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More and more studies have shown that understanding microbe-disease associations
cannot only reveal the pathogenesis of diseases, but also promote the diagnosis and
prognosis of diseases. Because traditional medical experiments are time-consuming
and expensive, many computational methods have been proposed in recent years to
identify potential microbe-disease associations. In this study, we propose a method
based on heterogeneous network and metapath aggregated graph neural network
(MAGNN) to predict microbe-disease associations, called MATHNMDA. First, we
introduce microbe-drug interactions, drug-disease associations, and microbe-disease
associations to construct a microbe-drug-disease heterogeneous network. Then we
take the heterogeneous network as input to MAGNN. Second, for each layer of MAGNN,
we carry out intra-metapath aggregation with a multi-head attention mechanism to
learn the structural and semantic information embedded in the target node context,
the metapath-based neighbor nodes, and the context between them, by encoding the
metapath instances under the metapath definition mode. We then use inter-metapath
aggregation with an attention mechanism to combine the semantic information of all
different metapaths. Third, we can get the final embedding of microbe nodes and
disease nodes based on the output of the last layer in the MAGNN. Finally, we
predict potential microbe-disease associations by reconstructing the microbe-disease
association matrix. In addition, we evaluated the performance of MATHNMDA by
comparing it with that of its variants, some state-of-the-art methods, and different
datasets. The results suggest that MATHNMDA is an effective prediction method. The
case studies on asthma, inflammatory bowel disease (IBD), and coronavirus disease
2019 (COVID-19) further validate the effectiveness of MATHNMDA.

Keywords: microbe-disease associations, heterogeneous network, metapath aggregated graph neural network,
multi-head attention mechanism, COVID-19

INTRODUCTION

The microorganisms related to the human body mainly include eukaryotes, archaea, bacteria, fungi,
and viruses [Human Microbiome Project (HMP), 2012]. These microorganisms form different
microbial communities and parasitize in different parts of the human body, such as the skin, mouth,
genitalia, intestinal tract, and other parts. Studies have shown that the number of microbes in the
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adult intestine is equivalent to 10 times that of human
cells (Sender et al., 2016), which indicates that the microbial
community in the human body is relatively large. Microbes
are generally beneficial to the human body. For example, by
fermenting food ingredients that cannot be digested by the
host, gut microbes can promote nutrient and energy absorption
(Gill et al., 2006; Marco et al., 2017). The Bifidobacteria in
the human intestine can produce lactic acid and acetic acid
after fermentation, which can promote the absorption of iron
and vitamin D. Therefore, a set of balanced microbes can keep
the human body away from physiological disorders, but the
imbalance or decline of the microbial community can harm
the human host and cause diseases. For example, a study has
found that compared to normal children, children with asthma
would have a smaller number of Faecalibacterium, Lachnospira,
Veillonella, and Rothia (Arrieta et al., 2015). Another study found
that the relative abundance of Enterococcus, Escherichia/Shigella,
Klebsiella, Streptococcus, and Peptostreptococcus in the intestinal
flora of patients with colorectal cancer was increased (Wang et al.,
2012). These studies have shown that identifying the relationship
between microbes and diseases can help us understand the
pathogenesis of the disease, so as to carry out more targeted
treatment. Therefore, determining the relationship between
microbes and diseases has become a key research topic in the
current bioinformatics field.

Verifying the relationship between microbes and diseases
through biological experiments is a time-consuming and
expensive task. Therefore, many computational models have
been proposed to predict the association between microbes and
diseases. Wang et al. (2021) wrote a review on circular RNAs
and complex diseases, which classified the prediction models
of circRNA-disease associations. Inspired by this study, we can
divide these computational models into four types according
to the differences in the microbe-disease association prediction
strategies based on heterogeneous networks: path-based
methods, random walk methods, bipartite local models, and
matrix decomposition methods (Wen et al., 2021). Path-based
methods are widely used in association prediction (Zhang et al.,
2021; Liu et al., 2022a). They make predictions by calculating
path-based scores between microbe nodes and disease nodes.
For example, Chen X. et al. (2016) proposed the first model
KATZHMDA to predict microbe-disease associations, which
calculated the predicted probability score according to the
walking step length and walking times between the two nodes
in the microbe-disease network. Huang et al. (2017) proposed
a computational model PBHMDA based on the depth-first
search to predict potential microbes associated with diseases.
Fan et al. (2018) developed a new model MDPH_HMDA to
predict microbe-disease associations by integrating multi-
source data and path-based HeteSim score. The random walk
has aroused extensive interest in the field of microbe-disease
prediction. For instance, Yan et al. (2019) proposed a prediction
model BRWMDA based on similarity and bi-random walk to
predict potential microbe and disease associations. Luo and
Long (2018) proposed a computational model NTSHMDA
based on random walk and network topology similarity
to predict the associations between microbes and diseases.

