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Abstract
The use of multidimensional forced-choice questionnaires has been proposed as a means of improving validity in the assessment
of non-cognitive attributes in high-stakes scenarios. However, the reduced precision of trait estimates in this questionnaire format
is an important drawback. Accordingly, this article presents an optimization procedure for assembling pairwise forced-choice
questionnaires while maximizing posterior marginal reliabilities. This procedure is performed through the adaptation of a known
genetic algorithm (GA) for combinatorial problems. In a simulation study, the efficiency of the proposed procedure was
compared with a quasi-brute-force (BF) search. For this purpose, five-dimensional item pools were simulated to emulate the
real problem of generating a forced-choice personality questionnaire under the five-factor model. Three factors were manipu-
lated: (1) the length of the questionnaire, (2) the relative item pool size with respect to the questionnaire’s length, and (3) the true
correlations between traits. The recovery of the person parameters for each assembled questionnaire was evaluated through the
squared correlation between estimated and true parameters, the root mean square error between the estimated and true parameters,
the average difference between the estimated and true inter-trait correlations, and the average standard error for each trait level.
The proposed GA offered more accurate trait estimates than the BF search within a reasonable computation time in every
simulation condition. Such improvements were especially important when measuring correlated traits and when the relative
item pool sizes were higher. A user-friendly online implementation of the algorithm was made available to the users.

Keywords forced-choice format . ipsative data . multidimensional item response theory . reliability . test assembly . genetic
algorithms

Several meta-analytic studies from the last decades indicate
that non-cognitive domains such as personality, motivation,
and leadership can offer predictive power over academic and
work performance (e.g., Judge et al., 2013; Montano et al.,
2017; Poropat, 2009; Richardson et al., 2012). Such findings
have increased interest in the structured assessment of these
characteristics for selection purposes (Salgado & De Fruyt,
2017). These non-cognitive dimensions have been tradition-
ally measured using rating scale-based self-reports, in which
respondents must indicate their agreement with a set of state-
ments describing some behaviors (e.g., Likert scales).
However, this assessment format in the selection scenario

has been shown to be susceptible to important response biases
such as acquiescence (ACQ), social desirability responding
(SDR), and faking (e.g., Heggestad et al., 2006; Paulhus,
1991). The ACQ consists of a tendency to respond toward
the upper end of the rating scale, regardless of one’s true trait
level. In turn, SDR implies that respondents have a tendency
to provide overly positive self-descriptions, either caused by
self-deception or impression management (Paulhus, 2002).
Finally, faking refers to a situational rather than a general
tendency and the intentional behavior of misrepresenting one-
self to achieve personal goals, such as being selected for a job
(MacCann et al., 2011).

If unaccounted for, such response biases may affect the
fairness and validity of the assessments, compromising the
selection results. For instance, candidates with optimum levels
in the constructs of interest who do not engage in SDR or
faking can score lower than less appropriate candidates that
respond in a more desirable way. Additionally, the presence of
the ACQ style has been found to be directly associated with
age and inversely related to years of formal education (e.g.,
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Weijters et al., 2010), which can also affect the selection pro-
cess. Furthermore, these response styles may distort the ques-
tionnaire’s psychometric properties. For example, the exis-
tence of response biases may bias the item intercorrelation
matrix, distorting the questionnaire’s estimated factor struc-
ture and leading to model misfit (e.g., Abad et al., 2018;
Navarro-González et al., 2016). In addition, SDR and ACQ
may inflate the reliability estimates and convergent validities
with other rating scale-based measures due to the common
variance introduced by these response styles (e.g., Soto
et al., 2008; Soto & John, 2019), giving the impression that
an assessment is more trustworthy than it truly is.

The use of multidimensional forced-choice questionnaires
(FCQs) has been proposed to prevent these response biases in
the assessment of non-cognitive domains (e.g., Cao &
Drasgow, 2019; Cheung & Chan, 2002; Salgado & Táuriz,
2014; Wetzel et al., 2021), as they offer comparable or better
convergent and criterion-related validity (e.g., Kreitchmann
et al., 2019; Otero et al., 2020). This format differs from rating
scales, in that instead of indicating one’s agreement with a
statement on an ordinal scale, respondents must rank two or
more statements within a block according to their agreement
with each statement. On the one hand, by dispensing the or-
dinal scale, FCQ eliminates acquiescent responding (Cheung
& Chan, 2002; Ferrando et al., 2011). On the other hand, if
statements have similar social desirability, SDR and faking
will be harder to engage with (Lee & Joo, 2021; Wetzel
et al., 2021).

As is widely known, an assessment’s reliability sets the
upper boundary for other aspects of validity. Thus, attenuating
the effects of response styles with forced-choice formats will
only be truly effective if the questionnaire is able to provide
accurate scores. As will be detailed further, a single pool of
items can lead to FCQs with very different reliabilities, de-
pending on the specific characteristics of the items forming
each block. Unfortunately, given these questionnaire’s high
dimensionality and the complexity of the combinatorics for
assembling items in blocks, the existing methods to maximize
test reliabilities with single-statement items, such as linear
programming, are not feasible for FCQ. Specifically, the num-
ber of possible combinations of N items in J blocks of size V
is:

N !

