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The present paper aims at analyzing the topological content of the complex trajectories
that weeder-autonomous robots follow in operation. We will prove that the topological
descriptors of these trajectories are affected by the robot environment as well as by the
robot state, with respect to maintenance operations. Most of existing methodologies
enabling efficient diagnosis are based on the data analysis, and in particular on some
statistical quantities derived from the data. The present work explores the use of an original
approach that instead of analyzing quantities derived from the data, analyzes the “shape”
of the data, that is, the time series topology based on the homology persistence. We will
prove that this procedure is able to extract valuable patterns able to discriminate the
trajectories that the robot follows depending on the particular patch in which it operates, as
well as to differentiate the robot behavior before and after undergoing a maintenance
operation. Even if it is a preliminary work, and it does not pretend to compare its
performances with respect to other existing technologies, this work opens new
perspectives in considering quite natural and simple descriptors based on the intrinsic
information that data contains, with the aim of performing efficient diagnosis and
prognosis.
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1 INTRODUCTION

Autonomous robots follow a number of rules introduced into their controllers (Alatise and Hancke,
2020; Shalal et al., 2013; Mohanty and Parhi, 2013). However, when they interact with the
environment, small variations may result in long-time unpredictable motion. This behaviour is
very usual in mechanics, characterizing systems exhibiting deterministic chaos (Avanço et al., 2016;
Gupta et al., 2014).

In the practical case addressed in the present paper, a weeder robot (usually a float of them) is
expected to cover a patch of a vineyard, in an optimal manner. Here, “optimal manner” refers to the
path-line that allows covering the whole patch in a minimum time. However, the ground orography
has a significant variability, as well as the location of the grapes. Robots are aimed at colliding the
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grape foots in order to remove the grass around, and then
numerous collisions following different directions are needed
to ensure that all the grass around the grape foot is adequately
removed. Figure 1 depicts a VITIROVER MOWER ROBOT
(https://www.vitirover.fr/en-robot for the technical
specifications) considered in the present study under
operational conditions.

The environmental variability (ground, grape location, grass
distribution and size, and fixed and mobile obstacles) as well the
intrinsic sensibility of the dynamics to small perturbations in the
physical and operational conditions, provides an uncertain
environment that makes useless the use of a deterministic
framework for anticipating the robot trajectory. Thus, a
random motion framework seems to be the most useful
alternative.

In practice, to avoid under-performances characteristic of fully
random motion, random motion operating at the local scale is
combined with a more global deterministic planning that tries to
better control the vineyard coverage by sequencing the operation
at the different local patches covering the whole domain (Kavraki
et al., 1998).

The present work does not aim at addressing such optimized
operation conditions that will be addressed in a future publication
under progress, but it aims at analyzing the data collected from a
robot operating in different patches and under different
conditions (with respect to the maintenance operations) in
order to identify the existence of patterns able to identify the
particular patch in which the robot operates, or to distinguish the
different robot states with respect to the maintenance operations.

Having a sort of QR-code or identity card of each robot, when
it operates within each patch, in a particular state (healthy or
unhealthy), is of major relevance with respect to the predictive or
operational maintenance of robots or floats of autonomous robots
(Kavraki et al., 1998).

Most of existingmethodologies enabling efficient diagnosis are
based on the data analysis, and in particular on some statistical
quantities derived from the data (Lhermitte et al., 2011) while the
present paper aims at extracting information to be transformed
into knowledge, from the data collected from each weeder robot,
in particular the positions visited by the robot during its
operation, and more concretely the topology contained in this
data. Our goal is to extract the maximum information that could
serve for differentiating them, enabling unsupervised clustering
and/or supervised classification, prior to any action concerning
diagnosis or modeling based on the use of adapted regressions.
This first work aims at introducing a new methodology and does
not pretend to compare its performances with respect to other
existing technologies, comparison that will be addressed in a
future work.