Wu et al. (2018) developed a method named PRWHMDA,
which attempted to infer potential microbe-disease pairs by
random walk on the heterogeneous network with Particle
Swarm Optimization (PSO). Bipartite local models are also
common methods, which work independently on the basis
of both sides of a microbe-disease pair and can be combined
to yield a definitive prediction result. For example, Zou et al.
(2018) proposed a method called NCPHMDA that utilized
the network consistency projection to predict microbe-disease
associations. Wang et al. (2017) constructed a semi-supervised
computational model LRLSHMDA based on a Laplacian
regularization least squares classifier to predict the associations
between microbes and diseases. In addition, some prediction
models for microbe-disease associations were developed based
on matrix factorization techniques. For instance, He et al.
(2018) presented a method called GRNMFHMDA, which
incorporated weighted K-nearest known neighbors to predict
microbe-disease associations. Shen et al. (2017) developed a
computational model of CMFHMDA, which used collaborative
matrix factorization to reconstruct the association matrices
between diseases and microbes. Wang Y. et al. (2022) proposed
a method HNGFL based on heterogeneous network and global
graph feature learning to predict microbe-disease association.
In addition to these computational models, several review
articles on microbe-disease associations have been published. For
example, Pan et al. (2022) developed a comprehensive approach
to predict associations between genomics, proteinomics,
transcriptomics, microbiome, metabolomics, pathomics,
radiomics, drug, symptoms, environment factors, and disease
networks. Wang L. et al. (2022) provided a comprehensive review
on predicting pairwise relationships between human microbes,
drugs, and diseases, from biological data to computational
models. Wen et al. (2021) provided a survey on predicting
microbe-disease associations based on biological data and
computational methods.

Although the above-mentioned methods have achieved
relatively stable prediction performance in the association
prediction task of microbes and diseases, there are still some
limitations and deficiencies. First, the vast majority of methods
make predictions based on small-scale datasets, which makes
them unable to obtain accurate predictions when it comes to
new diseases (or new microbes) due to a lack of training data.
Second, microbe imbalance (or the occurrence of disease) is
not influenced by a single factor. Some studies have shown
that microbes participate in drug absorption and metabolism,
thereby regulating drug efficacy and drug toxicity for disease
(Zimmermann et al., 2021). However, the above-mentioned
methods are only based on microbes and diseases, which makes
these models unable to obtain accurate prediction results due
to the lack of more semantic information about microbes and
diseases in the prediction process.

Therefore, with the discovery of multivariate biological data,
the heterogeneous graph embedding method is increasingly
applied to relational prediction. It can learn semantic and
structural information between nodes to compensate for the
poor prediction performance due to the small amount of
known associated data. For example, Lei and Wang (2020)
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proposed a method based on Node2vec and a heterogeneous
network scoring mechanism, called LGRSH, to predict the
association between microbes and diseases. Liu et al. (2022b)
proposed a method to identify miRNA-disease associations
via deep forest ensemble learning based on autoencoder.
Yang et al. (2022) proposed a DeepWalk-based method to
predict lncRNA-miRNA associations via a lncRNA-miRNA-
disease-protein-drug graph. Zhu et al. (2018) proposed a
method using Metapath2vec to predict drug-gene interactions.
Lei et al. (2021) developed a method, called CDWBMS, to
predict circRNA-disease associations based on an improved
weighted biased meta-structure. Zhang et al. (2020) adopted
metapath2vec++ and matrix factorization to predict circRNA-
disease associations. All the heterogeneous graph embedding
methods have some limitations when applied to association
prediction, such as ignoring the information of multiple
nodes, discarding all intermediate nodes on the metapath, or
only using a single metapath. This will affect the predictive
performance of the model.

To deal with the above-mentioned issues, we developed
a novel method based on a metapath aggregated graph
neural network (MAGNN) and tripartite heterogeneous
network for microbe-disease association prediction named
MATHNMDA. In particular, we integrate information from
different sources, such as microbe-disease associations, microbe-
drug interactions, and disease-drug interactions, to construct
a tripartite heterogeneous network of microbe-drug-disease.
Further, we feed the heterogeneous network to MAGNN. For
each layer of MAGNN, we first use intra-metapath aggregation

with a multi-head attention mechanism to extract the structural
and semantic information of the metapath instance. After that,
we further apply inter-metapath aggregation with an attention
mechanism to fuse latent vectors of multiple metapaths. Finally,
we take the output of the MAGNN as the final embedding
features of the microbe node and disease node, and make
predictions. In order to verify the predictive performance of
MATHNMDA, we carried out cross-validation experiments, and
the results indicate that MATHNMDA can effectively identify
potential disease-related microbes.

Overall, our main contributions are as follows:

(1) We expand known microbe-disease association data by
integrating multiple databases, and construct a tripartite
heterogeneous network by introducing drug-disease
associations and microbe-drug associations. We further
apply MAGNN to predict microbe-disease associations.

(2) We use intra-metapath aggregation with the multi-head
attention mechanism to learn the topological information
and semantic information embedded in the internal nodes
of metapath, so that the embedding learned by the target
node is more comprehensive.

(3) We use inter-metapath aggregation with an attention
mechanism to aggregate the embeddings of
different metapaths for target nodes (microbe nodes
or disease nodes).

(4) We conduct a case study of coronavirus disease
2019 (COVID-19) to verify the effectiveness of
the MATHNMDA model.