J ! N−JVð Þ!V! J ; ð1Þ

which will most likely be a large number under realistic
conditions. For instance, the simple assembly of 30 forced-
choice pairs out of 60 items (i.e., J = 30, V = 2,N = 60) derives
into approximately 2.92 × 1040 unique candidate question-
naires. Thus, even in a very optimistic scenario in which
forming and evaluating a questionnaire takes a nanosecond,
it would take longer than the age of the universe to consider all

possibilities. Currently, no tool is available to efficiently ad-
dress this problem. Therefore, this article aims to offer a pro-
cedure capable of examining this search space and optimizing
the accuracy of attribute scores. For simplicity, this article
focuses on the assembly of forced-choice pairs (i.e., V = 2),
although the procedure presented here can be further extended
for greater V values.

Forced-choice modeling

Historically, forced-choice-based measurement has been
called ipsative to denote an interdependency among the trait
scores as a result of the forced-choice format, since scoring
higher in one dimension necessarily implies scoring lower in
the other dimensions presented in the same blocks. In this
sense, under classical test theory, ipsative measures can only
be compared within each subject (Cattell, 1944). As a result,
validity evidence for ipsative measures would also be im-
paired. Specifically, the expected intercorrelation between
scores in completely ipsative measurements would be neces-
sarily negative, that is, −1/(D − 1), where D is the number of
traits evaluated, while the sum of their correlations with each
external criterion would be zero (Hicks, 1970).

Recent research has shown that score ipsativity is not a
consequence of the response format itself, but rather of the
inadequate modeling of the psychological process underlying
comparative judgments (Meade, 2004). Currently, there are a
wide variety of models under confirmatory factor analysis and
item response theory (IRT) that enable us to outline the re-
sponse processes involved in forced-choice formats and to
obtain normative scores (Brown & Maydeu-Olivares, 2011;
Bunji & Okada, 2020; McCloy et al., 2005; Morillo et al.,
2016; Stark et al., 2005). The multi-unidimensional pairwise
preference (MUPP; Stark et al., 2005) framework for forced-
choice pairs, for instance, conceives the response process as a
result of independent evaluation of agreement with each state-
ment in a pair and the further decision of which to select.
Equation 2 provides the probability of endorsing one state-
ment over the other:

P yi; j ¼ 1
� �

¼ P xi; j1 ¼ 1
� �

P xi; j2 ¼ 0
� �

P xi; j1 ¼ 1
� �

P xi; j2 ¼ 0
� �þ P xi; j1 ¼ 0

� �
P xi; j2 ¼ 1
� � ; ð2Þ

where yi, j denotes the position of the selected item on the
block (i.e., 1 or 2), and xi; j1 and xi; j2 are the latent responses of
subject i for items j1 and j2, respectively, being equal to 1 if
respondent i endorses the item, and 0 otherwise. Please note
that the model makes no provisions for the endorsement of
both or none of the statements; therefore, it assumes that re-
spondents in these situations must reevaluate each statement
independently until a preference is found (Stark et al., 2005).
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Within the MUPP framework, the model underlying a sub-
ject’s probability of agreement with each statement, P(xi, j),
can be defined either from a dominance perspective (i.e., the
probability of agreement increases monotonically with trait
level) or from an ideal-point understanding (i.e., the probabil-
ity of agreement is non-monotonic and increases as trait level
and item threshold approach). Although the appropriateness
of these models relies mainly on empirical grounds, currently
most items are dominance items (Brown &Maydeu-Olivares,
2010), and therefore, in this study, we will only address the
MUPP’s dominance variant.

By assuming a two-parameter logistic (2PL), the probabil-
ity of agreement with each pth statement in the jth pair

conditioned on the ith person’s true level in the dth latent trait
(θi;d jp

) is given by:

P xi; jp ¼ 1jθi;d jp

� �
¼

exp ajpθi;d jp
þ c jp

� �
1þ exp ajpθi;d jp

þ c jp
� � ; ð3Þ

where ajp and c jp are the slope and intercept parameters,

respectively, with c jp ¼ −ajp b jp , in which bjp is item difficul-

ty in the traditional IRT parameterization.

By replacing the P xi; jp
� �

terms from the general MUPP

model using Eq. 3, the products in Eq. 2 are:

P xi; j1 ¼ 1jθi;d j1

� �
P xi; j2 ¼ 0jθi;d j2

� �
¼

exp a j1θi;d j1
þ c j1

h i
1þ exp aj1θi;d j1

þ c j1
h i 1

1þ exp a j2θi;d j2
þ c j2

h i
and

P xi; j1 ¼ 0jθi;d j1

� �
P xi; j2 ¼ 1jθi;d j2

� �
¼ 1

1þ exp a j1θi;d j1
þ c j1

h i exp a j2θi;d j2
þ c j2

h i
1þ exp aj2θi;d j2

þ c j2
h i :

ð4Þ

Therefore, Eq. 2 can be simplified to theMUPP-2PLmodel
(Morillo et al., 2016):

P yi; j ¼ 1jθi;d j1
; θi;d j2

� �
¼

exp a j1θi;d j1
−aj2θi;d j2

þ c j1−c j2
� �h i

1þ exp aj1θi;d j1
−aj2θi;d j2

þ c j1−c j2
� �h i ð5Þ

which, for D dimensions, can be parameterized as:

P yi; j ¼ 1jθi
� �

¼
exp s

0
jθi þ c j

� �
1þ exp s

0
jθi þ c j

� � ; ð6Þ

where θi is a D × 1 vector containing the trait level scores of
the ith subject, and s'j is a 1 × D vector including the scale
parameters for the D measured dimensions, where sj, d = 0 if
the items do not measure the dimension d, and s j;d ¼ pjp

a jp ,

being pjp
= +1 or pjp

= −1 depending on the position of the

item measuring the dimension d on the block (i.e., first or
second, respectively). Please note that this definition of p jp

is adequate if the data are encoded as yi, j = 1 and yi, j = 2 for
endorsement of the first and second statements, respectively;
otherwise, it will provide inverted trait estimates. Given the
previous notation, parameter cj represents the block threshold,
where c j ¼ c j1−c j2 . As shown in Eq. 6, the MUPP-2PL re-
sponse function is identical to the multidimensional compen-
satory logistic model (MCLM; McKinley & Reckase, 1982),
with the exception that for modeling endorsement of the first
item in a block (yi, j = 1), the scale parameter of the second

item will be the negative of the original item discrimination
parameter under the 2PL.

The accuracy of the maximum-likelihood estimates of the
scores can be approximated through the asymptotic variances
of the trait estimators obtained from the diagonal of the inverse
of the Fisher test information function (TIF). In turn, the
Fisher information function at the block and questionnaire
levels under the MUPP-2PL can be defined as in Eqs. 7 and
8, respectively, where Qj(θ) = 1 − Pj(θ). Note that Eq. 8 as-
sumes conditional independence between blocks; thus, each
item must not be included in more than one block.

I j θð Þ ¼ s js
0
jP j θð ÞQj θð Þ; ð7Þ

I θð Þ ¼ ∑
J

j¼1
I j θð Þ: ð8Þ

As can be seen in Eqs. 7 and 8, the asymptotic variances of
the θ estimators depend on (1) the product of the scale param-
eters in each block and (2) the product of the MUPP-2PL
response probabilities, conditional to θ, for either item in the
block.

It has been found that regardless of each block’s individual
characteristics, some questionnaire conditions can still lead to
some degree of ipsativity, which may undermine the precision
of the normative scores and offer negatively biased trait inter-
correlations. On the one hand, under the dominance frame-
work, the Smatrix (a J ×Dmatrix with the s vectors for every
block as defined in Eq. 6) should be of full rank in order for the
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model to be identified. This condition will normally be met
unless the scale parameters have special properties, for exam-
ple, if all scale parameters are equal within every block or
within every dimension (Brown, 2016). On the other hand,
some aspects of questionnaire design have been found to im-
prove the precision of trait estimates. For instance, under
ideal-point IRT models, Stark et al. (2005) indicate the neces-
sity of including unidimensional blocks to help identify the
metric of the estimates. In addition, Brown and Maydeu-
Olivares (2011, 2018) provide some general guidelines for
constructing questionnaires under dominance IRT models.
Specifically, these authors outline the positive effect of the
following aspects on estimation precision: (1) the inclusion
of blocks of items with different keyed directions, (2) the
assessment of a large number of traits, (3) a low average cor-
relation between traits, and (4) the increase in the number of
statements forming each block. Regarding the latter, blocks of
three and four items were found to provide higher reliability
than pairs (e.g., Brown & Maydeu-Olivares, 2011; Joo et al.,
2020).

As pointed out, the inclusion of blocks composed of items
keyed in different directions (i.e., different polarities) is effec-
tive for improving estimation accuracy. However, researchers
argue that hetero-polar blocks can be problematic in practice
(Bürkner et al., 2019; Lee & Joo, 2021; Morillo et al., 2016).
In this sense, Bürkner et al. (2019) outline four main reasons
for not using unequally keyed blocks. First, judging one’s
agreement with negatively keyed items can be cognitively
demanding, compounded with the fact that the forced-choice
format itself is already somewhat challenging (Sass et al.,
2020), may affect the response process and compromise the
construct validity. Second, negatively keyed items may add
methodological variance (Dueber et al., 2019), forming a sep-
arate method factor. Third, if traits are oriented in the same
direction as social desirability, positively keyed items will
most probably be socially desirable, whereas negatively keyed
items will be undesirable, and unequally keyed blocks will
have a clearly more socially desirable option. Therefore,
hetero-polar blocks may fail to control social desirability
biases, which is one of the main merits of forced-choice for-
mats. Fourth, and finally, in realistic scenarios, if respondents
are able to identify and select the most desirable option in a
block, that block will be uninformative for person parameter
estimation (Wang et al., 2017) and may not improve the ac-
curacy of trait estimates as expected.