2 METHODS

Using data clustering is almost straightforward, as soon as data is
homogeneous and quantitatively expressible using integer or real
numbers, enabling boolean or algebraic operations (addition,
multiplication, . . . ). The interest of organizing data in groups,

in a supervised or unsupervised manner, is that it is assumed that
data belonging to a given group shares some qualities with the
members of the group (Hastie et al., 2009; Murphy, 2012).

When proceeding in an unsupervised manner, the only
information to group the data consists of the distance among
them. Data that remain close to each other are expected to share
some properties or behavior. This is the rationale considered in
the very popular k-means technique (MacQueen, 1967; MacKay,
2003). However, the notion of proximity, leading to the derived
concept of similarity, needs for the definition of a metric for
comparison purposes. When data are well defined in a vector
space, distances can be defined and data can be compared
accordingly. In the case of supervised classification one is
looking for the linear (or non-linear) Frontier separating the
different groups on the basis of a quality or property that drives
the data clustering. In this last case, the best Frontier separating
two groups of data is the one maximizing the distance of the
available data to the Frontier, in order to maximize the separation
robustness. This is how support vector machine, SVM, works, for
instance (Cristianini and Shawe-Taylor, 2000).

In both cases (supervised and unsupervised) the existence of a
metric enabling data comparison is assumed. However, very often
data could be much more complex, as for example when it
concerns heterogeneous information, possibly categorial or
qualitative. This is for example the case when a manufactured
part is described by its identity card consisting of the name of the
employee involved in the operation, the designation of the
employed materials (some of them given by its commercial

FIGURE 1 | Weeder robot from VITIROVER micro robotique viticole.
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name), the temperature of the oven in which the part was cured
and the processing time. In that case, comparing two parts
becomes quite controversial if the employed metric is not
properly defined. In these circumstances, usually, metrics are
learned from the existing training data, as is the case when using
decision trees (or its random forest counterpart) (Kirkwood,
2022; Breiman, 2001), code-to-vector Martín et al. (2019) or
neural networks Goodfellow et al. (2016).

The situation becomes even more extreme when data have a
large and deep topology content. This is the case for example of
time series or images of rich microstructures. These are usually
encountered in material science when describing metamaterials
(also called functional materials), or those exhibiting gradient of
properties or mesoscopic architectures. Thus, even in nominal
conditions, time series will differ if they are compared from their
respective values at each time instant. That is, two time series,
even when they describe the same system in similar conditions,
never match perfectly. Thus, they differ even if they resemble in a
certain metric that should be learned. For example, our
electrocardiogram measured during two consecutive minutes
will exhibit a resemblance, but certainly both of them are not
identical, thus making a perfect match impossible. A small
variation will create a misalignment needing for metrics less
sensible to these effects. The same rationale applies when
comparing two profiles of a rough surface, two images of a
foam taken in two close locations, . . . they exhibit a
resemblance even if they do not perfectly match.

Thus, techniques aiming at aligning data were proposed. In the
case of time-series, Dynamic TimeWarping, DTW (Müller, 2007;
Senin, 2008) has been successfully applied in many domains. The
theory of optimal transport arose as a response to similar issues
(Villani, 2006).

Another route consists of renouncing to align the data, and
focussing on extracting the adequate, goal-oriented descriptors of
these complex data, enabling comparison, clustering,
classification and modelling (from non-linear regressions)
(Lhermitte et al., 2011).

A first possibility consists of extracting the main statistical
descriptors of time series or images (moments, correlations,
covariograms, . . . ) (Torquato, 2002). Sometimes, data
expressed in the usual space and time domains, are
transformed into other spaces where their manipulation is
expected to be simpler, like Fourier, Laplace, DCT, Wavelet,
. . . descriptions of data. The most valuable (in the sense given
later) descriptions seem to be those maximizing sparsity. These
are widely considered when using compressed sensing (Ibañez
et al., 2019), because it represents a compact, concise and
complete way of representing data that seemed much more
complex in the usual physical space (space and time).

The present work considers this last route, but uses a description
based on the topology of data, described later, and successfully
considered in our former works for addressing complex
mesostructures Yun et al. (2020), time-series Frahi et al.
(2021a), rough surfaces Frahi et al. (2020) and shapes Frahi
et al. (2021b), with the aim of classifying and also constructing
robust regressions expressing properties or performance from the
input data expressed from its topological description.