FIGURE 1 | The processing and integration process of microbe-drug-disease association data.
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MATERIALS AND METHODS

Dataset
In this study, we integrate the information obtained from
different sources. First, we collect microbe and disease association
data from Peryton (Skoufos et al., 2020) and MicroPhenoDB
(Yao et al., 2021). Among them, Peryton includes more than
7,900 relationships between 43 diseases and 1,396 microbes.
The data in MicroPhenoDB are collected from some public
datasets, such as Human Microbe-Disease Association Database
(HMDAD; Kong et al., 2017), Disbiome (Yorick et al., 2018),
Virulence Factor Database (VFDB; Chen L. et al., 2016), etc.
MicroPhenoDB has 5,565 relationships between 515 diseases
and 1,717 microbes. After eliminating redundancy for the same
diseases and microbes, we obtain a total of 9,202 associations
between 538 diseases and 2,491 microbes. Furthermore, we
collect data about microbes and their related drugs from
Microbe-Drug Association Database (MDAD; Sun et al., 2018),
drugVirus (Andersen et al., 2020), and aBiofilm (Akanksha
et al., 2017), and remove redundant records to obtain a
total of 132 microbes and 1,933 drugs and 3,345 microbe-
drug associations. Then, we download disease-drug interaction
data from drugBank (Wishart et al., 2017) and Comparative
Toxicogenomics Database (CTD; Davis et al., 2012) databases,
and we obtain 9,604 interactions between 127 diseases and 247
drugs after de-redundancy. Figure 1 illustrates the integration
process of microbe-drug data, drug-disease data, and microbe-
disease data. It is worth noting that in this study, we unified
the disease, microbe, and drug according to the MESH id of

the disease, the taxonomy id of the microbe and the chemical
information of the drug, disease-related drugs, are included in
drugs related to microbes.

Construction of Microbe-Drug-Disease
Tripartite Heterogeneous Network
In this study, we use microbe-disease, microbe-drug, and disease-
drug associations to build a tripartite network. The relationship
between microbes, drugs, and diseases is shown in Figure 2A.
A certain microbial imbalance can lead to certain diseases.
and the pathogenesis of a certain disease will be affected by
certain microbial communities. Some drugs can treat some
diseases, and certain diseases can be treated with certain
drugs. Microbes can regulate the activity and toxicity of drugs
(Zimmermann M. et al., 2019). Drugs in turn can change
the diversity and function of microbial communities. Suppose
M, C, and D, respectively, represent all the sets of microbes,
drugs, and diseases in the network, mi∈M represents a microbe,
i = 1, 2, 3..., nm; cj∈C represents a drug, j = 1, 2, 3..., nc;
and dk∈D represents a disease, k = 1, 2, 3..., nd. Construct
a tripartite heterogeneous network based on the relationship
among microbes, drugs, and diseases. Here, we can simplify
it to an undirected and unweighted network to represent the
existence of associations, as shown in Figure 2B. We further
construct the microbe-disease adjacency matrix B ∈ Rnm×nd ,
where nm represents the number of microbes and nd represents
the number of diseases. If there is a known association between
a microbe node i and a disease node j, the value of B(i,j) is 1,
otherwise, it is 0.

FIGURE 2 | Illustration of microbe-drug-disease relationship and heterogeneous networks. (A) The illustration of microbe-drug-diease relationships. (B) A tripartite
network corresponding to the microbe-drug-disease relationships.
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MATHNMDA
Our proposed MATHNMDA model consists of three main steps,
as shown in Figure 3. The model takes heterogeneous microbe-
drug-disease interaction network and MAGNN to predict
microbe-disease associations. First, we take heterogeneous
network as input of the MAGNN. Second, for each layer of
the MAGNN, we use intra-metapath aggregation to learn the
structural and semantic information embedded in the target
node, metapath-based neighbor nodes, and the context between
them. Third, we apply inter-metapath aggregation to combine the
semantic information of all different metapaths. Finally, we take
the output of the MAGNN as vector representations of microbe
nodes and disease nodes, which can be used to predict potential
microbe-disease associations.

Intra-Metapath Aggregation
In this study, we predict novel microbe-disease associations on
the heterogeneous microbe-drug-disease interaction networks
based on MAGNN. Given a heterogeneous network G = (V, E),
where V and E represent sets of nodes and edges, respectively,
and the mapping functions of nodes and edges are δ: V→A and
ψ: E→R, A represents node types, R denotes edge types, and |A|
+|R| >2. Given a metapath M on the heterogeneous network G,
we can define it as a path of the form A1→A2→. . .→An−1→An,
which can be abbreviated as A1A2. . .An−1An. The relationship
between node types A1 and An is R = R1◦R2◦. . .◦Rn−1, where
◦ represents the composite operation. That is to say, the
relationship R is obtained by compositing the n–1 relationships of
these R1, R2, . . ., Rn−1. Therefore, a metapath can capture specific
semantic information in the graph, and different metapaths
represent different semantic information. For example, for the
metapath microbe-drug-disease (abbreviated as m-c-d), drug c
can act on microbe m, and drug c can be used to treat disease
d, so microbe m may be associated with disease d. The key
idea of intra-metapath aggregation is to learn structural and
semantic information embedded in target nodes, metapath-based
neighbors, and the context between them by encoding metapath
instances under a certain metapath. Next, we introduce the
process of intra-metapath aggregation in detail.

Given a metapath M, we define a sequence of nodes in G
that follow the pattern of M as a metapath instance, defined as
M(i,j), which is represented as a metapath instance connecting
the target node i and its neighbor node j based on the metapath.
Here, j ∈ NM

i , NM
i represents the set of nodes connected to node

i through the metapath instance M(i,j). It is worth noting that if
the metapath instance M(i,j) is symmetric, j ∈ NM

i also includes
node i itself. Then we define the intermediate node set of M(i,j) as
TH(i,j), TH(i, j) = M

(
i, j
)
/
{

j, i
}

, where
{

j, i
}

represents the set
with elements i, j.

