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Abstract

Background: In this study, we aimed to analyze differences in plasma protein abundances between infants with
and without bronchopulmonary dysplasia (BPD), to add new insights into a better understanding of the pathogenesis
of this disease.

Methods: Cord and peripheral blood of neonates (≤ 30 weeks gestational age) was drawn at birth and at the 36th
postmenstrual week (36 PMA), respectively. Blood samples were retrospectively subdivided into BPD(+) and BPD(−)
groups, according to the development of BPD.

Results: Children with BPD were characterized by decreased afamin, gelsolin and carboxypeptidase N subunit 2 levels
in cord blood, and decreased galectin-3 binding protein and hemoglobin subunit gamma-1 levels, as well as an
increased serotransferrin abundance in plasma at the 36 PMA.

Conclusions: BPD development is associated with the plasma proteome changes in preterm infants, adding further
evidence for the possible involvement of disturbances in vitamin E availability and impaired immunological processes
in the progression of prematurity pulmonary complications. Moreover, it also points to the differences in proteins
related to infection resistance and maintaining an adequate level of hematocrit in infants diagnosed with BPD.
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Background
Despite indubitable improvements in neonatal care,
bronchopulmonary dysplasia (BPD) remains a most fre-
quent, adverse outcome of prematurity [1]. Until now, the
pathophysiology of BPD has not been completely under-
stood, and there are only a few effective, preventive and tar-
geted treatment strategies for this disease [2]. The known
BPD risk factors include: altered lung development in utero,
arrest of normal alveolarization and lung vascular forma-
tion due to preterm birth, ventilator- and oxygen-induced
injury to the immature lung, nutritional deficits impairing

lung maturation, inflammatory response and genetic sus-
ceptibility [2, 3]. However, despite being in a group of high-
risk BPD development, not all premature infants suffer
from this lung complication [4]. Proteomics may be useful
in developing much needed early biomarkers of lung injury,
elucidating pathological pathways and determining protein
abundance changes associated with disease progression,
which may contribute to the development of new treatment
strategies. It may also be helpful in explaining the suscepti-
bility of some preterm newborns to BPD. Up to now,
limited research has identified several proteins, like sialic
acid-binding Ig-like lectin 14, Basal Cell Adhesion Molecule
and Angiopoietin-like Protein 3, in which altered levels in
plasma were related to the increased risk of BPD [5]. Stud-
ies dealing with the bronchoalveolar lavage fluid of children
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with BPD have also revealed some proteins that are poten-
tially involved in the pathomechanism of BPD, like matrix
metalloproteinase-3 [6]. However, blood samples remain
the preferable, and best available, material for screening for
markers and obtaining additional information regarding the
course of the disease.
In our previous publications, we described the com-

parison between abundances of all plasma proteins from
prematurely born children with different gestational
ages, both from cord blood as well as at the 36th post-
menstrual week (36 PMA) [7–9]. The articles presented
that proteome differences are highly gestational age-
dependent. Recently, we also published data describing
the differences in plasma protein abundances in prema-
turely born infants with and without retinopathy of pre-
maturity (ROP) [10].
In this study, we aimed to identify potential BPD

plasma biomarkers and to provide a more molecular-
based understanding of BPD, by comparing a proteome
profile at two time points (at birth and at the 36 PMA)
in groups of infants with and without BPD. However,
according to our previous observations, the level of pre-
maturity has a fundamental influence on the plasma pro-
tein quantitative changes [7–9]. Therefore, we
performed a standardization of the obtained results for
the gestational age.

Methods
In this paper, we analyzed data obtained from a multi-
center study to explore proteome in preterm infants.
The study was approved by the Jagiellonian University
Bioethical Committee and adheres to the tenets of the
Declaration of Helsinki.

Enrolled patients
We investigated all newborns with a gestational age of ≤30
weeks, consecutively enrolled between September 1st 2013
and November 30th 2015 at the Warsaw Medical University
Neonatal Intensive Care Unit (NICU). Parents signed the in-
formed consent antenatally.