The present study, when compared with our former
developments, addresses a new and complex purpose: how the
topology contained in the trajectory that an autonomous robot
follows in a cloudy environment (where interactions limits the
predictability horizon) can inform on the robot location (which
patch into the whole vineyard) or the robot state (with respect to
maintenance operations).

2.1 Data Description
In the study that follows, we consider a dataset consisting of the x
and y-coordinates, calculated from the GPS longitudes and
latitudes, representing the recorded position of the robot at
time t:

D � x t( ), y t( ), t( ), t ∈ T{ }.
These coordinates span six different disjoint geographical

patches within the whole vineyard, as illustrated in Figure 2,
that have been recorded in a period of time T leading to the maps
reported in Figure 3 that reflects the robot’s trajectory.

Maintenance operations are also known and properly
identified in the provided dataset. Thus, the dataset consists of
a collection of n discrete, finite and compact two-dimensional
trajectories S1, . . . , Sn.

2.2 Geometrical Features
We are interested in extracting the geometrical and topological
features of the trajectories in D across different scales. For that
purpose, we introduce the so-called Rips filtration. We construct a
Rips complex from simplexes of varying dimensions that are
generalizations of triangles of varying dimensions. More
specifically, a d-simplex is the smallest convex set of d + 1
points, x0, . . . , xd where x1−x0, . . . , xd−x0 are linearly

FIGURE 2 | Location of the different patches.

Frontiers in Artificial Intelligence | www.frontiersin.org December 2021 | Volume 4 | Article 7611233

Frahi et al. Monitoring Weeder Robots by TDA

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


independent, as illustrated in Figure 4. The so-called abstract
simplicial complex is a finite collection of sets that is closed under
the subset relation, i.e., if a ∈ A and b ⊂ a, then b ∈ A.

Let S be a trajectory, defined from a finite compact set of
points inR2, and ϵ ≥ 0. The Rips complex of S at scale ϵ,Rϵ(S), is
the abstract simplicial complex consisting of all subsets of
diameter up to ϵ:

Rϵ S( )d σ ⊂ S | diam σ( )≤ ϵ{ },
where the diameter of a set of points is the maximum distance
between any two points in the set.

Geometrically, we can construct the Rips complex by
considering balls of radius ϵ

2, centred at each point in S.
Whenever d balls have pairwise intersections, we add a d−1
dimensional simplex. An example of Rips complex is given in
Figure 5.

A filtration of a simplicial complex K is a nested sequence of
subcomplexes starting at the empty set and ending with the full
simplicial complex

Ø ⊂ K0 ⊂ / ⊂ K.

By varying the value of the scale parameter ϵ, from ϵmin � 0 to
ϵmax � diam(S) we get a family of nested Rips complexes known
as the Rips filtration.

2.3 Persistent Homology
In order to have a more exhaustive view on how the features are
changing across different scales, the appearance and
disappearance of each feature within the filtration is tracked
and coded into the homology groups Hk(S), where k is the
homology dimension. The elements of a Homology GroupHk(S)
are classes of chain of simplexes (“packets”) in the Rips complex.

FIGURE 3 | Robot trajectories in the six considered vineyard patches, from right to left and top to bottom: 1, 2, 3, 4, 5 and 6 (units in meters).

FIGURE 4 | Simplexes of different dimensions.
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The use of homology groups allows us to perform algebraic
operations over the simplicial elements. The homology group
H0(S) represents the vertices, while the homology group H1(S)
represents the cycles (loops) formed in the simplicial complex.
Since our data is in R2 we are only interested in k � 0 and k � 1.

Given a homology group, we can now define how to track the
appearance of the features across different scales, by defining the
homology group at a scale ϵ, Hϵ

k(S). It represents the classes of
simplexes as described previously, but taken fromRϵ(S). That is,
the elements of Rϵ(S) with a filtration value lower than ϵ. This
approach is known as the persistent homology. It allows to
quantify the appearance and disappearance of the features
across the different scales (discretized by considering m values
related to ϵj, j � 0, . . . , m):

• For H0(S), the birth scale of all vertices is set to zero, while
the death scale is the filtration value at which the vertex has
been joined to another one by a segment.

