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   Abstract: Background: Ubiquitination, as a post-translational modification, is a crucial biological 
process in cell signaling, apoptosis, and localization. Identification of ubiquitination proteins is of fun-
damental importance for understanding the molecular mechanisms in biological systems and diseases. 
Although high-throughput experimental studies using mass spectrometry have identified many ubiqui-
tination proteins and ubiquitination sites, the vast majority of ubiquitination proteins remain undiscov-
ered, even in well-studied model organisms.  
Objective: To reduce experimental costs, computational methods have been introduced to predict 
ubiquitination sites, but the accuracy is unsatisfactory. If it can be predicted whether a protein can be 
ubiquitinated or not, it will help in predicting ubiquitination sites. However, all the computational 
methods so far can only predict ubiquitination sites.  
Methods: In this study, the first computational method for predicting ubiquitination proteins without 
relying on ubiquitination site prediction has been developed. The method extracts features from se-
quence conservation information through a grey system model, as well as functional domain annota-
tion and subcellular localization.  
Results: Together with the feature analysis and application of the relief feature selection algorithm, 
the results of 5-fold cross-validation on three datasets achieved a high accuracy of 90.13%, with Mat-
thew’s correlation coefficient of 80.34%. The predicted results on an independent test data achieved 
87.71% as accuracy and 75.43% of Matthew’s correlation coefficient, better than the prediction from 
the best ubiquitination site prediction tool available.  
Conclusion: Our study may guide experimental design and provide useful insights for studying the 
mechanisms and modulation of ubiquitination pathways. The code is available at: 
https://github.com/Chunhuixu/UBIPredic_QWRCHX 
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1. INTRODUCTION 

 As a well-known post-translational modification (PTM), 
ubiquitination is crucial in proteome dynamics and various 
signaling pathways in the cells [1]. Ubiquitination is an en-
zymatic PTM in which ubiquitin (a small regulatory protein) 
[2] is attached to a lysine residue of the targeting protein [3]. 
Ubiquitination marks proteins for degradation through the 
proteasome [4], alters their cellular location [5], and regu-
lates protein interactions [5]. It is involved in signal trans-
duction [6], apoptosis, endocytosis, gene transcription,  
DNA repair, and replication, intracellular trafficking, virus  
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budding [3], cellular transformation, immune response, and 
inflammatory response [7]. 

 Due to its importance and complexity, the identification 
of ubiquitination proteins and ubiquitination sites is highly 
valuable. However, experimental identification is time-
consuming and expensive [8] particularly because the ubiq-
uitination process is dynamic, rapid and reversible [9-11]. 
Hence, computational predictions become an important and 
practical alternative. A number of computational methods 
were developed based on the traditional machine learning 
method for predicting lysine ubiquitination sites, including 
Radivojac’s UbPred [12], Cai’s mRMR model [13], Zhao’s 
ensemble classifier [14], and Chen’s CKSAAP approach 
[15], but they can only identify ubiquitination sites with lim-
ited accuracies. It is not practical to predict ubiquitination 
proteins through these methods since the false-positive rates 
would be too high to be useful. Recently, deep learning 
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method tools, such as MusiteDeep-Capsule [16] have be-
come competitive due to the advancing of computing re-
sources, our results show good performance even when 
compared with it, also, it has a better performance than three 
machine learning-based tools, UbiProber [17], UbiSite [18] 
and PDM-PUB [19]. To the best of our knowledge, so far no 
computational method has been developed to predict wheth-
er an uncharacterized protein is able to be ubiquitinated or 
not. The present study was initiated in an attempt to address 
this problem for the first time. If it can be predicted whether 
an uncharacterized protein can be ubiquitinated or not, it will 
be valuable for the prediction itself and helpful for identify-
ing ubiquitination sites. Although this problem has not been 
addressed, some explorations have been made on a related 
study, i.e. to predict whether a protein can be phosphorylated 
or not [20, 21]. A method has been presented for identifying 
human phosphorylated proteins by incorporating evolution-
ary information into a general pseudo amino acid composi-
tion (PseAAC) model through a grey system [21-23]. It is 
believed that the formulation and approach can be also used 
to predict ubiquitination proteins. Ubiquitination is much 
less frequent than phosphorylation, as ubiquitination is a 
much more “expensive” biological operation than phosphor-
ylation. The smaller group of ubiquitination proteins may 
have even stronger common features than phosphorylation 
proteins so that a whole sequence-based method may work 
better in predicting ubiquitination proteins. Furthermore, 
other gene features will be used, such as Gene Ontology 
(GO) [24], a structured repository of concepts (GO Terms) 
related to gene functions for the prediction, none of which 
was used in predicting phosphorylation sites.  