Although several authors have raised the question of
whether blocks with opposite-keyed items are robust to faking
(e.g., Bürkner et al., 2019; Lee & Joo, 2021; Ng et al., 2021),
there is still no empirical investigation directly comparing
homo-polar (i.e., same polarities) and hetero-polar blocks with
normative scoring. On the one hand, as evidence for the in-
clusion of hetero-polar blocks, Wetzel et al. (2021) found that
FCQs with hetero-polar blocks were still more robust to

faking than single-stimulus items (i.e., rating scales). On the
other hand, Lee and Joo (2021) analyzed the invariance of
item parameters in honest and faking conditions and sug-
gested that hetero-polar blocks may be less invariant than
homo-polar blocks. In addition, in counterpoint to Bürkner
et al.’s (2019) first argument, the cognitive response process
underlying negatively keyed items in forced-choice blocks has
not yet been empirically investigated. Regarding Bürkner
et al.’s (2019) second point, although a separate method factor
for negatively keyed items may be expected for single-
stimulus responses, we agree with one of the reviewer’s sug-
gestion that it may be associated with acquiescence bias and
might not be generalized for the forced-choice format. Finally,
it is the opinion of the authors of this article that this debate
and future investigations on the subject should be defined in
more specific terms. For instance, it can be hypothesized that
the inclusion of opposite-keyed item blocks in low-stakes sce-
narios may improve the accuracy of trait estimates with little
harm to the validity of the assessment due to self-deception. In
addition, in high-stakes scenarios, it can be postulated that if
the traits being compared within a block have neutral social
desirability, the inclusion of negatively keyed items may not
affect the validity of the measurement of such traits. However,
the inclusion of hetero-polar blocks has yet to be clarified
through empirical studies. Therefore, in this study, two sce-
narios were considered. First, FCQ optimization was investi-
gated using only positively keyed items. Later, a follow-up
study is presented, including both positively keyed and
opposite-keyed item pairs.

Overview of test optimization

The IRT constitutes the perfect framework for test assembly
with the goal of maximizing precision on certain pre-specified
trait levels. For unidimensional models, under the assumption
of local independence between the items, the TIF, I(θ), reflects
the sum of the item information functions and is asymptotic to
the variance of the maximum-likelihood estimator of θ. This
aggregation principle allows us to conceptualize the assembly
as a constrained combinatorial linear optimization problem, in
which the inclusion of the items in the test is modeled as a
vector z of binary decision variables (0: non-selected; 1: se-
lected), aiming to maximize the desired objective function
(e.g., the test information for a specific θ value). For instance,

searching for items that minimize var bθjθ� �
is asymptotically

equivalent to maximizing:

∑
j
z jI j θð Þ: ð9Þ

These types of optimization problems, with the possibility
of adding additional restrictions such as test length and word
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count, can be solved using mixed-integer programming
(MIP). However, test assembly becomes more complicated
as the dimensionality of the questionnaires increases, as in
FCQ, because the TIF becomes an information matrix (see
Eq. 8). For instance, for two-dimensional questionnaires, the
TIF is given by:

I θð Þ ¼
∑
j
s2j;1Pj θð ÞQj θð Þ ∑

j
s j;1s j;2P j θð ÞQj θð Þ

∑
j
s j;1s j;2Pj θð ÞQj θð Þ∑

j
s2j;2P j θð ÞQj θð Þ

2664
3775: ð10Þ

The asymptotic trait estimator variance becomes (van der
Linden, 2006):

Var bθjθ� �
¼ I θð Þ−1 ¼

∑ js
2
j;1P j θð ÞQj θð Þ

I θð Þj j
∑ js j;1s j;2P j θð ÞQj θð Þ

I θð Þj j
∑ js j;1s j;2P j θð ÞQj θð Þ

I θð Þj j
∑ js

2
j;2P j θð ÞQj θð Þ

I θð Þj j

26664
37775;

ð11Þ

where

I θð Þj j ¼ ∑
j
s2j;1Pj θð ÞQj θð Þ

" #
∑
j
s2j;2P j θð ÞQj θð Þ

" #
− ∑

j
s j;1s j;2Pj θð ÞQj θð Þ

" #2

:

ð12Þ

Thus, in the multidimensional case, the estimator variances
cannot be directly formulated as linear functions of the deci-
sion variables (i.e., z). However, van der Linden (2006, p.
194) shows that variance functions can be linearly optimized
by decomposing them into linear components. Specifically,
the author proposes an approximation by minimizing the
off-diagonal term of the information matrix and maximizing
the diagonal terms by imposing lower bound constraints. This
can be formulated as follows:

minimize ∑ jz js j;1s j;2P j θð ÞQj θð Þ; ð13Þ

subject to

∑
j
z js2j;dP j θð ÞQj θð Þ≥k; for all d dimensions;

where several values of k must be iteratively tested until opti-
mal variance functions are found. Additionally, to obtain pre-
cise θ estimates for each test taker, optimizing the question-
naire for a singleθ does not suffice. Thus, to account for more
than one point in the θ space, van der Linden (2006, p. 198)
suggests the use of the multidimensional minimax approach,
in which a maximum, y, is minimized subject to:

∑
j
z js j;1s j;2Pj θlð ÞQj θlð Þ≤y; for all l; ð14Þ

where θl denotes a given point in an L × D quadrature grid of
the selected evaluation points. Given that the TIF is a smooth,

well-behaved function of θ, numerically approximating the
TIF over a finite set of well-spread θ points should provide
a good indicator of its true form (van der Linden, 2006).