• For H1(S), the birth scale of a cycle is the filtration value at
which a loop has been formed, while the death scale is the
filtration value at which the interior of the loop has been covered.

We can formalize this as follows:

• The birth scale bc of the feature c

bc � min
0≤j≤m

ϵj: c ∈ H
ϵj
k{ }

• The death scale dc of the feature c

dc � max
0≤j≤m

ϵj: c ∈ H
ϵj
k{ }

The persistence of the features throughout the scales can then
be represented by the so-called persistence barcode of S. It is a
histogram, where the bar associated to each feature starts at the
birth scale and ends at the death scale.

An example of persistent homology computation is
given with the rips complex in Figure 6, and the associated
barcode in Figure 7. A loop is formed at ϵ � 0.9 (birth)
and then covered at ϵ � 1.8 (death). It is represented by the
red bar.

A more compact representation of the features persistence is
the persistence diagram of S, defined from

PD S( ) � bc, dc( ): c ∈ Hk{ },
where bc and dc are the birth and death scales associated to the
feature c. In what follows, in the trajectories analysis, we only
consider one-dimensional features, i.e., k � 1.

FIGURE 5 | Example of Rips complex computation: (A) ϵ � 0.5; (B) ϵ � 1; (C) ϵ � 1.4; and (D) ϵ � 2.3 (units in meters).
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The persistence diagram associated with the Rips complex shown
in Figure 6 is given in Figure 8. An equivalent representation of the
persistence diagram consists in the so-called life-time diagram of S,
which is constructed by means of a bijective transformation T (a, b)
� (a, b−a), acting over PD(S), that is,

LT S( )d a, b − a( ) ∈ R2: a, b( ) ∈ PD S( ){ }.
In order to use the persistence features in a machine learning

approach, we construct the so-called persistent image of S. First,
observe that LT (S) is a finite set of p points,

LT S( ) � a1, b1 − a1( ), . . . , ap, bp − ap( ){ },
and such that b1−a1 ≤ b2−a2 ≤ . . ., ≤ bp−ap. Then, consider a non-
negative weighting function given by

w: LT S( ) → 0, 1[ ]
ai, bi − ai( ) 1w ai, bi − ai( ) � bi − ai

bp − ap
, for 1≤ i≤p.

Finally, we fix M, a natural number, and take a bivariate
normal distribution gu (x, y) centered at each point u ∈ LT (S)
with a variance σI2 � bp−ap

M I2 (I2 is the 2 × 2 identity matrix). A
persistence kernel is then defined according to:

FIGURE 6 | Example of Rips complex computation: (A) ϵ � 0; (B) ϵ � 0.5; (C) ϵ � 0.9; and (D) ϵ � 1.8 (units in meters).

FIGURE 7 | Persistence barcode: in black the H0 features, and in red the
H1 feature. Filtration value (scale) is represented in the x-axis (units in meters).
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ρS: R
2 → R

x, y( ) 1ρS x, y( ) � ∑
u∈LT S( )

w u( )gu x, y( ).
We associate to a robot trajectory S ∈ R2 a matrix in RM×M as

follows: let δ > 0 be a non-negative, small enough real number,
and then consider a squared region ΩS,δ � [a, b] × [c, d] ⊂ R2,
covering the support of ρS(x, y) up to a certain precision δ, such
that

∫∫
ΩS,δ

ρS x, y( )dxdy≥ 1 − δ.

Then, we consider two uniform partitions of the intervals

a � p0 ≤p1 ≤ . . . , ≤pM � b and c � q0 ≤ q1 ≤ . . . , ≤ qM � d.

Finally, we express ΩS,δ from

ΩS,δ � ∪
M−1

i�0 ∪
M−1

j�0 pi, pi+1[ ] × qj, qj+1[ ] � ∪
M−1

i�0 ∪
M−1

j�0 Pij.