 In this study, a novel computational method, was devel-
oped to predict ubiquitination proteins for a query amino 
acid sequence on the basis of its evolutionary information 
through a grey system model [25] and K Nearest Neighbour 
(KNN) scores calculated with the fuzzy distance by using its 
Functional Domain Annotation (FDA) and subcellular local-
ization. There are two major feature sets in this study: one 
set includes 80 sequence grey model features extracted from 
the sequence evolution information and another contains the 
features calculated by KNN scores based on FDAs. To thor-
oughly evaluate the proposed model, it was trained and test-
ed with different datasets and cross-validations methods. In 
addition, the distribution of the above-mentioned features in 
predicted ubiquitination proteins was analyzed and it provid-
ed some hypotheses for distinguishing ubiquitination pro-
teins from non-ubiquitination ones. 

2. MATERIALS AND METHODS 

2.1. Benchmark Dataset 

 The dataset used was extracted from Uniprot at 
http://www.ebi.ac.uk/uniprot [26]. The version of protein 
data used in the current study was released on May 2017. 
The positive dataset containing 1906 known ubiquitination 
proteins was generated through the following queries in the 
UniProt advanced search: “annotation: (type:crosslnk ubiqui-
tin) length: [50 TO *] AND reviewed: yes.”  Three hundred 
of 1906 proteins were separated as an independent test da-

taset so that the remaining 1606 positive proteins were kept 
in training and validation. For the negative dataset, we start-
ed from all reviewed proteins (~550,000 totals) and per-
formed a filtering process by using CD-HIT-2D [27] with a 
threshold of 70%, after this step, there were 320,096 nega-
tive proteins left. To conduct balanced training, these sam-
ples were randomly taken to form three negative datasets, 
in which the number of samples was the same as the given 
positive dataset. At this time, a 300 proteins negative inde-
pendent dataset was randomly selected and isolated for 
testing. There is no overlap between training and testing 
datasets. For the annotation information, we extracted the 8 
types UniProt annotations of ‘Subcellular localization (SL) 
[28]’ and FDAs of ‘GO [29]’ , ‘Pfam [30]’, ‘Smart [31]’, 
‘PROSITE [32]’, ‘SUPFAM [33]’, ‘InterPro [34]’, and 
‘PRINTS [35]’ for all the proteins in the datasets. SL was 
reorganized by the UniProt build-in hierarchical subcellular 
localization table. 

2.2. Incorporate Extracted Features into the General 
Pseudo amino Acid Composition 

 It is known that most traditional machine-learning algo-
rithms, such as Neural Network [36], Covariant Discriminant 
[37], Support Vector Machine [38], K Nearest Neighbor 
[39], and Random Forest [40], can only handle vector but not 
sequence samples. To formulate a biological sequence of a 
variable length into a discrete model or a vector, yet still 
considerably keep its sequence pattern or inherent character-
istics, researchers formulated the protein sequence or pep-
tides using pseudo amino acid composition (PseAAC) [21], 
encoding method [41] or other approaches [42]. Here, a 
model following the general form of PseAAC [43] has been 
proposed, which formulates a protein ! as (Eq. 1):  

! = !!  !!   ⋯   !!   ⋯   !! !                                                  (1) 

where T is a transpose operator, the subscript ! is an integer, 
and its value as well as the components !!, !!, … depend on 
the extraction of the desired information from the amino acid 
sequence of ! as described below. 

2.3. Vectorization of Sequence Profile through a Grey 
System Model 

 From the evolutionary viewpoint, all the protein se-
quences have been evolved from a very limited number of 
ancestral species. Their evolution involves mutations of sin-
gle residues, as well as insertions and deletions of residues, 
gene duplication, and gene fusion. With these changes ac-
cumulated for a long period of time, many similarities be-
tween the original and evolved amino acid sequences have 
gradually disappeared, but they may still share some com-
mon features, such as belonging to the same type of protein 
[44], residing in a same subcellular location [45], or having a 
similar biological function [46]. It is assumed that ubiquiti-
nation proteins have evolutionary relationships that are re-
flected in some common attributes encoded in sequence pro-
files, i.e. the Position Specific Scoring Matrix (PSSM), as 
described below. The sequence profile by a !×20 matrix as 
! is given as: 
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where ! is the number of residues of the protein, !!,!
(!) repre-