Blood sampling
After birth we collected cord blood samples from all
study participants. A second blood sample (peripheral
venous blood) was taken at 36 PMA. The plasma sam-
ples were further used for Combinatorial Peptide Ligand
Libraries- isobaric Tag for Relative and Absolute Quanti-
tation (CPLL-iTRAQ) quantitative analysis as previously
described [8, 10].

Proteome analysis
ProteoMiner beads (CPLL beads, Bio-Rad, Hercules, CA)
were used for the enrichment procedure, optimized with

reference to previously published protocols [11, 12]. The
quantitative analysis was performed by iTRAQ method
(Sciex, Framingham, MA). Samples were enriched, tryp-
sin-digested, randomly assigned to iTRAQ reagents, la-
beled according to the manufacturer instructions and,
finally, combined to the corresponding 8plex assemblies.
For data normalization, each 8plex assembly contained an
internal common reference generated by combining equal
amounts of protein from all the samples included in the
measurements. Next, labeled peptides were fractionated
off-line by Strong Cation Exchange (SCX) chromatog-
raphy on SCX Macrospin columns (Harvard Apparatus),
collecting by centrifugation (2000×g, 1min) the flow-
through fraction and 11 consecutive injections of the
eluent buffer, comprising 5, 10, 20, 40, 60, 80, 100, 150,
200, 300, and 500mM ammonium acetate in 5% ACN
and 0.1% FA. Thus, the labeled peptides from each 8plex
assembly were distributed across 12 SCX fractions. Each
fraction was then separated by reversed-phase liquid chro-
matography and applied on-line to a Velos Pro (Thermo
Scientific, Waltham, MA) mass spectrometer through a
nano-electrospray ion source. Labeled peptides were
injected onto a PepMap100 RP C18 75 μm i.d. × 15 cm
column (Thermo Scientific, Waltham, MA) via a trap col-
umn PepMap100 RP C18 75 μm i.d. × 2 cm column
(Thermo Scientific, Waltham, MA). Each peptide fraction
was separated using a 65min 7 to 45% B phase linear gra-
dient (A phase - 2% ACN and 0.1% FA; B phase - 80%
ACN and 0.1% FA) operating at a flow rate of 300 nL/min
on an UltiMate 3000 HPLC system (Thermo Scientific,
Waltham, MA). Spectra were collected in full scan mode
(400–1500 Da), followed by five pairs of Collisional-In-
duced Dissociation (CID) and Higher Energy Collisional
Dissociation (HCD) tandem mass spectrometry (MS/MS)
scans of the five most intense precursor ions from the
survey full scan and, subsequently, merged to hybrid
HCD-CID spectra by EasierMGF software [13]. These
were analyzed by the X!Tandem (The GPM Organization)
[14] and Comet [15] search engines, statistically validated
with PeptideProphet and integrated with iProphet [16]
under the Trans-Proteomic Pipeline (TPP) suite of soft-
ware (Institute for Systems Biology, Seattle, WA, USA)
[17]. The Peptide False Discovery Rate (FDR) was esti-
mated by Mayu [18] (TPP) and peptide identifications
with an FDR below 1% were considered to be correct
matches. Imputation of the missing values in peptide
abundances was performed in a MaxQuant environment
[19] on the log2-transformed normalized iTRAQ, which
reports intensities with a criterion of at least 75% of the
values present for a peptide in the dataset by drawing the
values from the normal distribution, with parameters opti-
mized to mimic a typical low abundance measurement.
DanteR software [20] was used for protein quantitation
and the statistical analysis of iTRAQ-labeled peptides.
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ANOVA was performed at the peptide level using a linear
model with the Benjamini and Hochberg False Discovery
Rate (FDR) correction used to adjust p-values. Protein fold
change was reported as a median value of corresponding
unique peptides.