The persistence image of S associated with the partition P �
{Pij} is then described by the RM×M matrix with elements:

PI S,M,P, δ( )ij � ∫∫
Pij

ρS x, y( )dxdy( ) for 0≤ i, j≤ M − 1( ).

An example of persistence computation for a given trajectory
is given in Figure 9.

2.4 Measuring Persistence Similarity
Consider two data sets Su and Sv representing two trajectories. A
matching between two persistence diagrams, PD(Su) and
PD(Sv), is a map ψ, that reads:

ψ: PD Su( ) → PD Sv( ),
such that ∀c � (b, d) ∈ PD(Su),

ψ c( ) � ψ1 b( ),ψ2 d( )( )
� b′, d′( ) ∈ PD Sv( ).

The map ψ associates each feature from PD(Su) to a feature
from PD(Sv). The optimal matching between PD(Su) and
PD(Sv) is a matching ψ̂

ψ̂: PD Su( ) → PD Sv( ),
minimizing the transport cost C to move the features from
PD(Su) to PD(Sv):

Cmin � ∑
c∈PD Su( )

‖c − ψ̂ c( )‖2
� ∑

b,d( )∈PD Su( )
‖ b − ψ̂1 b( ), d − ψ̂2 d( )( )‖2

� ∑
b,d( )∈PDk Su( )

�����������������������
b − ψ̂1 b( )( )2 + d − ψ̂2 d( )( )2√

.

Then, tomeasure the degree of similarity between two trajectories
Su and Sv we consider theWasserstein distance (Villani, 2006; Peyré
and Cuturi, 2019) between PD(Su) and PD(Sv)
W PD Su( ),PD Sv( )( ) � ∑

b,d( )∈PD Su( )

�����������������������
b − ψ̂1 b( )( )2 + d − ψ̂2 d( )( )2√

,

where ψ̂ is the optimal matching between PD(Su) and PD(Sv).
An example of matching between the persistence diagrams of

two trajectories is given in Figure 10.

2.5 Barycentres of Persistence Diagrams
Consider now a collection S1 . . . Sn of trajectories with their
associated diagrams PD1 . . .PDn.

Since the space of persistence diagrams equipped with the
Wasserstein distance, theWasserstein space, is not a linear space,
the notion of barycentres (Agueh and Carlier, 2011) can be
extended for the persistence diagrams using the so-called
Frechet mean (Turner et al., 2014), which always exists in the
context of averaging finitely many diagrams.

The Frechet mean of PD1 . . .PDn is any diagram minimizing
the map

E: μ1∑n
i�1

W μ,PDi( )2.
The computation of the barycentre μ has proven to be

challenging, and multiple approaches can be used, such as the
Sinkhorn algorithm (Cuturi and Doucet, 2014). We will use the
one based on the Hungarian algorithm presented in Turner et al.
(2014) and consider Partial Optimal Matchings (Divol and
Lacombe, 2020), as the diagrams may not be of the same size.
In this case, points from the diagonal are matched with the
remaining (exceeding) points.

In our case, we estimate the barycentres of a finite family of
persistence diagrams, taking a Lagrangian approach by tracking
the individual points of the diagrams. Given a collection
PD1 . . .PDn of persistence diagrams, we proceed as follows:

1) Initialize the estimation μ of the barycenter at a certain
diagram μ � PDi0.

FIGURE 8 | Persistence Diagram: in black theH0 features, and in red the
H1 feature.
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2) Compute the optimal partial matchings ψ1 . . . ψn, between μ
and PD1 . . .PDn respectively.

3) Compute the updated barycentre μ̂, by averaging the transport
of each point in the barycentre μ

μ̂ � y � 1
n
∑n
i�1

ψi x( ), x ∈ μ
⎧⎨⎩ ⎫⎬⎭.

4. If μ̂ minimizes E, return μ̂. Otherwise, update μ � μ̂ and go
back to 2.

An example of a barycentre of three persistence diagrams is
given in Figure 11.

