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Abstract: A wavelength band-pass filter with asymmetric dual circular ring resonators in a
metal-insulator-metal (MIM) structure is proposed and numerically simulated. For the interaction of
the local discrete state and the continuous spectrum caused by the side-coupled resonators and the
baffle, respectively, the transmission spectrum exhibits a sharp and asymmetric profile. By adjusting
the radius and material imbedded in one ring cavity, the off-to-on plasmon-induced absorption
(PIA) optical response can be tunable achieved. In addition, the structure can be easily extended to
other similar compact structures to realize the filtering task. Our structures have important potential
applications for filters and sensors at visible and near-infrared regions.
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1. Introduction

Surface plasmon polaritons (SPPs), a kind of transverse electromagnetic wave tightly confined at
the interface between metal and dielectric material, is able to propagate up to a few micrometers [1,2].
Their outstanding ability for overcoming the classical optical diffraction limit has made SPPs attractive
as energy and information carriers in highly integrated optical circuits and devices [3,4].

Among various SPP structures, insulator-metal-insulator (IMI) structures and metal-insulator-metal
(MIM) structures are two important multilayer plasmonic structures. Due to not only supporting modes
with deep sub-wavelength scales and high group velocity over a very wide range of frequencies but also
offering very high optical confinement and acceptable propagation length [5], metal-insulator-metal (MIM)
structures, such as optical filters [6–9], optical switches [10], demultiplexers [11,12], and sensors [13–16],
are widely used. Plasmonic filters based on MIM waveguide structures, such as asymmetric nanodisk
filter and sensor [17–19], side-coupled cavity sensor [20], notch resonator filter and sensor [21], and
circular ring filter and sensor [22,23], are one of the most important optical devices, have attracted
tremendous attention, and have been investigated widely in recent years. All of the above-mentioned
devices are promising candidates for highly integrated optical circuits. Electromagnetically induced
transparency (EIT), a quantum mechanical phenomenon, reduces light absorption over a narrow
spectral region in a coherently driven atomic system [24]. However, hard operation conditions
limit its development, and then alternative plasmon-induced transparency (PIT) effects that are
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analogous to the EIT effects, are demonstrated in various MIM waveguide structures [25–27]. Recently,
plasmon-induced absorption (PIA), an opposite effect of the PIT effect, have been widely studied and
demonstrated in the MIM structures [28–30]. Especially, PIA response is investigated in a MIM-based
end-coupled composite-slot-cavity resonator [31]. These MIM structures will be beneficial for optical
switching in highly integrated photonic devices.

In this paper, a wavelength filter consisting of dual side-coupled circular ring resonators
and two waveguides with a baffle is proposed. Numerical simulation by finite element method
(FEM) was conducted to analyze our designs. The results show PIA transmission in spectra.
By changing the radius or the refractive index of one ring, we achieve an on-to-off PIA optical
response. Moreover, similar structures were designed by moving the location of one ring of the above
system. The corresponding transmission spectra and the magnetic intensity distributions |Hz|2 at
special wavelengths were investigated.

2. Model and Theoretical Analysis

Multiple ring resonators are widely used in optical filtering. Here we used two ring resonators
to investigate the design consideration about the optical filter. The proposed structure, shown
schematically in Figure 1, consists of two ring resonators and two waveguides with a baffle (the
blue area). The system is a two-dimension model. The FEM with COMSOL Multiphysics is employed
to realize our simulations. The calculated area is divided by Yee’s mesh with a size of 2 nm. The FEM
with scattering boundary condition is employed to investigate the transmission characteristics of the
structure. Two MIM waveguides are marked as I and II. Port 1 and Port 2 are input and output ports,
respectively. We assumed the media inside the rings and waveguides to be air (the white area in
Figure 1). The widths of the waveguides and the rings, both w, are fixed at 50 nm. Since the widths w
is much smaller than the wavelength of the incident light, only the fundamental plasmonic mode TM0

could exist in the structure. The TM0-polarized plane wave launched to the left waveguide is used for
exciting SPP waves, which is indicated by the arrow in Figure 1. The outer (inner) radii of the two
rings are r1 (r2) and r1’ (r2’), respectively. Meanwhile, we defined r = (r1 + r2)/2 and r’ = (r1’ + r2’)/2 as
the radii of two ring resonators; t is the coupling distance between the waveguide and the ring; g is
the thickness of the baffle. The metal is set as silver, whose frequency-dependent dielectric constant is
given by the well-known Drude model [5]:

εm(ω) = ε∞ −
ω2

p

ω(ω + iγ)
(1)

where ε∞ = 3.7 is the dielectric constant at the infinite frequency, γ = 2.73 × 1013 Hz is the electron
collision frequency, ωp = 1.38 × 1016 Hz is the bulk plasma frequency, and ω stands for the angular
frequency of the incident electromagnetic radiation. The propagation constant β of SPPs is determined
by the following equation [5]:

tanh

w
√
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0εi

2

 =
−εi

√
β2 − k2

0εm(ω)

εm(ω)
√

β2 − k2
0εi

(2)

where εm and εi are the dielectric constants of the silver and air, respectively. k0 is the wave vector of
light in vacuum. The effective refractive index follows neff = β/k0. The real part of neff as a function of w
and λ is shown in Figure 2. For a fixed wavelength, Re (neff) gradually grows as wavelength λ increases.
Theoretically, the resonant wavelength of the ring resonator can be derived from the equation:

J′n′(kr1)

J′n′(kr2)
=

N′n′(kr1)

N′n′(kr2)
(3)
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where k = ω(ε0εγµ0)1/2, and ε0 and µ0 are the dielectric constant and permeability in vacuum,
respectively. εγ = (neff)2/µ0 is the frequency-dependent effective relative permittivity. Jn′ is the
Bessel function of the first kind with order n’, and Nn′ is the Bessel function of the second kind with
order n’. J′n′ and N′n′ are the derivatives of the Bessel functions to the argument kr. The resonant
wavelength also satisfies the simple relation Re (neff) L = mλ, where m is the resonant mode number,
a positive integer.
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3. Results and Discussion

Firstly, we focused on this two shunt-wound rings system, shown in Figure 1. The baffle is
assumed to be silver. In this case, the two rings cannot interact with each other. Therefore, one portion
of SPPs coupled to the upper ring, the other to the lower ring, both of them will interference with the
third portion, which pass through the baffle. At first, the influence of the radius r’ of the lower ring
was discussed. We set r’ as from 225 nm to 209 nm at the step of 4 nm. Other geometric parameters
were chosen as follows: r = 225 nm, t = 10 nm, and g = 20 nm. The simulation results are plotted in
Figure 3a. Figure 3a clearly shows that, when r = r’ = 225 nm, sharp and asymmetrical spectral profiles,
which are regarded as Fano resonances [32,33], can be obtained. Here, Fano resonances result from the
interference of the broad spectrum and the discrete resonance, which are caused by the baffle and the
ring cavities, respectively. As r’ decreases, it is obviously observed that the transmittance peak of each
mode splits into two and the dips at different modes are becoming more apparent. Moreover, the left
peaks of each mode exhibit a blue shift (denoted by the blue dotted line) with r’ decreasing, and the
right keep almost unchanged because r is fixed to 225 nm. It goes without saying that the left peaks
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are determined by the lower ring. Figure 4 shows the corresponding field distributions of |Hz|2 when
r = 225 nm and r’ = 213 nm. It is observed that the energy of the resonant peaks is confined in only
one cavity, the energy of the dip in two rings. These behaviors of the two resonances accord well with
the analysis.
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when r’ = 213 nm; the contour profiles of magnetic intensity distributions |Hz|2 of the device at
(a) λ = 940 nm; (b) λ = 967 nm; (c) λ = 991 nm.

In a similar way, we provided another way to control the transmission windows by changing the
refractive index n of the lower ring. The refractive index n of the lower ring was set from 1 to 1.08 with
a step of 0.02, and other parameters were kept the same as the above. We plotted the simulated results
in Figure 3b. As n grows, the dips are becoming more obvious and the right peaks of each mode show
a little red-shift (denoted by the read dotted line) in the spectra. Similarly, the shifting effect is more
apparent and the width of dips is wider at low resonant modes. From the aforementioned analysis,
two methods were found to achieve on-to-off PIA response in a two shunt-wound rings filter system.