Linear models for automated test assembly are promising,
as they allow the use of general MIP solvers instead of spe-
cialized heuristics (van der Linden & Li, 2016). However,
despite being an apparently straightforward solution, when
applied to FCQ assembly, they can be computationally costly
because of the vast size of the combinatorial search space.
First, the analysis units (the decision variables) are not the
items; rather, they are the feasible blocks, being that the latter
are noticeably larger in number. For instance, for 60 items
measuring five dimensions (12 items per dimension), there
are 1440 possible hetero-dimensional item pairs. Second, the
number of constraints can be substantially large. To account
for a complete quadrature grid in a five-dimensional test with
three quadrature points per dimension, 243 θ vectors must be
considered (i.e., L = 35). Therefore, to optimize the boundary
of the off-diagonal elements in the information matrix (Eq.
14), 2430 linear constraints must be set (243 × 10, where 10
is the number of combinations of the five dimensions taken in
twos without repetition). Furthermore, to maximize the
boundary of the main diagonal elements (Eq. 13), 1215 linear
constraints (243 × 5) are required. Finally, the MIP problems
must be computed several times to explore Eq. 13 over a set of
feasible k, resulting in a slow procedure that may be unrealistic
with current computer processing power. To illustrate this, we
conducted a preliminary study using the abovementioned
questionnaire conditions and the GNU Linear Programming
Kit (GLPK) solver. No convergence was found within 24 h,
with a relative MIP gap of approximately 30% at that time,
which is considerably higher than van der Linden and Li’s
(2016) 2% compromise. Considering this, this article presents
a novel approach for assembling FCQs using a genetic algo-
rithm (GA).

Genetic algorithm

GAs are heuristic optimization methods that search for opti-
mal solutions through the iterative specialization of genera-
tions of individuals via mutation and selection of the fittest.
Each individual (i.e., candidate solution) has a genotype code
(i.e., a decision vector) that represents a phenotype (i.e., a
questionnaire form). GAs are fundamentally comprised of
three functional components: crossover, mutation, and selec-
tion operators. The purpose of the selection operator is to
select the fittest candidates to pass on to the next generation.
To accomplish this, each candidate’s fitness is evaluated
based on their score in an objective function. In turn, the
crossover operator generates new offspring by exchanging
genotype codes between some members of the current gener-
ation. Finally, the mutation operator adds randomness to the
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new offspring by randomly modifying parts of the genotype
code, which helps maintain the diversity within each genera-
tion and prevents premature convergence.

Among GAs, the estimation of distribution algorithms
(EDAs) replaces the traditional crossover and mutation oper-
ators by sampling new candidates using probabilistic models
fitted with previous generations’ genotypes. Among these al-
gorithms, the node histogram-based sampling algorithm
(NHBSA; Tsutsui, 2006) is suitable for FCQ, as it is intended
to solve combinatorial problems. Specifically, in the NHBSA,
the genotypes are coded as permutation vectors, where both
the position and the value of each element represent a pair of
entities (e.g., first and second items in a block, as will be
detailed later). In this sense, new genotypes are formed in a
two-step process. First, a part of the new genotype is formed
by directly passing on a fraction of a parent’s genotype (re-
ferred to as template). Second, the remaining elements of the
decision vector are sampled from the conditional probability
distribution for the values in each element position in the
decision vectors from the previous generation (which is anal-
ogous to a crossover operator). A constant error is added to the
conditional probabilities as a mutation factor. After the new
genotypes are formed, each candidate is compared with its
parent (from which the template is inherited) in terms of con-
straint compliance and value in the objective function, and the
better candidate from each pair continues to the next genera-
tion. The proposed adaptation of the NHBSA for forced-
choice assembly is defined in more detail in the following
sections.

Decision vectors

In single-stimulus linear test assembly procedures, binary de-
cision vectors are used to indicate whether an item is (not)
selected in a test form. For assembling forced-choice pairs,
however, in addition to selecting the items from a pool, the
decision vector must represent how the items are paired. The
decision vectors for item pairing can be efficiently represented
as in the quadratic assignment problem (Koopmans &
Beckmann, 1957). In the NHBSA, given an item pool with
size N, a genotype is coded as a permutation vector δ = δ1,…,
δN, where both a given element’s value and position in δ are
used to identify the items in a pair. Specifically, δi = u indi-
cates that item i is paired with item u; for instance, δ3 = 7
denotes that items 3 and 7 are paired. Note that some con-
straints must be defined to prevent an item from being repre-
sented in multiple blocks (e.g., δ3 = 7, and δ7 = 1). As will be
detailed below, in this implementation, a constraint was incor-
porated into the sampling operator, to ensure that the values
and positions in δ are always symmetric (e.g., δ3 = 7→ δ7 = 3
and backwards) and so that each item is represented in a single
block.

Block content constraints

As mentioned previously, in traditional GA, compliance with
the constraints is evaluated in the selection operator, where
feasible (constraint compliant) candidates are favored to pass
on to the next generation. When a large set of constraints must
be met, only a few feasible candidates may be observed, mak-
ing GA inefficient. To make it possible to optimize the FCQ
with a large number of constraints, a modification was made
to the original NHBSA. In the NHBSA adaptation presented
here, the block content constraints are passed to the probabi-
listic model rather than evaluated a posteriori. This may lead
to slower computations when sampling new decision vectors,
but it brings a gain in efficiency in the long term (more feasible
solutions evaluated per generation). In this sense, users may
impose constraints so that blocks must fulfill certain charac-
teristics (e.g., be formed by items assessing different traits or
with similar social desirability ratings). The block content
constraints are coded in a binary symmetric N × N matrix C,
indicating whether items i and u can (ci, u = 1) or cannot (ci,
u = 0) be paired. These constraints are considered in the prob-
abilistic model for sampling the new genotypes. In contrast,
content constraints at the questionnaire level, such as the num-
ber of items per dimension or blocks by a pair of dimensions,
are set in the sampling operator, as will be presented in the
following section.