As mentioned before, intra-metapath aggregation learns
structural and semantic information of target nodes by encoding
metapath instances. Sun et al. (2019) proposed a method for
knowledge graph embedding based on relational rotation in
complex space, called RotatE. RotatE can model all relational
patterns, so we use RotatE as the metapath instance encoder in
this study. Given a metapath instance M(i,j) = (i, th2..., thn−1, j),

for convenience, let set i = th1 and j = thn. Ri represents
the relationship between node thi and node thi+1, and the
relationship vector is ri. Therefore, for the metapath instance
M(i,j), RotatE can be defined as follows:

21 = h̃th1 = h̃i

2i = h̃thi + θi−1 � ri

hM(i,j) =
θn
n

(1)

where h̃thi and ri are vectors of complex space, � represents

hadamard product, hM(i, j) ∈ Rd
′

, and d
′

is the dimension of
hM(i,j). In which case, we get vector representation of the
metapath instance M(i,j). It is important to note that there may
be multiple instances of the metapath M connecting nodes i and
j, but we use M(i,j) to represent a single instance here.

Graph attention network (GAT) is an effective graph
representation learning tool, which represents the importance
of neighbor nodes to the target node by assigning different
weights to different neighbor nodes (Bian et al., 2021). Here, for
target node i and metapath M related to i, we first use GAT to
assign weights (attention coefficients) to metapath instances in M,
thereby learning the importance of different metapath instances
to target nodes. Then the features of different metapath instances
are aggregated according to the obtained attention coefficients,
which are represented as the feature vector of the target node i.
Given a metapath instance M(i,j), its attention coefficient can be
defined as:

eM
ij = LeakyReLU

(
δT

M

[
h̃i ‖ hM(i,j)

])
(2)

where δT
M is the attention parameter of the metapath M,

and ‖ represents connection operation. To make the attention
coefficients of different metapath instances comparable, we use
the softmax function to normalize eM

ij :

αM
ij = softmax

(
eM

ij

)
=

exp
(

eM
ij

)
∑

k∈NM
i

exp
(

eM
ij

) (3)

Then, we aggregate the feature vectors of all metapath
instances according to the activation function σ(·) to obtain the
vector representation of node i based on the metapath M:

αM
ij = σ

∑
j∈NM

i

αM
ij · hM(i,j)

 (4)

In this study, we further introduce a multi-head attention
mechanism to stabilize the learning process of attention
coefficients and reduce the influence of a single attention.
Specifically, we independently repeat the attention mechanism
K times and concatenate vector representation learned by each
attention head. Therefore, the vector representation of node i can
be further rewritten as follows:

hM
i =

K
‖

k = 1
σ

∑
j∈NM

i

αM
ij · hM(i,j)

 (5)
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FIGURE 3 | The framework of MATHNMDA. mcm, mdm, dmd, and dcd are four metapaths, where m represents microbe, c represents drug, and d represents
disease.
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Since the metapath is undirected, each node in the metapath
can be either a start node or an end node. Therefore, for
the metapath set starting or ending with node type a ∈ A, it
is denoted as Ma = {M1, M2, · · · , MS}, and S represents the
number of metapaths. Intra-metapath aggregation obtains M
metapath-specific vector representations of the target node i ∈
Va, defined as

{
hM1

i , hM2
i , · · · , hMS

i

}
.

Inter-Metapath Aggregation
After the intra-metapath aggregation of metapaths, we obtain
the vector representation of a single metapath M for target
node i. Then, we need to aggregate the semantic information
and structural information of node i based on all metapaths
of Ma, where S represents the number of metapaths. The
node embedding set corresponding to these S metapaths is{

hM1
i , hM2

i , · · · , hMS
i

}
. A simple aggregation method between

metapaths is to take the average of these node embeddings.
However, because the importance of metapaths to node i in a
heterogeneous network is different, we allocate weight for each
metapath pattern through the attention mechanism, and then
perform aggregation.

Specifically, given a metapath Mp, Mp ∈ Va, we first transform
these metapath-specific node vectors for all nodes i ∈ Va with the
tanh function, and then take average value as feature of Mp:

SMp =
1
|Va|

∑
i∈Va

tanh
(

Wa · h
Mp
i + ba

)
(6)

where Wa is the weight matrix of nonlinear transformation
specific to node type a, and Ba is the corresponding bias, both
of which are learnable parameters. Va indicates all nodes of type
a in the network.

Then we use the attention mechanism to calculate the
importance of each metapath pattern for the target node i, and
normalize the obtained attention coefficients by the softmax
function. Then we fuse the corresponding vector representations
of these metapaths to get the output of the target node i, as shown
in Equation 7:

eMp = cT
a · SMp

βMp = softmax
(
eMp

)
=

exp
(

eMp

)
∑

Mp∈Ma exp
(

eMp

)
hMa

i =
∑

Mp∈Ma

βMp · h
Mp
i

(7)

where cT
a denotes the attention parameter, βMP denotes the

normalized attention score, and MP denotes the Pth metapath
in Ma. hMa

i represents the embedding vector of node i based on
aggregation between metapaths.

MAGNN
The goal of a graph neural network (GNN) is to learn the low-
dimensional vector representation of each node, which can be
used for many downstream tasks, such as node clustering, node
classification, and link prediction. Thus, we further apply an
L-layer GNN to learn the low-dimensional representation vectors

of microbe nodes and disease nodes. At each layer of the GNN, we
use intra-metapath aggregation and inter-metapath aggregation
to obtain vector representations of node-based metapath. In this
way, we can define the low-dimensional representation for node
i at the lth layer:

hl
i = σ

(
W l

o ·
[

hMa
i

]l
)

(8)

where σ(·) is an activation function and W l
o represents the weight

vector at the lth layer. hl
i represents the vector representation for

node i at the lth layer, which is also the input of the (l+1)th
layer. We define h0

i =Wa · Xa
i , where Wa represents the linear

transformation matrix of node type a and Xi is the original feature
vector for node of type a. Here, we use one-hot encoding to
initialize each type of node in the heterogeneous network.