In addition, the influences of baffle dimension and position on the transmission spectrum were
investigated. The results showed that, as g grows, the transmission peaks gradually lower; when the
baffle shift to the right or the left is less than 150 nm, the transmission peaks do not show a shift in the
x-axis; when the shifting distance is more than 150 nm, little energy is transmitted.
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Successively, in addition to the above case, the structure proposed in Figure 1 can be also extended
to another situation, the MIM bus waveguide side-coupled two series-wound rings, shown in Figure 5.
The separation between two rings is set as 10 nm and the radii of the two rings are all set as 225 nm;
other parameters are kept the same as above. Due to the side-coupled arrangements, the bottom ring
cavity couples strongly to the bus waveguide, the so-called bright mode; the upper ring cavity cannot
directly couple to the bus waveguide, known as the dark mode. On account of the greatly enhanced
near-field interferences between two rings, the dark mode is excited through tunneling coupling with
the bright mode. As a result, PIA transmission appears at the pass band of the structure without the
upper ring cavity, with two new resonant peaks generated as shown in Figure 5. The corresponding
magnetic intensity distributions |Hz|2 at the two peaks and the one dip for the second-order mode
are displayed in Figure 6a–c. Obviously, unlike shunt-wound rings system, for transmission peaks,
the bottom ring is directly excited by the incident SPPs, and the upper ring is also enhanced thanks to
the coupling with the bottom ring resonator. The in-phase coupling resonance occurs at the two rings
with the wavelength of λ = 961 nm, shown in the inset of Figure 6a, whereas the out-phase forms at the
wavelength of λ = 1027 nm shown in the inset of Figure 6c. The incident SPP power can be coupled into
the right waveguide by the bottom ring, leading to the newly appeared transmission peaks. For the
dip, however, the dark resonator is efficiently activated, whereas the bright resonator is extraordinarily
suppressed due to the strong destructive interference. Almost all SPP power is absorbed in the upper
ring cavity, and little SPP power is coupled into the right MIM waveguide output shown in Figure 6b,
which is direct evidence of the remarkable absorption window in the intrinsic peak point. Hence, the
introduced upper ring cavity can store all SPP power and achieve PIA response.
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Figure 6. Transmission spectrum of the MIM waveguide with two series-wound ring resonators
when r = r’ = 225 nm; the contour profiles of magnetic intensity distributions |Hz|2 of the device at
(a) λ = 961 nm; (b) λ = 986 nm; (c) λ = 1027 nm. The insets denote the corresponding Hz distribution of
SPPs in the PIT systems.
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On the other hand, the transmission properties can be analyzed by the temporal coupled
mode theory (CMT) [34,35]. As shown in Figure 5, the amplitudes of the incident, reflected, and
total-transmitted SPP waves are denoted by Si, Sr, and St, respectively, and are normalized to the
power in the modes. Qr is cavity quality factors related to intrinsic loss in the dual rings; Qw is the
quality factor related to the coupling loss between waveguides and the bottom ring; Qc is the quality
factor related to the coupling loss between two rings. The time evolution normalized amplitude a1 of
the bottom ring and a2 of the upper ring can be described from the CMT:

da1

dt
=

(
jω0 −

ω0

2Qr
− ω0

2Qw

)
a1 +

√
ω0

Qw
Si − j

ω0

2Qc
a2 (4)

da2

dt
=

(
jω0 −

ω0

2Qr

)
a2 − j

ω0

2Qc
a1 (5)

where ω0 is the same resonant frequency of the dual rings. According to energy conservation, the
amplitude of the input and the output lights in the waveguide should satisfy the following relationships:

Sr = −Si + j
√

ω0

Qw
a1 (6)

St = j
√

ω0

Qw
a1. (7)

Therefore, the transmission coefficient T can be obtained as follows:
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∣∣∣∣2 =

∣∣∣∣∣∣∣
2
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)
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Qr(
j2
(

ω−ω0
ω0

)
+ 1

Qr
+ 1

2Qw

)2
+
(

1
Qc

)2
−
(

1
2Qw

)2

∣∣∣∣∣∣∣
2

. (8)