Probabilistic model

The probabilistic model used for sampling new genotypes is
based on the relative frequencies of the feasible item pairs (i.e.,
ci, u = 1) in the current generation, with a mutation factor
added. Let δk, t denote the decision vector for the kth candidate
solution in the tth generation so δk, t can be binarily represent-
ed as an N × N matrix Dk, t given as:

dk;ti;u ¼ 1 if δk;ti ¼ u
0 otherwise

�
ð15Þ

Therefore, Dt ¼ ∑K
k¼1D

k;t, where K is the user-defined
population size, provides the node histogram matrix (NHM)
representing the frequencies of the co-occurrence of the items
in the tth generation. The probability model for δti ¼ u, for
u ∈ {1,…,N}, used for sampling the new mutated vectors

δk;t*i , is calculated as:

P δti ¼ ujci;�; dti;�; εi
� �

¼
ci;u dti;u þ εi

� �
∑N

l¼1ci;l dti;l þ εi
� � ð16Þ

where εi denotes a mutation factor that pushes P δti
� �

for all u
toward a uniform distribution. Similar to Tsutsui (2006), εi
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should be proportional to the average frequency in dti;�. Given
that different ith items may have different block constraints
(i.e., ∑ jci;u ), the average frequency in dti;� is defined as

K=∑ jci;u, and εi is computed as:

εi ¼ K�
∑ jci;u

Bratio ð17Þ

where the bias ratio (Bratio) is a user-defined uniformizing
positive constant controlling the mutation factor, thus setting
the pace for the specialization of the probabilistic model. In
other words, as can be observed in Eq. 16, as Bratio→ 0, thus
εi→ 0, the probabilistic model for sampling new genotypes
leans toward the relative frequencies of the NHM in the pre-
vious generation. On the contrary, as Bratio→∞, thus εi→∞,
P δti
� �

leans toward a uniform distribution. In practical terms, a
higher Bratio will provide greater genotype heterogeneity, re-
ducing the risk of local optima, but it will also increase the
time before convergence (i.e., when all candidate solutions in
a generation have the same genotype).

Sampling operator

LetC∗ be a temporary duplicate of the block constraint matrixC.
Following the sampling with template in Tsutsui (2006), a new

decision vector δk;t* is partly generated by copying the template
of an existing vector δk, t and partly sampled using the probabi-
listic model of generation t. First, two ordered cut points,m1 and
m2, wherem =m1,m2 ⊂ 1,…,N, are randomly sampled to define

the template range to be copied to the new δk;t* . Second, the

subset including δk;ti ¼ u and δk;tu ¼ i elements such that m1 ≤
i ≤m2 is passed to the new δk;t* vector, whereas the remaining

elements of δk;t* are iteratively sampled from the multinomial

distribution defined by P δtijci;�*; dti;�; εi
� �

untilC∗ = 0. Note that

to maintain the symmetry of the value and position in δk;t* , after

sampling a given u for δk;t
*

i , the equality δk;t
*

u ¼ i is applied. In
addition, to prevent an item from appearing in two different

blocks, once an element δk;t
*

u ¼ i is fixed, all c*i;�, c
*
u;�, c

*
�;i, and

c*�;u� are set to 0, so that, for the current candidate k, the items

involved cannot be selected again. Furthermore, letH denote aQ
×Qmatrix of counts of blocks per pair of dimensions, whereQ is
the number of dimensions assessed via the questionnaire. If hr,
sreaches a maximum preset by the user, the equality c*i;u ¼ 0 is

set for every ith and uth item measuring θr and θs. Figure 1 shows
a schematic of the sampling operator.

IfC∗ = 0 and the equality δk;t
*

i ¼ i exists for any i ∈ 1,…,N
(meaning that the ith element has not been modified from the

initial δk;t* ), it indicates that the ith item is paired with itself,
which implies that it is left out of the questionnaire for

calculating the objective function. This will occur when the
number of items included in the questionnaire is lower than
the total item pool size (i.e., 2 J < N).

Evaluation and selection

After sampling the K new candidate genotypes, the objective

function obj(·), is calculated for each phenotype of δk;t* . In con-
trast to the original NHBSA, in this implementation, each candi-
date is not compared only with its parent, that is, obj(δk, t) vs.

obj(δk;t* ); rather, all candidates in t and t* are compared. The
decision vectors associated with theK best obj(·) (i.e., the highest
for maximization and the lowest for minimization problems) in
the union of t and t* are selected to constitute the population in t +

1. As mentioned above, single-item blocks (i.e., δk;t
*

i ¼ i ) are
omitted from the calculation of the objective functions.