Monitoring during hospitalization
All the subjects enrolled in the study underwent careful
clinical monitoring for symptoms of BPD, as the stand-
ard of care. The presence and severity of BPD were
assessed according to the NICHD diagnostic criteria at
36 week postmenstrual age or discharge to home, which-
ever came first [21]. BPD was recognized in a child
treated with oxygen > 21% for at least 28 days plus: for
mild BPD – breathing room air at 36 week postmenstr-
ual age or discharge to home, whichever came first; for
moderate BPD – requiring < 30% oxygen at 36 week
postmenstrual age or discharge to home, whichever
came first; for severe BPD – requiring ≥30% oxygen
and/or positive pressure (positive pressure ventilation or
nasal continuous positive air pressure) at 36 week post-
menstrual age or discharge to home, whichever came
first.

Division into groups
Patients who developed BPD (any level of severity) were
included into the BPD(+) group, whereas patients with-
out diagnosed BPD formed the BPD(−) group.

Data collection
The patient’s data, involving perinatal history, hospitalization
course and the incidence of prematurity complications with
special regard to the occurrence of BPD, were simultan-
eously collected.

Justification of sample size
A formal sample size calculation was not performed so
as to allow the realization of a hypothesis generating
study. The approximate sample size was based on the
calculations for the main study [7]. Briefly, the basic goal
of the main project was to compare protein abundance
levels between groups with a different degree of matur-
ity. The power analysis (https://www.dssresearch.com/
resources/calculators/) indicated that with n = 19 pa-
tients in each preterm group, the estimated power of the
study to validate the measured fold-change at the level
of 1.15 was 0.98 (p = 0.05). Therefore, n = 19 patients
were enrolled to each preterm subgroup. Using the cal-
culation mentioned above we can state that the power of
the present study is at least as in the publication men-
tioned above - we can detect at least a 1.15 fold change
protein abundance between BPD(−) and BPD(+)
patients.

Statistical analysis
Differences between the groups were compared using a Wil-
coxon-test (one-way, Chi2 approximation) or Pearson-Chi2-
test, as appropriate. Studied groups were compared directly
(crude data) and after standardization for gestational age
(adjusted data). A linear model was fitted to the protein
abundances for each protein, and t-tests and F-statistics
were computed for each contrast - group indicator and ges-
tational age. For each protein that was found to have a dif-
ferent concentration between the groups, i.e., that had a
false discovery rate–adjusted p-value < 0.05 in the first part
of the analysis, it was tested whether this presence was ex-
plained by the group indicator and/or by gestational age,
using logistic-regression analysis. For statistical analysis, an
SPSS software package (IBM SPSS Statistics for iOS, Version
24.0. Armonk, NY: IBM Corp.) was applied.

Results
Fifty-seven preterm newborns were included in the
study. Two time points of blood drawing resulted in a
total of 114 plasma samples for proteomic analysis. Dur-
ing their hospitalization in the NICU, 36 infants devel-
oping BPD formed the BPD(+) group and 21 infants not
meeting the diagnostic criteria for BPD formed the
BPD(−) group (Fig. 1).
The overall characteristics of the cohort and the differ-

ences in selected variables across the analyzed groups
are shown in Table 1.
Children, developing BPD during hospitalization, were

characterized by a lower gestational age and birthweight,
and that they also developed pneumonia, patent ductus
arteriosus and ROP more often. Among the children with
BPD, in 29 the mild form of BPD was recognized, whereas
seven of them presented moderate BPD and none severe
BPD. This sub-group with moderate BPD generally con-
sisted of the most immature infants with a median gesta-
tional age of 24 weeks [24; 26], birthweight – 700 g [670;
730], female gender – 7 (100%), prenatal steroids – 5 (71%),
sepsis – 1 (14%), intraventricular hemorrhage grade 3/4–1
(14%), patent ductus arteriosus - 7 (100%), pneumonia - 3
(43%), necrotizing enterocolitis - 1 (14%), ROP - 6 (86%),
ROP requiring laser photocoagulation - 2 (29%).
In the first stage, we analyzed the concentrations of

proteins in CPLL-enriched plasma obtained from the
cord blood. The abundance level of 33 of the proteins
for the group who, during hospitalization, developed
BPD were significantly different when compared to pre-
term infants without this complication (Table 2).
The quantitative comparisons between samples collected

at 36 PMA from BPD(+) and BPD(−) groups revealed a sig-
nificantly different abundance level of 27 proteins (Table 3).
After standardization for gestational age, children with

BPD were characterized by a decreased abundance of afa-
min, gelsolin and carboxypeptidase N subunit 2, together
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with a borderline, decreased apolipoprotein A-I level in
cord blood. They also had a decreased galectin-3 binding
protein and hemoglobin subunit gamma-1 level, as well as
an increased serotransferrin level in plasma at the 36
PMA (Tables 2 and 3).