sents the profile score in the !-th (! = 1,2,⋯ , !) position of 
the protein having amino acid type ! (! = 1,2,⋯ , 20) during 
the evolution. Here, the numerical codes 1, 2, …, 20 are used 
to denote the 20 natural amino acid types according to the 
alphabetical order of their single-character codes. The !×20 
scores in Eq. 2 were generated by using PSI-BLAST [47] to 
search the UniProtKB/Swiss-Prot database through three 
iterations with 0.001 as the !-value cutoff for protein !. Fol-
lowing the same approach as done by Lin et al. [48], PSSM 
was encoded to a fixed-size vector with a total of Ω =
3×20 = 60 quantities by using the first-order grey model, or 
a total of 4×20 = 80 quantities by the second-order model. 
Thus, the components of a given protein sample can be rep-
resented by Eq. 3 or Eq. 3’ (which is called SeqEvo De-
scriptor), for the first-order and the second-order models, 
respectively.  

!!""#!!"#$
!" = !  !, !!!, !!!, !!, !!!, !!!,⋯ , !!", !!!", !!!" !              (3) 

!!""#!!"#$
!" =
!  !", !!!", !!!", !!!", !!", !!!", !!!", !!!",⋯ , !!"#, !!!"#, !!!"#, !!!"# !       (3’) 

where !  !,!!
! ,!!

!  are the parameters of the first-order model 
for the !th amino acid (! = !,!,⋯ !"); !!!,!!

!!,!!
!!,!!

!! are 
the parameters of the second-order model for the !th amino 
acid (! = !,!,⋯ !"). 

2.4. KNN Score based on FDA and Subcellular Localization 

 A set of complementary FDAs and subcellular localiza-
tion were used as features of ubiquitination proteins, includ-
ing (1) UniProt annotations of subcellular localization and 
FDAs of ‘GO’, ‘Pfam’, ‘Smart’, ‘PROSITE’, ‘SUPFAM’, 
‘InterPro’, and ‘PRINTS’, as well as GO annotations with 
categories of molecular function, biological process, and 
cellular component; (2) Pfam, a large collection of protein 
families generated using hidden Markov models; (3) Smart 
[31], a collection of protein domains and domain architec-
tures; (4) PROSITE [32], a database of protein fami-
lies, domains and functional sites; (5) SUPFAM, a database 
of protein structural and functional annotation; (6) InterPro, 
a resource of protein families, domains and important sites; 
(7) PRINTS, a collection of sequence "fingerprints" and pro-
tein families. Studies have shown that ubiquitination proteins 
often share the same subcellular localization [49]. Hence, 
subcellular localizations were also used as a feature for pre-
dicting ubiquitination proteins. These features were used 
based on a KNN algorithm as follows: 

Step 1. For a query protein sequence, find its ! nearest 
neighbors in the whole set, including positive and negative 
samples, according to local sequence similarity. For proteins 
! and !, let:  

F!"!(!) = {!!
!,!,!!

!,!,⋯ ,!!!
!,!} 

!"#!(!) = {!!
!,!,!!

!,!,⋯ ,!!!
!,!} 

Which represents the j-th feature of FDA of ! and !, respec-
tively. j =1,2,…,7,8 represents ‘GO’, ‘Pfam’, ‘Smart’, 
‘PROSITE’, ‘SUPFAM’, ‘InterPro’, ‘PRINTS’ or ‘subcellu-
lar localization’, respectively, and the distance !"#$! !,!  
between ! and ! is defined as follows in Eq. (4): 

Dist! !,! = 1 − !"#!(!)⋂!"#!(!)
!"#!(!)⋃!"#!(!)

                                     (4) 

where ⋃ and ⋂ represent the “union” and “intersection” in 
the set theory, and  is the operator acting on the set 
therein to count the number of its elements. 

Step 2. A corresponding KNN feature is then extracted by 
calculating the KNN score, represented by the percentage of 
positive neighbors (ubiquitination proteins) in its ! nearest 
neighbors. 