Main loop

The main loop of the forced-choice block assembly al-
gorithm is schematically represented in Fig. 2. As indi-
cated, the initial population is randomly sampled with

uniform P δ0i ¼ ujc*i;�;d0i;�; εi
� �

for every u satisfying

c*i;u ¼ 1, where C∗ is initiated as the user-defined binary

matrix representing the constraints on the block contents,
as in the sampling operator. The algorithm runs until all
K candidate solutions within a population have the same

decision vectors (i.e., var δ�;t
i

� � ¼ 0∀i∈1;…;N ).

Method

A simulation study was conducted to evaluate the perfor-
mance of the proposed GA for forced-choice item pairing.
To compare its efficiency, a quasi-exhaustive brute-force
(BF) search was carried out, with its runtime matched to the
time for the convergence of the GA under each respective
simulation condition. In addition, as will be further detailed,
a set of trait score recovery criteria was calculated for each
generated questionnaire.

The candidate questionnaires obtained through the quasi-
BF search allowed for the establishment of two benchmarks.
First, the average of the trait recovery criteria across the can-
didate questionnaires in each condition served as an indicator
of the expected accuracy of a randomly assembled question-
naire for a given item pool. This indicator aims to represent the
results for FCQs built using some structural criteria (e.g., num-
ber of items per dimension), which is a common practice in
current research involving the forced-choice format (e.g.,
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Bürkner et al., 2019; Walton et al., 2020). Second, the ques-
tionnaire with the highest objective function value among the
candidates served as an indicator of the best accuracy obtained

using an alternative heuristic procedure. By matching the
computation times in the BF search to the GA, the two
methods were compared in terms of efficiency. Both

Fig. 1 Schematic description of the sampling operator for one decision vector

Fig. 2 Schematic description of the main loop
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procedures were executed with a 3.60 GHz Intel® Core™ i7-
4790 CPU and 16.00 RAM using the MS Windows 7
Professional operating system.

Data generation

Five-dimensional item pools with an equal number of items
per dimension were simulated to emulate the real problem of
generating a forced-choice personality questionnaire under the
five-factor model (Costa & McCrae, 1992). When defining
the FCQ design, two real case scenarios were considered:
(1) forming blocks using all the items in the pool and thus
only pairing the items, and (2) assembling a questionnaire
using only part of the item pool, which involves both selecting
and pairing the items. Accordingly, the two chosen ratios of
item pool size to FCQ length wereN:J = 2:1 (pairing all items)
and N:J = 8:1 (selecting and pairing a quarter of the items).
Two FCQ lengths were defined: J = 30 (i.e., six blocks per
dimension) and J = 60 (i.e., 12 blocks per dimension). To
achieve the aforementioned N:J ratios for these FCQ lengths
(J = 30 and J = 60), item pool sizes (N) of 60 and 240 items,
and 120 and 480 items, respectively, were generated.

For each item pool, the discrimination parameters (aj) were
sampled from an N(1.5, 0.5) distribution and item difficulty
parameters (bj) from a U(−2.0, 2.0) distribution. The distribu-
tion of discrimination parameters was chosen to make nega-
tively keyed items very unlikely. Finally, as in Brown and
Maydeu-Olivares (2011), the true latent trait correlation ma-
trix (Φ) was set as either a five-dimensional identity matrix
(I5) or as the one observed for the revised NEO personality
inventory (NEO PI-R; Costa &McCrae, 1992) with empirical
data (see Table 1). Twenty item pools were generated for each
condition.

To analyze the recovery of the trait estimates, as will be
further detailed, the true trait scores ~MVN(0,Φ) were gener-
ated for 1000 simulees and for each simulated item pool.
Forced-choice response data were then sampled given the
probabilities under the MUPP-2PL model using the true item
parameters of each FCQ analyzed in each condition.

Assembly procedure specifications

Questionnaire constraints

For both GA and BF searches, the constraints were set as
follows: (1) each FCQ had the exact designed length (i.e., J
= 30 or J = 60), (2) each item could only be assigned to one
block, (3) the items in each block addressed different dimen-
sions, and (4) the number of blocks measuring each pair of
dimensions was the same.

Objective function

The objective function to maximize was the average of the

posterior marginal reliabilities (bρ2
θbθd ) across the five dimen-

sions, calculated using the marginal posterior error variances

(Eq. 18). The average ofbρ2
θbθd over d = {1,…,D} is an intuitive

objective function for applied researchers and is inversely
proportional to the widely used A-optimality criterion:

vard bθjθ� �
¼ ∑L

l¼1 I θlð Þ þΦ−1� 	−1
d;l � g θljΦð Þ; and

bρ
θ
bθd

2 ¼ 1−vard bθjθ� �
;

ð18Þ

where l represents each possible combination of the quadra-
ture points {−2, 0, +2} over each of theD (i.e., 5) dimensions;
thus, L = 35, and d denotes the dth diagonal element of each
matrix associated with the dth dimension of θl. The terms
[I(θl) +Φ−1] and g(θl|Φ) correspond to the posterior infor-
mation matrix at quadrature point l, respectively, and the mul-
tivariate normal density function at each θl is given the trueΦ
correlation matrix. The use of posterior information matrices
instead of Fisher information matrices, analogous to Segall
(1996), improves the efficiency of Bayesian estimates by ac-
counting for the prior trait variance-covariance matrix.