2.6 Classification
Image classification is a procedure that is used to
automatically categorize images into classes by assigning
to each image a label representative of its class. A
supervised classification algorithm requires a training

sample for each class, that is, a collection of data points
whose class of interest is known. Labels are assigned to
each class of interest. The classification problem applied
to a new observation (data) is thus based on how close
a new point is to each training sample. The Euclidean
distance is the most common metrics used in low-
dimensional datasets. The training samples are
representative of the known classes of interest to the
analyst. In order to classify the persistence images, we
considered the logistic regression algorithm.

Consider a training set (X i)ni�1 of flattened persistence images,
i.e., M × M-component vectors, computed from a set (Si)ni�1 of
trajectories as described earlier. Associated is a list (Yi)ni�1 of
binary labels {0, 1}, describing whether an image X i is in the
interest set or not.

The training of the L2-penalized logistic regression binary
classifier is then the minimization of a cost function as
described in the following optimization problem:

FIGURE 9 | Topological analysis of a trajectory: (A) Trajectory; (B) Persistence diagram; (C) Lifetime diagram; and (D) Persistence Image.
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min
ω,c

1
2
ωTω + C∑p

i�0
log exp Yi XT

i ω + c( )( ) + 1( ).
Here ω are the weights we optimize over, c a Bernoulli mean

vector of the weights, and C an inverse regularization parameter.
Once trained, the model is evaluated on a unseen set of flattened
persistence images. The metric used for the model evaluation is
the Accuracy Score defined in the next section.

2.7 Model Evaluation
Evaluating a classification model consists of determining how
often labels are correctly or wrongly predicted for the testing
samples. In other words, it is counting how many times a sample
is correctly or wrongly labelled into a particular class. We
distinguish four qualities:

• TP (True Positive): the correct prediction of a sample into a
class;

• TN (True Negative): the correct prediction of a sample out
of a class;

• FP (False Positive): the incorrect prediction of a sample into
a class;

• FN (False Negative): the incorrect prediction of a sample out
of class.

These quantities are involved in the definition of the model
performances estimator, the AccuracyScore (A). It is giver by the
ratio of the number of correct predictions over the number of all
samples, expressed by

A � TP + TN

TP + TN + FP + FN

3 RESULTS

We recall the overall workflow of the proposed numerical
procedure, summarized in Figure 12:

1) We start by preprocessing and cleaning the raw data gathered
from the robot sensors

2) The data frequency is homogenized (minute data), and the
pathways over each patch (or location) are daily sampled. We
obtain 240 daily trajectories.

3) We compute the Rips filtration as described earlier, and then
the persistence diagrams.

4) The persistence images are computed for each daily pathway,
and used as inputs for the classification.

5) The persistence diagrams are also used to compute
barycentres over given periods, and compute the
Wasserstein distance between diagrams.

We also describe the two main classifications tasks at hand:

1) Predict the patch in which the robot is located every day, using
the 240 daily persistence images as inputs. This is a binary
classification task, associating to each daily persistent image
either the label 1 if the robot is in the target patch, or the label 0
if the robot is in any other patch. The goal is to show the
capacity to differentiate between pathways coming from
different patches based on their topological signature.

2) Predict whether a maintenance has been operated on a robot
or not, using the 50 daily persistence images associated to the
same target patch as inputs. The maintenance dates are
known. This is also a binary classification task, associating
to each daily persistent image either the label 1 if the

FIGURE 11 | Barycentre (in black) of three persistence diagrams (red,
blue and green).

FIGURE 10 | Optimal matching between two persistence diagrams
related to two robot trajectories.
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maintenance has occurred before that day, or the label 0 if not.
The goal is to show the capacity to differentiate between
functioning states of the robots, before and after a
maintenance operation, while controlling the other factors
(pathways sampled from the same patch).

The choice of the target patch #3 and has been motivated by
two considerations:

• Have two equilibrated classes in the first classification task: the
patch #3 is by far the one where the robot has spent most of
time in operation, and it involves a very equilibrated 126/114
distribution of the two classes (0 and 1) after data cleaning.