Step 3. To take advantage of different properties of neigh-
bors with various similarity cutoffs, Steps 1 and 2 were re-
peated for different ! values to obtain multiple features for 
the ubiquitination protein predictor. In this study, based on 
empirical trials, by default, ! was chosen to be 0.1%, 0.4%, 
0.7 %, …, 14.5% and 14.8%; then the number of features is 
50, i.e. 50 KNN scores were extracted as features for predict-
ing ubiquitination proteins. For the j-th member of FDA, the 
protein ! can be formulated as (Eq. 5): 

!!"#! = [!!(!),!!(!),⋯ ,!!(!)  ]!                                   (5) 

where !! ! ,!!(!)…  !!"(!) are the ratios of positive 
neighbors to the whole samples at 0.1%, 0.4%...14.8% of the 
training data set size, respectively. Hence, a query protein 
sequence can be formulated with seven 50-dimension vec-
tors, i.e., !!"# = [!!"#! ,!!"#! ,… ,!!"#!]by using the FDA 
database and a 60- or 80- dimension vector for each !!"#!, 

i.e., !!""#!!"#$
(!")  or !!""#!!"#$

(!") . These digital representa-
tions are used as the input of query protein for the prediction 
model. 

2.5. Algorithm 

 Random Forest has been used as the main classifier of 
the predictor. The workflow (Fig. 1) illustrates how our clas-
sifier works. In the proposed model, the first step is to input 
the query amino acid sequence with its FDAs. The next step 
is to generate two sets of features of a given protein as de-
scribed above, where the annotation features are encoded 
into a distance matrix based on the KNN-score extraction, 
and PSI-BLAST was used to generate the PSSM and then 
transform into the SeqEvo Descriptor. In the last step, two 
types of features are assembled to enter the machine learning 
classifier as input for training.  

2.6. Method Evaluation 

 To evaluate the prediction performance of our method, a 
5-fold cross-validation test was performed following several 
widely-accepted measurements: (1) overall accuracy (ACC), 
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the ratio of true positive and true negative sample among all 
the samples; (2) Mathew’s correlation coefficient or MCC; 
(3) sensitivity (SN), the ratio between true positive and posi-
tive samples; and (4) specificity (SP), the ratio between true 
negative and negative samples; (5) precision (Pre), the ratio 
of true positive among the sum of true positive and false 
positive. As mentioned in Section 2.1, there were 3 sets of 
negative data, and 3 sets of training data were constructed 
whose positive datasets were the same. Then training and 5-
fold cross-validation were performed 3 times, then all these 
measurements were calculated from the average of 3 training 
sets. Furthermore, Receiver Operating Characteristic (ROC) 
curves were calculated and plotted based on specificities and 
sensitivities. The Areas under ROC curves (AUCs) were also 
calculated based on the trapezoidal approximation.  
 

 
Fig. (1). Flowchart of our algorithm approach. (A higher resolution / 
colour version of this figure is available in the electronic copy of 
the article). 

3. RESULTS 

3.1. Investigating the Performances of PSSM-Grey Fea-
ture 

 As mentioned above in the introduction, the PSSM-Grey 
feature is mainly based on the evolutionary conservation of 
proteins. To determine whether ubiquitination proteins and 

non-ubiquitination proteins have distinct evolutionary con-
servation patterns, the error bar of their four components !!!, 
!!
!!, !!

!!, and !!
!! (Equation 3') was compared between ubiqui-

tination proteins and non-ubiquitination proteins (Fig. S1). 
The result indicates that the ubiquitination proteins and non-
ubiquitination proteins have some different patterns in the 
four parameters, but not very significant. !!""#!!"#!

(!")  and 

!!""#!!"#$
(!")  were applied in three general machine learning 

algorithms (Table 1). The performance of SVM and RF was 
better than KNN, but there is a little difference between 
SVM and RF. The performance of !!""#!!"#$

(!")  was overall 

similar to that of !!""#!!"#$
(!") . 

 The GO enrichment network of the training dataset A, B, 
C indicates the positive datasets of H. sapiens, followed by M. 
musculus and A. thaliana, D, E, F indicate the negative da-
tasets with the same order of species. The network was gener-
ated using Cytoscape [44], packaged in Metascape, with p-
value < 0.01, minimum count 3, and enrichment factor > 1.5. 
A Kappa score of 4 was used as the similarity metric when 
performing hierarchical clustering on the enriched terms and 
then sub-trees with similarity > 0.3 were considered a cluster. 
Each node represents an enriched cluster and colored by its 
cluster ID as shown in the legend. The edge indicates the 
number of shared proteins between two-term nodes. 