Discussion
Our study presents the results of plasma proteome ana-
lysis of infants ≤30 gestational weeks who developed or
omitted BPD. Our findings support previous literature
by showing that a lower gestational age and birth weight
correlate with a higher risk of developing BPD [2]. It is
noteworthy that the BPD(+) group developed ROP more
often, which may be explained by the fact that these

prematurity complications share common etiologic fac-
tors [22]. Moreover, we identified three proteins, whose
decreased abundance in cord blood plasma separates
children with and without the risk of subsequently de-
veloping BPD. Furthermore, we also found that at the 36
PMA, children with diagnosed BPD had a different
plasma level of the other three proteins, pointing to add-
itional complications that children with BPD are ex-
posed to.
Afamin is a vitamin E-binding serum glycoprotein,

with the highest affinity to α- and γ-tocopherol isoforms
[23, 24]. Moreover, it is involved in anti-apoptotic cellular
processes related to oxidative stress [25]. Afamin in the
bloodstream is partially associated with apolipoprotein A-I

Fig. 1 Flowchart showing samples included in the iTRAQ analysis

Zasada et al. Italian Journal of Pediatrics          (2019) 45:112 Page 4 of 9



(ApoA1)-containing high density lipoprotein subfractions
[24]. As evidenced by the iTRAQ method, both proteins
share the same concentration shift in cord blood samples.
Of note, lipoproteins are considered main blood carrier
vehicles for tocopherols [26]. The role of oxidative stress
is considered in the complex pathogenesis of BPD, and
current studies report a protective role of antioxidant
melatonin against hyperoxic lung injury both in the ro-
dents [27] and preterm neonates [28, 29]. Tocopherols are
one of the most potent antioxidants, and vitamin E defi-
ciency has been associated with an increased risk of BPD
[30, 31]. We are tempted to speculate that a decreased
abundance of afamin and ApoA1 in cord blood may indi-
cate disturbances in tocopherol availability and, resulting
from this, a lower potential to neutralize oxidative damage
present at the beginning of life of premature infants.
Therefore, there is an increased risk of them developing
chronic lung injury. Several studies have shown a de-
creased level of vitamin E in prematurely born neonates
shortly after birth [32]. Unfortunately, until now, clinical
studies aimed at reducing the frequency of BPD by the
supplementation of vitamin E have not brought the ex-
pected favorable results [33]. Our finding may support the
idea of re-reviewing the hitherto knowledge about the
connection between vitamin E and BPD, and the possible
methods of preventing or alleviating this severe complica-
tion of prematurity, by obtaining the adequate level of ap-
propriate isoform of this antioxidant in the maternal/
infant organism [34]. We also believe that it is worth
investigating whether the lower level of vitamin E carrier
proteins might decrease the bioavailability of vitamin E,
despite supplementation.

Carboxypeptidase N (CPN) consists of two small (CPN1)
and two large subunits (CPN2). It can indirectly modulate
immune response by cleaving amino acids (lysine and ar-
ginine) from the carboxy-terminus of selected proteins [35].
CPN reduces the activity of kallidin, involved in acute and
chronic phase of inflammatory response [36], and inacti-
vates anaphylatoxins [37]. Additionally, it supports the pro-
duction of nitric oxide [35]. We postulate, that the lower
abundance of CPN observed in the cord blood of neonates
that develop BPD, might be related to the impaired mecha-
nisms discussed above.
Gelsolin is involved in the regulation of cytoskeletal for-