Finally, we use vector representation of node i at the Lth layer
to serve as the final embedding for nodes i:

hi = hL
i (9)

where hL
i represents vector representation of node i at the

Lth layer.

Reconstruction of Microbe-Disease
Association
After we get the final embeddings of all microbe nodes and
disease nodes, we can predict new microbe-disease associations
by reconstructing microbe-disease associations. Here we perform
a simple inner product operation on the microbe and disease
embeddings. In this case, each microbe-disease pair will receive
a new score. Specifically, given a microbe node m and a disease
node d, the predicted score Cmd between them can be calculated
as:

Cmd = sigmoid
(

hT
m · hd

)
(10)

where hm and hd represent the final embeddings of microbes and
diseases, respectively.

Optimization
Since our task is to predict microbe-disease associations, this is
equivalent to a binary classification problem. So, here we use the
cross-entropy function as the loss function and optimize through
negative sampling:

L = −
∑

(m,d)∈µ

log (Cmd)−
∑

(m,d)∈µ−
log (−Cmd) (11)

where µ represents the set of positive samples, and µ− represents
the set of negative samples obtained by negative sampling.

RESULTS

In this section, we evaluate the performance of MATMNMDA
through some experiments and analysis of the results. At the same
time, we also analyze and adjust some parameters of the model in
order to make better predictions.
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Evaluation Metrics
In this study, we mainly use two metrics to evaluate the
performance of the model, area under the receiver operating
characteristic curve (AUC) and area under the precision–
recall curve (AUPR), which are widely used in association
prediction tasks.

AUC: This corresponds to the area of a planar graph
bounded by the receiver operating characteristic (ROC) curve
and horizontal axis, which can estimate the performance of
binary classification models. The value of AUC is between 0 and
1. When it is closer to 1, the model performs better. In practical
application, the advantages and disadvantages of different models
can be compared by comparing the AUC values of different
classification models.

AUPR: The precision–recall (PR) curve is also used to evaluate
the classification ability of the model. In particular, the PR
curve can collect more information when dealing with some

imbalanced datasets. The area enclosed by the PR curve and the
abscissa axis is called AUPR.

Baselines
In order to test the effectiveness of the MATMNMDA model, we
compare it with six state-of-the-art methods based on the data
processed in this study. Here, we calculate the AUC and AUPR
values of these methods under the same conditions and analyze
the results. The six baselines are as follows:

BRWMDA (Yan et al., 2019): It is a similarity-based and
modified bi-random walk to predict associations between
microbes and diseases.

KATZHMDA (Chen X. et al., 2016): It is a method to predict
microbe-disease associations based on the katz metric.

LRLSHMDA (Wang et al., 2017): It is a semi-supervised
model to predict microbe-disease associations by introducing a
Gaussian kernel and Laplacian regularization.

FIGURE 4 | Parameter analysis. (A) Comparison of AUC and AUPR for different hidden layer dimensions. (B) Comparison of AUC and AUPR of attention heads for
different multi-attention mechanisms. (C) Comparison of AUC and AUPR for different attention vector dimensions. (D) Comparison of AUC and AUPR for different
numbers of neighbors sampled by nodes.
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NCPHMDA (Zou et al., 2018): It uses network consistent
projections to predict microbe-disease associations.

NTSHMDA (Luo and Long, 2018): Predicting microbe-
disease associations using heterogeneous network topological
similarity and random walks.

CRPGCN (Ma et al., 2021): It is a method based on graph
convolutional network (GCN) and random walk with restart
(RWR), which was proposed for the cirRNA-disease association
prediction task. Here, we use it as a baseline method for the
prediction of microbe-disease association.

We compare MATMNMDA with these six baseline methods
under the same conditions. For the CRPGCN method, the
similarity of microbes and diseases is calculated in the same way
as BRWMDA. For the MATMNMDA model, we first perform
negative sampling on the microbe-drug-disease heterogeneous
network. The positive and negative sample ratios of the training
set, validation set, and test set are 1:1, and the proportion of
the training set, validation set, and test set is 8:1:1, respectively.
We randomly initialize vector representations of microbe nodes,
drug nodes, and disease nodes. The Adam optimizer is used to
optimize the model. The dropout and early stopping mechanisms
are used to prevent overfitting. Here, according to the extensive
literature (Phaisangittisagul, 2016), we set the value of dropout to
0.5. We train the model 100 times.

Parameter Analysis
In this section, we analyze the sensitivity of parameters. As
we all know, important parameters will affect the performance
of the model, so it is very necessary to conduct parameter
analysis for the model. Some important parameters involved
in the MATMNMDA model include the dimension of hidden
layer, number of heads in the multi-head attention mechanism,
dimension of attention vector, and number of neighbors sampled
by the nodes in the experiment. We analyze these four parameters
in turn and evaluate their impact on model performance.