3.2. GO Enrichment Analysis 

 To confirm the classification results, the gene set GO 
enrichment analysis was performed using Metascape [50]. 
Here, the analysis of 1906 positive data on three species: 
Homo sapiens (393 GO terms), Mus musculus (390 GO 
terms) and Arabidopsis thaliana (277 GO terms) has been 
perfomed. For 10,000 negative dataset, the numbers of GO 
annotations was 1059, 1034 and 639, respectively. It shows 
that in all three species, most ubiquitination proteins belong 
to a small number of biological annotation terms with small 
p-values, which indicates that annotations could be useful 
features for our machine learning approach. Figs. (2) and (3) 
show that for H. sapiens and M. musculus, the positive da-
tasets are more centered in the same functional GO term 
groups, with many linked edges this may be due to the com-
monness of mammals. The negative datasets for these two 
species are clustered in independent groups with fewer edg-
es. Such a pattern is less obvious in A. thaliana. 

Table 1. Performance comparison of PSSM-Grey by a 5-fold cross-validation. 

% !""# − !"#$  (!") !""# − !"#$  (!") 

 ACC MCC SN SP ACC MCC SN SP 

KNN 79.99 60.52 86.63 73.35 80.43 61.37 86.79 74.08 

SVM 88.68 77.60 84.75 92.61 87.62 75.28 86.00 89.24 

RF 86.21 72.44 87.24 85.19 86.19 72.41 87.24 85.15 

Average 84.96 70.19 86.20 83.72 84.75 69.68 86.68 82.82 

Note: The abbreviations in the table are: Accuracy (ACC), Matthews Correlation Coefficient (MCC), Sensitivity (SN) and Specificity (SP). 
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Fig. (2). GO enrichment analysis of the training dataset. A, B, C indicate the positive datasets of H. Sapiens, followed by M. Musculus and A. 
Thaliana, D, E, F indicate the negative datasets with same order of species. (A higher resolution / colour version of this figure is available in the 
electronic copy of the article). 

3.3. Subcellular Localization Enrichment Analysis 

 To study the relationships between ubiquitination pro-
teins and subcellular localization, the enrichment analysis of 
subcellular localization for this dataset has been performed 
(Fig. 4). As shown in Fig. (4), 49.8% of the positive data 
were labeled with the nucleus location, and 44.3% were lo-
calized in the cytoplasm, which is significantly different 
from the negative data (8.1% and 26.5%, respectively). Also, 
it is noted that 94.4% positive proteins have more than two 
localization annotations and 61.1% for negative proteins, 
especially, for positive data which is localized in the nucleus, 
around half of them (460 of 950) share other localizations. 
Some earlier studies have shown that the ubiquitin-related 
enzymes are highly localization- specific [24], and hence the 
subcellular localization could be an informative feature to 
predict ubiquitination proteins.  

3.4. Investigating the Performances of KNN Score of Fea-
tures 

 It was found that 5,184 GO terms were involved in the 
training dataset, of which 3,012 appeared in the set of ubiq-
uitination proteins, 3,565 appeared in non-ubiquitination 
proteins, and only 1,393 GO terms were shared by both posi-
tive and negative datasets. Hence, the functional properties 
of the two groups are significantly different, as consistently 
shown in Figs. (2 and 3). Following this idea, the KNN 
scores of ubiquitination proteins were compared with those 
of non-ubiquitination proteins on all the FDA features (Fig. 
S2). Overall, ubiquitination proteins gained obvious larger 

KNN scores which are greater than 0.5 (i.e., with significant 
information content as prediction feature; the larger, the 
more significant) on GO and subcellular localization, and a 
slightly larger score greater than 0.5 in the Smart, SUPFAM, 
and InterPro.  
 Specifically, for ubiquitination proteins, the average 
KNN scores of GO with different sizes of nearest neighbors 
were within 0.5 - 0.8, and for non-ubiquitination proteins, 
the average KNN scores were within 0.2 - 0.4. For subcellu-
lar localization, the average KNN scores of ubiquitination 
proteins were in the range of 0.5 - 0.7, while those of non-
ubiquitination proteins fluctuated around 0.4. For Smart, 
SUPFAM, and InterPro, there was no clear gap between the 
ubiquitination proteins and non-ubiquitination proteins, es-
pecially with the growth of KNN cutoffs. Subsequently, the 
eight types of features were tested on the three datasets with 
KNN, RF and SVM algorithms on the training dataset, and 
the mean performance of these three algorithms is listed in 
Table 2. The best results of accuracy for RF, SVM, and 
KNN are 0.88 (using InterPro), 0.85 (using Pfam) and 0.85 
(using Pfam), respectively. The Random Forest algorithm 
has the best performance on all the features of accuracy, 
where the accuracy is between 0.70 - 0.88. Hence, Random 
Forest has been selected as our classifier.  