mation [38]. Its deficiency has been linked with blunted re-
sponses to stress conditions of blood platelets, neutrophils
and fibroblasts, resulting in impaired hemostasis, inflamma-
tion and wound healing [39]. Of note, an insufficiency of
gelsolin in rodents has also been shown to cause increased
permeability of lung vessels, suggesting that gelsolin is im-
portant for the local response to lung injury [38].
Galectin-3-binding protein (Gal-3BP) is a significant com-

ponent of innate immunity [40], that modulates the secre-
tion of several cytokines [41] and increases the amount of
surface antigens important for immune responses [42–44].
Additionally, it possesses antiviral properties [45], and in
case of bacterial infection it suppresses the lipopolysacchar-
ide (LPS)-induced secretion of cytokines [46], as well as pro-
duction of reactive oxygen species [47]. We postulate, that
the lower abundance of this protein at the 36 PMA in in-
fants with BPD, might be related to the observed decreased
resistance to infections [48–50], moreover, it may exacerbate
infections affecting children with BPD-damaged lungs.

Table 1 Comparison of selected demographic variables and hospitalization data of the patients in the studied groups

BPD(−) group n = 21 BPD(+) group n = 36 p

Gestational age [weeks], median [Q25; Q75] 29 [28; 29] 26 [24.25; 28] < 0.0001 a

Birthweight [g], median [Q25; Q75] 1145 [990; 1415] 870 [732.5; 1000] 0.0002 a

Female gender; n (%) 13 (62%) 25 (69%) 0.5602 b

Antenatal steroids; n (%) 15 (71%) 29 (81%) 0.4283 b

Sepsis; n (%) 1 (5%) 2 (6%) 0.8970 b

Intraventricular hemorrhage grade 3/4; n (%) 0 (0%) 2 (6%) 0.2715 b

Patent ductus arteriosus; n (%) 3 (14%) 23 (64%) 0.0003 b

Pneumonia; n (%) 0 (0%) 11 (31%) 0.0042 b

Necrotizing enterocolitis; n (%) 0 (0%) 5 (14%) 0.0695 b

Bronchopulmonary dysplasia; n (%) 0 (0%) 36 (100%) < 0.0001 b

- mild 29 (81%)

- moderate 7 (19%)

- severe 0 (0%)

Retinopathy of prematurity; n (%) 4 (19%) 24 (67%) 0.0005 b

- requiring laser coagulation 0 (0%) 5 (14%) 0.0738 b

a Wilcoxon-test (one-way, Chi2 approximation); b Pearson-Chi2-test
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However, whether a lower amount of this protein is also
present beyond an early infancy period requires further
research.
Fetal hemoglobin (HbF), consisting of two alpha and

two gamma chains, is gradually replaced by adult vari-
ants (two alpha and two beta chains) late in infancy.
HbF is characterized by a greater affinity for oxygen and
the ability to saturate with oxygen at a lower partial
pressure. Presumably a lower abundance of Hb subunit
gamma-1 in children with BPD may relate to the more

frequent former transfusions of adult packed red blood
cells in this group of patients. However, our results are
contrary to the study of Bard and Prosmanne, who ob-
served an increased production of HbF in children with
BPD during the first year of life, probably as a result of
an erythropoietic response to hypoxemia [51].
Serotransferrin transports iron from sites of storage to

regions of iron metabolism [52]. Its level increases in
case of iron deficiency. As ferropenia and anemia are
frequent in children with chronic respiratory diseases

Table 2 The baseline differences in cord blood plasma proteome among infants who, subsequently during hospitalization at NICU,
developed BPD vs. those who did not develop this condition, before and after adjustment for gestational age