As can be seen from Figure 4A, we set the dimension of
the hidden layer to 16, 32, 64, 128, 256. As the dimension
of the hidden layer increases, the performance of the model
first increases. When the dimension reaches 32, both AUC and
AUPR reach the maximum value. As the dimension continues
to increase, the performance of the model begins to decrease
gradually. Therefore, in this study, we set the embedding
dimension of the hidden layer as 32. When the dimension
changes between 16 and 256, the values of AUC and AUPR
vary greatly. Thus, the MATMNMDA model is sensitive to the
dimension of the hidden layer.

MATMNMDA model adopts a multi-attention mechanism to
stabilize the process of attention coefficient learning. Figure 4B
shows the influence of the number of attention heads in the multi-
attention mechanism on model performance. We change the
number of attention heads from 2 to 10 by step 2. It can be seen
that when the number of attention heads is set to 6, the model
has the best performance. Figure 4C shows the influence of the
dimension of the attention vector. The dimension of the attention
vector changes between 32 and 512. It can be observed that the
vector dimension is too small or too large, which is not good for
the performance of the model. Specifically, if the dimension of

the attention vector is too large, it may lead to overfitting, which
will degrade the performance of the model. When the dimension
is set to 64, we can obtain better prediction ability.

In the MATMNMDA model, intra-metapath aggregation
involves aggregating features of neighbor nodes to represent the
representation of the current target node. Therefore, we analyze
the number of neighbor nodes. In Figure 4D, the number of
neighbor nodes is selected from {50,100,150,200,250}. It can be
seen that when the number of neighbor nodes is too small or too
large, the performance of the model is not very good. Specifically,
if the number of neighbor nodes is too small, the structural
information and semantic information of the target node may not
be so comprehensive, while too large may cause noise. Therefore,
we set the number of neighbor nodes to 150.

Ablation Study
As mentioned in the Introduction section, the previous
heterogeneous network embedding methods have the following
problems: (1) They only consider the neighbors based on the
metapath, and do not consider the intermediate nodes inside
the metapath. (2) In the metapath-based embedding, only the
single best metapath is considered, and our model is proposed
based on these problems. Therefore, in order to verify the
effectiveness of each module of our model, we further conduct
experiments on different variants of the MATMNMDA model.
Taking MATMNMDA as a reference model, here we tested
three variants of it.

MATMNMDA_nb: It only considers metapath-based
neighbor nodes and does not consider intermediate nodes.

MATMNMDA_sm: It only considers the single best metapath.
MATMNMDA_avg: It replaces the RotatE

with a mean encoder.
Figures 5, 6 show the comparison results of the

MATMNMDA model and its variants. We can see that
the MATMNMDA model has the highest AUC and AUPR.
Followed by MATMNMDA_avg, MATMNMDA_sm has
the worst performance. Comparing MATMNMDA and
MATMNMDA_avg, we find that the MATMNMDA model
performs better, which is because the mean encoder essentially
treats metapath instances as a set and ignores the information
embedded in the sequential structure of metapaths, while
RotatE can be modeled according to the sequential structure
of metapaths, thereby preserving the information embedded
in the sequential structure of metapaths, so RotatE helps to
improve the performance of the model by a small amount.
Comparing MATMNMDA and MATMNMDA_nb, we can find
that considering the intermediate nodes inside the metapath
can help the model to obtain more structural information and
thus improve the performance of the model. The results of
MATMNMDA and MATMNMDA_sm show that the model
performance can be significantly improved by combining
multiple metapaths.

Comparison With Baselines
We run these baseline methods with default parameters.
Figures 7, 8 show the performance of different methods. Our
model achieves the highest prediction results on these two
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FIGURE 5 | Comparison of AUC for MATMNMDA and its variants.

FIGURE 6 | Comparison of AUPR for MATMNMDA and its variants.

evaluation metrics, and its AUC and AUPR reach 0.9492 and
0.9637, respectively, which are better than all baseline methods.
The CRPGCN model occupies the second position. It applies the
RWR algorithm, which allows each calculated node to better fuse
information from neighboring nodes with higher weights, so that

GCN can learn features faster and get higher prediction scores.
Next is the LRLSHMDA model, because the topological structure
in the microbe-disease association network helps the model to
effectively use the hidden information of vertices and edges,
which helps to train the optimal classifier, so that microbe-disease
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FIGURE 7 | Comparison of AUC for MATMNMDA and baselines.

FIGURE 8 | Comparison of AUPR for MATMNMDA and baselines.

associations can be predicted more accurately. Next is the
BRWMDA model, which also achieved good prediction results,
because the BRWMDA model is based on similarity and bi-
random walk, and it can model the topology information of
the network well. However, NCPHMDA and NTSHMDA have

poor prediction performance, because although we have obtained
9,202 known microbe-disease associations, they account for 0.7%
of the whole microbe-disease association. The whole network
is very sparse, and these two methods are based on network
structure, so their performance is relatively poor.
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FIGURE 9 | Comparison of AUC for MATMNMDA and baselines on HMDAD dataset.

Comparison With Different Datasets
In this study, we augment the known microbe-disease association
data. In order to verify the validity of the MATHNMDA model
in our dataset, we also compare MATHNMDA with baseline
methods on HMDAD and Disbiome, which are commonly
used in microbe-disease prediction. The results are shown in
Figures 9, 10, and the comparison results of these methods
on the three datasets are shown in Table 1. From Table 1, we
can see that on each dataset, our model achieves the highest
prediction value. It performs best on our dataset, so we can
suggest that augmenting the known microbe-disease associations
can help to improve the performance of the MATHNMDA. In
addition, we can see that CRPGCN, LRLSHMDA, and BRWMDA
methods perform well on these three datasets among the baseline
methods. It also shows that these three methods are suitable
for both large and small datasets, and the robustness of models
is better. The remaining comparison methods are only suitable
for small datasets.