3.5. Performance of the Proposed Model 

 Since the combined features generated a high-
dimensional vector output, the Relief method [25] can be 
used to rank the values of the underlying features. To 
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Fig. (3). GO enrichment analysis network visualization of the training dataset. (A higher resolution / colour version of this figure is available in 
the electronic copy of the article). 

evaluate the performance of our method for different fea-
tures, 5-fold cross-validation has been performed (Tables 3 
and 4 for training and testing, respectively). In general, the 
evaluation result was the best when all features were includ-
ed reaching the accuracy of 87.71% and MCC of 75.43%. 
The performance of the proposed models was further illus-
trated by the ROC analysis (Fig. 5), especially using AUC 
(Area Under the Curve). The AUC value is a number be-
tween 0 and 1, and the greater the AUC value, the better is 
the predictor. The AUC value of the proposed model is 
0.8507 (Go), 0.8509 (PFAM), 0.8502 (SMART), 0.8495 
(PROSITE), 0.8513 (SUPFAM), 0.8501 (INTERPRO), 

0.8497 (PRINTS), 0.8476 (Subcellular localization), 0.9396 
(GreyPssm) and 0.9598 (All). 

3.6. Testing Data Performance and Comparison with 
Ubiquitination Site Prediction 

 A balanced independent test dataset was used to evaluate 
our model in comparison with ubiquitination site prediction 
tools. The results were based on five-fold cross-validation, 
with the model including all features together for our tool. 
The results were compared with a deep learning ubiquitina-
tion site prediction tool, MusiteDeep-Capsule [16]; a ma-
chine learning approach based tool, UbiProber [17]; an SVM
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Fig. (4). Distribution of subcellular localization of the training data. (A higher resolution / colour version of this figure is available in the electron-
ic copy of the article). 

 
Table 2. A comparison of eight features with different algorithms. 

% ACC MCC SN SP 

Algorithm RF  SVM  KNN RF  SVM  KNN RF  SVM  KNN RF  SVM  KNN 

GO 82     81     80 64     62     60 83     79     79 81     83     81 

Pfam 87     85     85 75     70     70 83     80     83 92     90     87 

Smart 73     72     70 50     50     42 50     49     60 95     95     81 

PROSITE 79     78     76 60     59     55 64     61     67 94     94     86 

SUPFAM  75     73     74 52     48     50 60     56     60 90     90     88 

InterPro  88     83     83 77     67     67 86     79     81 91     88     86 

PRINTS  70     70     69 49     49     45 41     41     43 99     99     95 

SL* 80     78     77 59     57     54 76     78     76 83     79     77 

Note: The abbreviations in the table are: Accuracy (ACC), Matthews Correlation Coefficient (MCC), Sensitivity (SN) and Specificity (SP). Three algorithms, Random Forest (RF), 
Support Vector Machine (SVM) and KNN (K-Nearest Neighbor) were applied.  * indicates Subcellular Localization (SL). 

based tool, UbiSite [18]; and a Bayesian Discriminant Meth-
od based tool, BDM-PUB [19]. Since existing prediction 
tools are designed for site prediction, their site prediction 
results were transformed to ubiquitinated protein results by 
using the following strategy: if any site from a given protein 
was predicted as ‘positive’ or ‘ubiquitinated’, the whole pro-
tein was labeled as ‘positive’ as well; if multiple sites were 
predicted as positive, the max predicted score was picked 
from them for generating the Receiver Operator Curve 
(ROC). Their pre-trained models were used with default pa-
rameters to conduct the prediction comparison with our 
method. For MusiteDeep-Capsule (another in-house tool), 
the same test dataset was used to train the models and the 
same independent test dataset was used to perform the com-
parison. For other tools, they do not provide customized 
model training, therefore their pre-trained model was used to 
predict for the same testing dataset. The results are shown in 

Fig. (6), in which our tool showed a better performance than 
other tools; in particular, our tool has a significantly lower 
false-positive discovery rate and a higher true positive dis-
covery rate than other tools. 