UniProt Protein Name UniProt accession Ratio p-value for multiple
comparisons

Ratio adjusted
for GA

p adjusted for GA and
multiple comparisons

Afamin P43652 0.924591928 0.034838518 0.815 0.0105

Alpha-1-acid glycoprotein 2 P19652 1.191226628 0.041937129 0.941 0.521

Alpha-1-antichymotrypsin P01011 1.283782192 2.97E-07 0.942 0.851

Alpha-1-antitrypsin P01009 1.116832587 3.96E-05 0.948 0.781

Alpha-1B-glycoprotein P04217 1.098381007 0.037425994 0.906 0.562

Alpha-2-HS-glycoprotein P02765 1.122196808 0.002698155 0.941 0.527

Alpha-2-macroglobulin P01023 0.870825049 3.32E-10 0.814 0.346

Alpha-fetoprotein P02771 1.116445176 0.000580535 0.565 0.151

Angiotensinogen P01019 1.1105723 0.009877406 0.877 0.561

Apolipoprotein A-I P02647 0.898460938 1.42E-05 0.755 0.055

Apolipoprotein A-IV P06727 0.916911033 0.001791272 0.911 0.551

Apolipoprotein C-II P02655 1.212022332 9.25E-07 1.12 0.689

Carboxypeptidase N subunit 2 P22792 0.869027963 0.000698996 0.694 0.048

Corticosteroid-binding globulin P08185 1.110918618 0.022913597 0.992 0.981

Galectin-3-binding protein Q08380 0.873539268 0.000474608 0.804 0.236

Gelsolin P06396 0.926610554 0.010030638 0.935 0.044

Haptoglobin P00738 1.716109241 1.31E-09 1.14 0.804

Hemoglobin subunit alpha P69905 0.819939091 0.007337795 0.631 0.425

Hemoglobin subunit beta P68871 0.758775176 6.56E-07 0.627 0.272

Hemoglobin subunit gamma-1 P69891 0.734345636 2.21E-06 0.613 0.342

Hemoglobin subunit gamma-2 P69892 0.818679705 0.003576161 0.581 0.423

Hemopexin P02790 1.355543556 3.96E-11 0.96 0.816

Immunoglobulin heavy constant gamma 1 P01857 0.845180753 0.004295591 0.889 0.668

Immunoglobulin heavy constant gamma 3 P01860 0.894240288 0.019094856 0.817 0.381

Immunoglobulin kappa constant P01834 0.884133158 0.02568417 0.914 0.65

Inter-alpha-trypsin inhibitor heavy chain H2 P19823 0.910909468 7.64E-05 0.886 0.451

Inter-alpha-trypsin inhibitor heavy chain H3 Q06033 1.10230461 0.005007488 0.969 0.871

Inter-alpha-trypsin inhibitor heavy chain H4 Q14624 1.130490456 0.008325306 0.952 0.792

Leucine-rich alpha-2-glycoprotein P02750 1.156790051 0.007822803 1.036 0.687

Lumican P51884 0.90816737 0.001983702 0.946 0.687

Lymphatic vessel endothelial hyaluronic acid
receptor 1

Q9Y5Y7 1.149880659 0.018921004 1.134 0.381

Plasma protease C1 inhibitor P05155 1.153150546 1.27E-06 1.012 0.939

Vitronectin P04004 1.152815567 9.09E-05 0.824 0.44
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[53], we suggest that our finding of an increased abun-
dance of serotransferrin in children with BPD may be
connected with this observation. Moreover, serotransfer-
rin is also an acute phase protein that may indicate a
low-grade inflammation present at 36 PMA in children
from the BPD group.
Limitations: The specific character of the studied

population might have influenced the results that were
obtained; namely that they were biased towards a statis-
tically significant difference. The patient population may
not be applicable to other NICUs (for example: the BPD
rate), so our results may not be easily generalizable. The
BPD group consisted mainly of children with a mild
form of BPD, which may raise doubts about whether it
is a chronic lung disease or only a more severe respira-
tory distress syndrome – a lack of children with severe
BPD is one of the limitations of this research. Due to the

small size of the subgroup with moderate BPD, we did
not carry out a separate analysis of this infants. More-
over, due to the nature of our study, there may be a po-
tential collider bias in controlling for gestational age
when low gestational age is highly associated with pre-
term birth, which is linked with BPD and potentially
pathophysiologic factors. Also, we cannot exclude a po-
tential influence of some factors such as patent ductus
arteriosus or pneumonia on the observed differences in
protein abundances between the BPD and non-BPD
groups. Additionally, the validation of proteomic results
by another method would strengthen the iTRAQ quanti-
tation results. It must be emphasized, that the challenge
in our study was the in-depth screening insight into
changes in plasma proteins, which inevitably imposes
the requirements of a large amount of the sample and
specific preparation protocols to be used with the