Case Study
To further evaluate the predictive ability of the MATMNMDA
model in identifying new microbe-disease associations, we
conduct case studies on asthma, inflammatory bowel disease
(IBD), and COVID-19. For each disease, microbes that have
known associations with the disease are first removed. Then the
predicted scores of candidate microbes are sorted in descending
order according to the MATMNMDA model. Finally, we verify
whether the top 10 microbes associated with the disease are
confirmed by the relevant literature.

Asthma is a heterogeneous disease characterized by chronic
airway inflammation (Lee and Kim, 2021). More than 300 million

people worldwide suffer from asthma, and the incidence of
asthma increased by 12.6% between 1990 and 2015 (Vasily,
2017). Therefore, it is necessary to study asthma deeply.
With the development of 16rRNA sequencing technology,
it has been found that there is an important relationship
between asthma and microbe. In this study, when we employ
the MATMNMDA model to predict potential microbe-disease
associations, 7 of the top 10 candidate microbes are verified
by relevant literature in PubMed (as shown in Table 2). For
example, studies have shown that Staphylococcus (2nd) is linked
to asthma attacks (Zhou et al., 2019), the relative abundance
of Bacteroidetes, Clostridium (3rd), and Enterobacteriaceae
were high, and the relative abundance of Bifidobacterium
and Lactobacteriaceae were low, which is associated with
allergies, eczema, or asthma (Zimmermann P. et al., 2019). An
increased prevalence of Staphylococcus aureus (6th) colonization
and sensitivity against its proteins are found in asthma
(Tomassen et al., 2013). Bacterial dysbiosis and abundance
within Firmicutes (4th) were significantly reduced in asthmatic
children (Hufnagl et al., 2020). Human parainfluenza virus 1
(4th) was detected most frequently from patients with URI
(3.74%, 47/1,257), followed by those with bronchitis (2.14%,
53/2,479), pneumonia (0.85%, 145/17,068), bronchiolitis (0.47%,
12/2,536), and asthma (0.43%, 2/462; Wang et al., 2015).
Herpesviruses were the most abundant virus type in the asthma
group (44.6 ± 4.6%), mainly cytomegalovirus (CMV; 9th) and
EBV, which accounted for 24.5 ± 3.3 and 16.9 ± 3.5%,
respectively (Choi et al., 2021). In healthy controls, the
two viruses were 5.4 ± 2.5 and 7.1 ± 3.0%, respectively.
Therefore, CMV and EBV are more abundant in patients with
asthma exacerbations.
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FIGURE 10 | Comparison of AUC for MATMNMDA and baselines on Disbiome dataset.

Inflammatory bowel disease (IBD) is an idiopathic intestinal
inflammatory disease, mainly including ulcerative colitis (UC)
and Crohn’s disease (CD), with clinical manifestations of
abdominal pain, diarrhea, and bloody stools. It is difficult to
completely cure the disease, which is easy to recur, and there is
a potential risk of cancer. Therefore, we perform a case study
of IBD to evaluate the predictive ability of the MATMNMDA
model for novel microbe-disease associations. The results are
shown in Table 3, and 7 of the top 10 candidate microbes are
verified by relevant literature. For example, Fusobacterium (2nd),
Halomonas, Acinetobacter, Shewanella, and Streptococcus were
enriched in the CD microbiota (Weng et al., 2019). Increased
abundance of Salmonella sp., Campylobacter sp., Helicobacter
sp., Escherichia coli, Alcaligenes sp., and Mycobacterium sp. (4th)
was observed in IBD patients (Olejniczak-Staruch et al., 2021).
IBD patients exhibit a lower abundance of butyrate-producing
bacteria (6th; Gasaly et al., 2021) and butyrate content. Although
some findings related to IBD dysbiosis have varied among the

TABLE 1 | Performance comparison of MATMNMDA and baselines on
different datasets.

DATASET HMDAD Disbiome Our dataset

METHOD AUC AUPR AUC AUPR AUC AUPR

CRPGCN 0.8798 0.4533 0.8702 0.4965 0.9368 0.8470

KATZHMDA 0.8815 0.4828 0.6743 0.0508 0.7035 0.0532

BRWMDA 0.8748 0.3966 0.8199 0.0705 0.8961 0.0913

LRLSHMDA 0.8766 0.4960 0.8672 0.1370 0.8990 0.1476

NCPHMDA 0.7524 0.0795 0.7299 0.1024 0.5708 0.0092

NTSHMDA 0.8276 0.2975 0.6880 0.0630 0.7383 0.0629

MATMNMDA 0.9181 0.9297 0.9245 0.9322 0.9492 0.9637

studies due to differences in sample type, survey method, patient
profile, and drug treatment, the most consistent observation
across these studies is that bacterial diversity decreased in IBD
patients. For viruses infecting human cells, Anelloviridae (5th)
showed a higher prevalence in very early-onset IBD compared to
healthy controls (Liang et al., 2020). The population of Firmicutes
decreased (7th) and that of Proteobacteria increased (Matsuoka
and Kanai, 2015). Researchers observed a bias in the fungal
microbiota in IBD compared to the normal control group, with
an increased Basidiomycota/Ascomycota ratio (8th), a decreased
Saccharomyces cerevisiae ratio, and an increased Candida albicans
ratio (Sokol et al., 2017). There are experiments to verify that
the intensity of both CMV and human herpesvirus 6 (HHV-6;
9th) correlated with endoscopic disease severity in IBD (CMV,
p = 0.010 and HHV-6, p = 0.048; Sipponen et al., 2011).

