicate that the function of CFTR Cl− channels is required for insulin to
stimulate glucose uptake, elevate the transepithelial resistance, and diminish the paracellular flux of
small molecules in airway epithelial cells.

6. Insulin Action on the CFTR Cl− Channel in Epithelial Tissues and Its Molecular Mechanism

Another study [14] reported the insulin action on epithelial Cl− secretion. As mentioned above,
the epithelial Cl− secretion is mediated by two steps: (1) the Cl− uptake via Cl− transporters such
as NKCC across the basolateral membrane, and (2) the Cl− release via CFTR Cl− channels across
the apical membrane. Insulin upregulates the mRNA expression of both CFTR Cl− channels and
NKCC (Figure 3) [14]. If the insulin-induced upregulation of mRNA expression of CFTR Cl− channels
and/or NKCC would elevate the number and/or activity of CFTR Cl− channels at the apical membrane
and/or NKCC at the basolateral membrane, epithelial Cl− secretion would increase [13]. However,
insulin application alone to epithelial cells has no effect on Cl− secretion or CFTR Cl− channels
expressed at the apical membrane [14]. This means that insulin does not increase the number or
activity of CFTR Cl− channels at the apical membrane or NKCC at the basolateral membrane, even
though insulin upregulates the mRNA expression of both CFTR Cl− channels and NKCC. Interestingly,
under the cAMP-stimulated condition, insulin elevates epithelial Cl− secretion and apical CFTR
Cl− channel conductance (activity). This observation suggests that: (1) insulin might increase the
production of both CFTR Cl− channels and NKCC proteins; (2) these CFTR Cl− channel and NKCC
proteins might stay in the cytosol space but would not be translocated to the apical or basolateral
membrane, respectively, under conditions without cAMP stimulation; and (3) cAMP respectively
stimulates translocation of these CFTR Cl− channel and NKCC proteins from the cytosolic store sites
to the apical and basolateral membranes. This study [14] reported further interesting observations
that: (1) the insulin-stimulated CFTR mRNA expression is enhanced by an inhibitor of MEK, PD98059;
(2) insulin significantly inactivates ERK, which is a negative regulator of CFTR Cl− channel expression;
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and (3) PD98059 treatment enhances the insulin-induced elevation of cAMP-stimulated Cl− secretion
associated with an increase in the apical CFTR Cl− channel conductance (Figure 3).Int. J. Mol. Sci. 2017, 18, 1767  6 of 11 
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Figure 3. Insulin action on Na+-K+-2Cl− cotransporter (NKCC) and cystic fibrosis transmembrane
regualtor (CFTR) participating in Cl− secretion of epithelial cells. (1) Insulin activates PI3K, resulting in
stimulation of NKCC mRNA expression. (2) Insulin inactivates ERK, which suppresses CFTR mRNA
expression. Insulin-induced inactivation of ERK releases the suppression of CFTR mRNA expression,
leading to the elevation of CFTR mRNA expression. Both the elevation of mRNA expression of NKCC
and CFTR induced by insulin might stimulate expression of NKCC and CFTR proteins, which might
stay in cytosolic store sites. cAMP respectively stimulates the translocation of insulin-induced NKCC
and CFTR proteins staying in cytosolic store sites to the basolateral and apical membranes, leading to
a much larger epithelial Cl− secretion associated with a much larger elevation of CFTR activity than
that of those under the insulin-untreated condition. Reproduced with allowance of non-profit use of
the figure [14].
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7. Conclusions

CFTR Cl− channels, one of the ABC transporter superfamily, play essential roles in: (1) water
secretion in epithelial tissues, by generating Cl− secretion and prevention against infection of bacteria
and viruses, and (2) maintenance of the plasma membrane depolarization by functioning as a Cl−

efflux pathway, which causes glucose-induced insulin secretion by increasing the [Ca2+]c in pancreatic
β cells. Insulin may play a role in barrier immunity via the elevation of Cl− secretion due to the
stimulation of CFTR Cl− channel expression by inactivating MEK (a negative factor for the expression
of CFTR Cl− channels). Insulin also plays an important role in the prevention against infection of
bacteria and viruses by both decreasing glucose contents at the apical space of airway epithelial cells
and elevating the resistance of the tight junction (barrier function) of airway epithelial cells. Therefore,
a deficiency of CFTR Cl− channels causes: (1) infection of bacteria and viruses due to dehydration and
high glucose contents at the airway apical surface, associated with a relatively high permeability of the
paracellular pathway, and (2) a decrease in insulin secretion due to the diminution of glucose-induced
membrane depolarization caused by a lack of Cl− efflux through CFTR Cl− channels at the plasma
membrane of pancreatic β cells.
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Abbreviations

ABC ATP-binding cassette
[Ca2+]c Cytosolic Ca2+ concentration
CF Cystic fibrosis
CFRD CF-related diabetes
CFTR Cystic fibrosis transmembrane conductance
[Cl−]i Intracellular Cl− concentration
∆F508 Deletion of phenylalanine at position 508
DM Diabetes mellitus
ENaC Epithelial Na+ channel
GLUT Glucose transporter
MSD Membrane-spanning domains
MQAE N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide
NBD Nucleotide binding domains
NCC Na+-Cl− cotransporter
NKCC Na+-K+-2Cl− cotransporter
PI3K Phosphoinositide 3-kinase
RD Regulatory domain
TM Transmembrane
VDCCs Voltage-dependent Ca2+ channels
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