Finally, the two concentric rings system was investigated. As shown in Figure 7, the radius r’,
width w’, and refractive index n’ of the inner ring are set at 158 nm, 20 nm, and 1.02, respectively;
other parameters are kept the same as the above. The transmission spectrum was calculated and is
shown in Figure 7. According to the above theoretical analysis results, for coupling directly to the bus
waveguide, the outer ring is called the bright mode, and on the contrary, the inner ring is called the
dark mode. Similarly, on account of the greatly enhanced near-field interferences between two rings,
it is obvious that two resonant peaks appear in each mode in the transmission spectrum. In order
to find out the underlying physics of the resonant peaks in the transmission spectrum, the magnetic
intensity distributions |Hz|2 at the two peaks and one dip for the second-order mode are displayed
in Figure 7a–c. The same as series-wound rings system, for transmission peaks, the outer ring is
directly excited by the incident SPPs and the inner ring couples with the outer ring. The in-phase
and out-phase coupling resonance occurs between the two rings at λ = 898 nm and λ = 1035 nm,
respectively, shown in the insets of Figure 7a,c. However, for the dip, due to the strong destructive
interference, the bright resonator is suppressed and the dark resonator is efficiently activated. Almost
all SPP energy is absorbed in the inner ring cavity, and little SPP energy is coupled into the right MIM
waveguide output shown in Figure 7b. These results provide a theoretical basis for designing highly
integrated optical devices.
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wavelengths were investigated. Compared with the shunt-wound rings system, it is difficult to 
achieve the on-to-off PIA optical response by adjusting the structural parameters of these two 
systems although there are PIA windows in the transmission spectra. The analyses make these kinds 
of experiments easier and pave the way for actively tunable sensoring applications. 

Acknowledgments: This work is supported by the National Basic Research Program of China (Grant No. 
2015CB759600), the National Natural Science Foundation of China (Grant Nos. 11504139, 61474113 and 
61574140), the Natural Science Foundation of Jiangsu Province (Grant No. BK20140167), the Natural Science 
Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 16KJB140016), the Key Laboratory 
Open Fund of Institute of Semiconductors of CAS (Grant No. KLSMS-1604), and the Nature Science Foundation 
of Xuzhou University of Technology of China (Grand No. XKY2014206). 

Author Contributions: D.L. and J.W. conceived and designed the simulation; D.L. and Y.P. performed the 
simulation and analyzed the data; D.L., J.W. and F.Z. wrote the manuscript under the supervision of J.L., D.L., 
J.W., F.Z. and J.L. supervised the project. All authors contributed to the scientific discussion of the results and 
reviewed the manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. 
2. Genet, C.; Ebbesen, T.W. Light in tiny holes. Nature 2007, 445, 39–46. 
3. Neutens, P.; Dorpe, P.V.; Vlaminck, I.D.; Lagae, L.; Borghs, G. Electrical detection of confined gap 

plasmons in metal-insulator-metal waveguides. Nat. Photonics 2009, 3, 283–286. 
4. Gramotnev, D.K.; Bozhevolnyi, S.I. Plasmonics beyond the diffraction limit. Nat. Photonics 2010, 4, 83–91. 
5. Liu, D.D.; Sun, Y.; Fan, Q.B.; Mei, M.F.; Wang, J.C.; Pan, Y.W.; Lu, J. Tunable plasmonically induced 

transparency with asymmetric multi-rectangle resonators. Plasmonics 2016, 11, 1621–1628. 

Figure 7. Transmission spectrum of the MIM waveguide with two concentric rings resonators when
r’ = 158 nm, w’ = 20 nm, and n’ = 1.02; the contour profiles of magnetic intensity distributions |Hz|2 of
the device at (a) λ = 898 nm; (b) λ = 921 nm; (c) λ = 1035 nm. The insets denote the corresponding Hz

distribution of SPPs in the concentric rings system.

4. Conclusions

In summary, we studied the transmission characteristics of a wavelength band-pass filter
consisting of dual side-coupled circular ring resonators and two waveguides with a baffle. For the
two shunt-wound rings system, we provided two approaches to control the transmission spectra.
An on-to-off PIA optical response could be achieved by adjusting the radius or the refractive index of
the lower ring. We found the shifting effect is more apparent and the width of the absorption dips
is wider at low resonant modes. For the series-wound rings system and the concentric rings system,
the corresponding transmission spectra and the magnetic intensity distributions |Hz|2 at special
wavelengths were investigated. Compared with the shunt-wound rings system, it is difficult to achieve
the on-to-off PIA optical response by adjusting the structural parameters of these two systems although
there are PIA windows in the transmission spectra. The analyses make these kinds of experiments
easier and pave the way for actively tunable sensoring applications.
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