Coronavirus disease 2019 (COVID-19) is a disease caused by
severe respiratory syndrome coronavirus 2 (SARS-CoV-2). It has

TABLE 2 | Top 10 candidate microbes related to asthma.

Rank Microbe Evidence

1 Geotrichum sp. PMID: 9376049

2 Staphylococcus PMID: 24117882

3 Clostridiaceae PMID: 30600099

4 Firmicutes PMID: 32072252

5 Mitsuokella Unconfirmed

6 Staphylococcus aureus PMID: 30193937

7 Human parainfluenza virus 1 PMID: 26481737

8 Sphingobacteriia Unconfirmed

9 Cytomegalovirus PMID: 33757721

10 Aeromonas hydrophila Unconfirmed
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TABLE 3 | Top 10 candidate microbes related to IBD.

Rank Microbe Evidence

1 Holophagae Unconfirmed

2 Fusobacterium PMID: 31240835

3 Sneathia sanguinegens Unconfirmed

4 Mycobacterium sp. PMID: 33924414

5 Anelloviridae PMID: 32406906

6 Butyrate-producing bacterium PMID: 33802759

7 Firmicutes PMID: 25420450

8 ascomycota PMID: 26843508

9 Human herpesvirus 6 PMID: 21879802

10 Nitrososphaeraceae Unconfirmed

TABLE 4 | Top 10 candidate microbes related to COVID-19.

Rank Microbe Evidence

1 Dyella Unconfirmed

2 Acinetobacter calcoaceticus Unconfirmed

3 Coriobacteriaceae bacterium Unconfirmed

4 Bacteroides intestinalis Unconfirmed

5 Bacteroides thetaiotaomicron PMID: 32442562

6 Pisolithaceae Unconfirmed

7 Pigmentiphaga Unconfirmed

8 Mucor PMID: 34009676

9 Prevotella disiens PMID: 33577896

10 Blumeria graminis Unconfirmed

been 3 years since its emergence and has become a pandemic
threat to human health and the world economy. Although most
cases of COVID-19 are mild or moderate, 3–4% of patients
may be severe or critical, leading to hospitalization, respiratory
failure, or death (Shen et al., 2020; Taleghani and Taghipour,
2021). Recent studies have found significant changes in the
gut microbiome after infection with SARS-CoV-2. Therefore,
this study conducts a case study on COVID-19 to evaluate the
predictive ability of the model for COVID-19-related microbes,
thereby helping researchers to conduct experimental verification
purposefully, thus saving manpower and material resources. The
results are presented in Tables 3, 4, of the top 10 candidate
microbes were verified by relevant literature. For example, the
analysis of fecal samples from COVID-19 patients found that
the populations of Bacteroides dorei, Bacteroides thetaiotaomicron
(5th), Bacteroides massiliensis, and Bacteroides ovatus were
negatively associated with SARS-CoV-2 viral load in the samples
(Zuo et al., 2020). Mycological analysis revealed that 77.8 and
30.6% of patients were infected with Mucor (8th) and Aspergillus,
respectively (El-Kholy and El-Fattah, 2021). Staphylococcus
haemolyticus, Prevotella disiens (9th), and 2 Corynebacterium_1
unclassified amplicon sequence variants were more abundant
in people with low SARS-CoV-2 viral load during COVID-19
infection (Rosas-Salazar et al., 2021).

CONCLUSION

Increasing studies have shown that microbes play a key role
in human health and disease. Microbe-disease associations

cannot only reveal disease pathogenesis, but also promote the
diagnosis and prognosis of diseases. Therefore, research on
microbe-disease associations has attracted wide attention. In
this study, we propose a novel computational model, called
MATMNMDA, to predict potential microbe-disease associations.
In order to capture more semantic and structural information
between microbe nodes and disease nodes, we introduce drugs to
construct a tripartite heterogeneous network and apply MAGNN
to learn low-dimensional embedded representations of microbe
nodes and disease nodes. For each layer of MAGNN, we use
intra-metapath aggregation to get the representation of the
target node in each metapath, which is the input of inter-
metapath aggregation layer. Then we aggregate the embedding
representations between different metapaths related to the target
node. Therefore, we can learn the embedding representation
for the target node (microbe node or disease node) of the
layer. Finally, we obtain vector representations of microbes and
diseases based on the output of the last layer in the MAGNN,
which is used for the prediction task. We designed multiple
experiments to verify the effectiveness of the MATMNMDA
model. By analyzing the experimental results, we found that:
(1) Compared to the variants of our model, our model obtains
the best prediction performance, which also indicates that our
method could be better applied to microbe-disease prediction.
(2) Under the same conditions, compared to the state-of-the-
art methods, our method also obtains the best AUC and AUPR,
which indicates that the MATMNMDA model can better identify
potential disease-related microbes. (3) Compared to the state-of-
the-art methods on different datasets, MATMNMDA achieves
the best prediction performance on our enlarged dataset. It
demonstrates that more known microbe-disease associations can
help MATHMDA improve predictive performance. (4) Case
studies on asthma, IBD, and COVID-19 further verified the
effectiveness of MATMNMDA.

In future work, we will add more relational data, such as drug-
drug interactions, drug-protein interactions, and protein-disease
associations to achieve better predictive results.
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