• Also within the same patch it was possible to have 50 days
time window around a maintenance operation where the
robot stayed within the patch, with 25 days before and 25
after the maintenance operation on the robot, resulting in
two perfectly balanced classes for the classification.

• We also note that the train-test split (65–35%) in both tasks
has been done with stratification: the proportion of each
class in the dataset is preserved when splitting the data
(roughly 50–50%).

Both classification tasks and associated results are summarized
in Figure 13.

3.1 Determination of the Patch in Which the
Robot Is Located
We first want to predict whether a robot is in a certain patch. For
that purpose we choose one parcel as a target, and train a

classification model as described in Section 2.6. The complete
dataset consists of daily trajectories for 240 days. For each day a
persistence image is computed, which will then be used as input
for the model (a sample is depicted in Figure 9). The samples are
labelled according to the target patch (patch #3): 1 if the robot is
in the target patch (114 samples), and 0 otherwise (126
samples). The dataset is split into 65% for training and 35%
for testing. The proposed classifier achieves an 80% accuracy
score in predicting the patch at which the robot is, based on the
persistence images.

3.2 Maintenance Prediction
Then, we consider daily trajectories in the same patch (patch
#3), consisting of 50 samples. For each day, a persistence image
is computed, that will be used as input in the classifier. The
periods considered here are the ones in between two consecutive
maintenance operations of the robot. The samples are labelled 0
if they are associated to a day before the maintenance date (25
samples), 1 otherwise (25 samples). The dataset is split into 65%
for training and 35% for testing. The model achieves a 90%
accuracy score predicting the period associated to the sampled
trajectories. The model high accuracy proves that the
topological descriptors have enough information about the
pathways to allow detecting patterns related to maintenance
events, fact that could be used for predictive maintenance
purposes.

3.3 A Time Varying Measure
Figure 14 depicts the Wasserstein distance between the
persistence diagrams for consecutive daily trajectories, with
the maintenance operation emphasized in red, whereas

FIGURE 12 | Workflow of the numerical procedure.

FIGURE 13 | Classification tasks summary.
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Figure 15 shows the barycentres of each period between
consecutive maintenance operations. As it can be noticed
from the persistence images in Figure 15, maintenance
operations affect the topology of the trajectory, as it was
expected from the fact that classification performs
successfully as just reported.

To better support our hypothesis about the effect of
maintenance on the trajectory topology, we consider the first
operation interval, the one before the first maintenance, that
correspond to the first persistence image in Figure 15 (left), and
divide it in two parts with identical length. Then, the associated
barycentres in both half intervals are obtained. Both are
represented in Figure 16.

As it can be noticed, both of them resemble very much to the
one associated to the whole interval (the first picture in
Figure 15), with a Wasserstein distance of 23.5 and 24.1
(computed on the associated diagrams). Conversely, the
distance of both to the second period is much higher (46.5
and 26.1).

Finally, we can compute the distance of the 5 latter periods to
the first one (Figure 15) and we have: 36.7, 31.0, 34.2, 33.3, 35.2,
so significantly higher than the first period compared to its own
two halves.

These results support again our assumption on the effect of
maintenance on the trajectory topology.

4 CONCLUSION

The characterization of the trajectories followed by the robot
based on the geographical location proves to be a reliable method
to differentiate between different environments affecting the
robot motion. Then, over a single patch, the classification was
proved being efficient to detect the changes in the robot signature
related to maintenance events.

The proposed topology-based framework for sampled
trajectories seems a very pertinent, powerful and intrinsic way
of quantifying, characterizing and analysing the topological and
geometrical nature of the robot’s pathways. The strength of the
framework relies on both the topology description of the

FIGURE 14 | Time series of the Wasserstein distance between the persistence diagrams for consecutive daily trajectories: in red the maintenance events.

FIGURE 15 | Persistence images of the barycentres computed for each period.

FIGURE 16 | Persistence images of the two half-intervals related to the
first period whose persistence image was the first image in Figure 15.
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trajectory at multiple scales, and the use of metrics features that
can be combined with machine learning.
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