4. DISCUSSION 

 In order to detect ubiquitination proteins, a method was 
developed based on the Random Forest algorithm using the 
sequence conservation information, as well as the infor-
mation of ‘GO’, ‘Pfam’, ‘Smart’, ‘PROSITE’, ‘SUPFAM’, 
‘InterPro’, ‘PRINTS’ and subcellular localization of the que-
ry protein. The features only incorporate the sequence con-
servation using a grey system model and KNN scores based 
on protein annotation databases. This method achieved an 
overall accuracy of 90.03%, MCC of 80.13%, Sn of 87.94%, 
Sp of 92.13% and Precision of 91.78%, which indicates that 
this method reflects the sequence patterns well, containing
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Table 3. A comparison of eight features performance in the training data. 

% ACC MCC SN SP Precision Recall 

1 GO 82.18 64.39 83.29 81.08 81.52 83.29 

2 Pfam 87.35 75.01 82.88 91.83 91.03 82.88 

3 Smart 72.62 50.45 50.49 94.75 90.59 50.49 

4 PROSITE 78.69 60.24 63.50 93.89 91.23 63.50 

5 SUPFAM 75.01 52.30 60.43 89.59 85.34 60.43 

6 InterPro 88.42 76.91 86.25 90.59 90.16 86.25 

7 PRINTS 70.07 49.06 41.31 98.83 97.24 41.31 

8 SL 79.64 59.49 76.00 83.28 82.02 76.00 

9 PSSM 86.19 72.40 87.34 85.04 85.37 87.34 

Feature(1-8) 89.74 79.53 87.85 91.63 91.30 87.85 

Feature(1-9) 90.13 80.34 87.99 92.28 91.93 87.99 

Note: The abbreviations in the table are: Accuracy (ACC), Matthews Correlation Coefficient (MCC), 
Sensitivity (SN) and Specificity (SP). “Feature(1-8)” indicates that the first 8 features were applied, and “Feature(1-9)” means that all features were applied. 
 
Table 4. A comparison of eight features performance in the test data. 

- ACC MCC SN SP Precision Recall 

1 GO 77.45 57.40 91.63 63.27 71.51 91.63 

2 Pfam 82.39 65.06 78.10 86.67 85.49 78.10 

3 Smart 72.61 47.70 56.80 88.43 83.13 56.80 

4 PROSITE 78.14 56.86 71.05 85.23 82.79 71.05 

5 SUPFAM 72.71 45.78 66.80 78.63 75.81 66.80 

6 InterPro 80.16 60.40 81.76 78.56 79.31 81.76 

7 PRINTS 70.78 47.54 46.54 95.03 90.37 46.54 

8 SL 74.35 49.35 80.46 68.24 72.06 80.46 

9 PSSM 85.72 71.45 86.21 85.23 85.40 86.21 

Feature(1-8) 86.27 72.57 87.25 85.29 85.58 87.25 

Feature(1-9) 87.71 75.43 87.91 87.52 87.57 87.91 

Note: The abbreviations in the table are: Accuracy (ACC), Matthews Correlation Coefficient (MCC), 
Sensitivity (SN) and Specificity (SP). “Feature(1-8)” indicates that the first 8 features were applied, and “Features(1-9)” means that all features were applied. 

the ubiquitination sites. Since our method could do the pre-
diction without relying on sequence profiles, it can scan a 
batch of unknown proteins very efficiently. In addition, our 
method showed better performance than the existing tools 

for the protein level prediction of ubiquitination. The user 
may apply our predictor to select potential candidates before 
doing the site prediction or the lab work. 
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Fig. (5). ROC curves to show the performance of proposed models. The blue curve indicates the model with single feature and the red curve 
indicates the model includes all 9 features. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 
Fig. (6). ROC curves to show the performance comparison with other prediction tools. AUC indicates the area under the curve. (A higher reso-
lution / colour version of this figure is available in the electronic copy of the article). 
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CONCLUSION 

 Our study may guide experimental design and provide 
useful insights for studying the mechanisms and modulation 
of ubiquitination pathways. The comparison results indicate 
that we have an advantage in ubiquitination prediction at the 
protein level. It may improve the sensitivity when conduct-
ing the ubiquitination site prediction if our method is applied 
first to remove the false positive samples. In addition, it may 
help accelerate the expensive and time-consuming process of 
identifying ubiquitination proteins with known annotations. 
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