Table 3 Differences in plasma proteome among infants who developed BPD vs. those who did not develop this disease, before and
after adjustment for gestational age, assessed at 36 PMA

UniProt Protein Name UniProt accession Ratio p value for multiple
comparisons

Ratio adjusted
for GA

p adjusted for GA and
multiple comparisons

Alpha-2-antiplasmin P08697 0.902954091 0.009571493 1.07 0.652

Alpha-fetoprotein P02771 1.205017172 1.48E-06 1.073 0.651

Apolipoprotein A-I P02647 0.921011303 0.000666248 0.97 0.851

Apolipoprotein A-IV P06727 0.929138146 0.00183834 0.91 0.771

Carboxypeptidase N subunit 2 P22792 0.913686152 0.034019428 0.859 0.343

CD44 antigen P16070 0.857799986 0.001787237 1.111 0.514

Clusterin P10909 1.134578843 0.000701756 1.043 0.733

Complement C1r subcomponent P00736 0.900163532 0.040257434 0.976 0.884

Complement C1s subcomponent P09871 0.858210146 2.42E-06 1.018 0.911

Corticosteroid-binding globulin P08185 1.097266083 0.048487179 1.037 0.707

Fibrinogen gamma chain P02679 1.073909534 0.049721103 1.154 0.309

Galectin-3-binding protein Q08380 0.859983677 9.90E-05 0.786 0.025

Gelsolin P06396 0.886021433 8.90E-05 0.953 0.708

Haptoglobin P00738 1.484385427 5.56E-05 1.286 0.478

Hemoglobin subunit beta P68871 1.250987956 0.000612418 1.114 0.329

Hemoglobin subunit gamma-1 P69891 0.804233584 0.007778202 0.776 0.038

Immunoglobulin heavy constant gamma 1 P01857 0.854508568 0.017674648 1.22 0.369

Immunoglobulin heavy constant gamma 3 P01860 0.889487254 0.027804083 0.982 0.9583

Immunoglobulin lambda constant 2; Immunoglobulin
lambda constant 3

P0CG06 0.762467463 0.040257434 0.919 0.543

Immunoglobulin lambda-like polypeptide 5 B9A064 0.881285593 0.029037441 1.024 0.811

Inter-alpha-trypsin inhibitor heavy chain H2 P19823 0.924508903 0.001365124 0.988 0.924

Kininogen-1 P01042 1.058078701 0.03628071 1.134 0.319

Leucine-rich alpha-2-glycoprotein P02750 1.166917588 0.002032426 1.224 0.278

Osteopontin P10451 0.872885059 0.027176592 0.982 0.92

Serotransferrin P02787 1.123191657 4.19E-06 1.284 0.023

Transthyretin P02766 1.183233993 0.017525513 1.122 0.432

Vitronectin P04004 1.084990139 0.035870579 0.951 0.717
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multidimensional chromatography - mass spectrometry
analysis. However, this unique methodology alone offers
the possibility to overcome the issue of the specific dynamic
range of protein concentrations in the plasma for the un-
biased, untargeted proteome-wide quantitative measure-
ments. Thus, we present here a blueprint of plasma
proteome changes in preterm neonates for further, targeted
studies, designed to unravel the influence of the individual
proteins on BPD development and progression, as well as
for their biomarker utility.

Conclusions
Our study reveals that BPD development is associated
with the plasma proteome changes in preterm infants,
adding additional evidence for their possible involve-
ment in disturbances of vitamin E availability and im-
paired immunological processes in the progression of
neonate pulmonary complications. Moreover, it also
points to the differences in proteins related to infection
resistance and maintaining adequate hematocrit in chil-
dren diagnosed with BPD.
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