Genetic algorithm specifications

User-defined specifications for the NHBSA are each genera-
tion’s population size and the bias ratio constant (i.e., the
mutation factor). The decision on population sizes in the
NHBSA reflects a balance between two important factors:
(1) the precision of the probabilistic model for sampling deci-
sion vectors and (2) the computation time. The larger the
population size, the better the node histograms’ approximation
of the probabilistic model, but the slower the algorithm will
be. In contrast, the Bratio sets the amount of mutation in the
probability model. On the one hand, as Bratio increases,
NHBSA probabilistic models tend toward a uniform distribu-
tion, approaching performance comparable with the BF
search. On the other hand, if Bratio is zero, no mutation is
added to the probability model, and only the blocks included

Table 1 Trait correlation matrix observed in the NEO PI-R (Costa &
McCrae, 1992) with neuroticism reversed to emotional stability

ES EX OE AG CO

ES 1

EX 0.21 1

OE 0 0.4 1

AG 0.25 0 0 1

CO 0.53 0.27 0 0.24 1

Note. ES: emotional stability, EX: extraversion, OE: openness to experi-
ences, AG: agreeableness, CO: conscientiousness.
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in the initial population are considered. In the present study,
the population size was set as equal to the item pool size (K =
N), and the Bratio was set to 2

−4, as in Tsutsui (2006). Finally,
as shown in Fig. 2, the algorithm was considered to have
converged whenever all the candidate solutions within a gen-
eration had the same genotype (i.e., var δt

i

� � ¼ 0∀i∈
1;…;Nf g ).

Brute-force search specifications

A stepwise constrained random sampling procedure was con-
ducted to fulfill the content constraints, as in the probabilistic
sampling procedure outlined in Fig. 1, with the exception that

the values for P δtijc*i;�; dti;�; εi
� �

were uniformly distributed. As

in any BF search, this procedure was carried out multiple
times for each item pool condition and replication, yielding
a considerable number of candidate questionnaires. On aver-
age, approximately 113,845 candidate questionnaires were
evaluated for each simulation condition and replication in
the BF search.

Comparison criteria

The quality of the questionnaires obtained through each as-
sembly procedure was assessed through the recovery of the
maximum a posteriori (MAP) scores from simulated response
datasets, estimated using the mirt package (Chalmers, 2012)
in R software (R Core Team, 2020) with block parameters
fixed to their true values. The criteria for the recovery of the
trait estimates were: (1) the average true reliability, calculated
using the squared correlation between true and estimated θ
(ρ2

θbθ ); (2) the average root mean square error between the

estimated and true θ (RMSEbθ ); (3) the average trait correla-
tion bias (BiasbΦ ); and (4) the average RMSEbθ, bias, and
standard error of bθ conditional to the true θ. RMSEbθ and

BiasbΦ were computed as in Equations 19 and 20, respectively:

RMSE
θ
^¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
S

s¼1

bθs−θs� �2

S

vuut ð19Þ

BiasbΦ ¼ bΦ−Φ; ð20Þ

where S is the total number of simulees (i.e., S = 1000), and
parameters bΦ andΦ are the estimated and true trait correlation
matrices, respectively. The true reliability and the RMSEbθ
were computed for each dimension separately and then aver-
aged across the five traits, whereas the BiasbΦ was calculated
by averaging the Fisher Z-transformed differences of the non-
diagonal elements of Φ and backtransforming the average to

the correlation metric (e.g., Corey et al., 1998). To synthesize
the results, mixed-effects analyses of variance (ANOVAs)
were conducted to evaluate the effect of the assembly method
(within-group factor), the number of blocks, and the items-to-
blocks ratios (between-group factors) on the trait estimate re-
covery indicators. Generalized eta-squared (Olejnik & Algina,
2003) effect sizes are presented to describe the relevance of
the effects. All analyses were conducted using R software (R
Core Team, 2020) and mixed-effect ANOVAs were per-
formed with the Type III sum of squares using the afex pack-
age (Singmann et al., 2020).

Results

Algorithm efficiency

All GA trials converged within a reasonable time, with aver-
ages of 0.77 and 5.07 minutes in the 30-block condition with
2:1 and 8:1 N:J ratios, respectively, and 18.47 and 181.42
minutes in the 60-block condition with 2:1 and 8:1 N:J ratios,
respectively. As already mentioned in the Method section, the
BF search was bounded to the convergence times obtained
with the GA, as an exhaustive BF search is unfeasible.

Figure 3 represents the progress of the best question-
naires’ objective function (i.e., average posterior margin-
al reliability) over time with the GA and BF search. As
can be observed, although the initial solutions were sim-
ilar with both procedures, the GA rapidly overtook the
best candidates formed with the constrained random as-
sembly in the BF search. Furthermore, the BF search
presents very small improvement rates, suggesting that
it would take a long time to reach the results obtained
through the GA.

Recovery of trait parameters

The values of the trait recovery indicators are listed in Table 2.
As expected, when matched by time, the trait recovery for
questionnaires formed with the GA consistently outperformed
the best of those formed through the BF search (i.e., BFbest). In
general, the true reliabilities of the GA-assembled question-
naires were found to be acceptable even in the worst simulated
condition (i.e., pairing 30 blocks from a 60-item pool with
NEO PI-R correlations). In an actual individual assessment,
however, more than 30 blocks are recommended to achieve
reasonable measurement accuracy. The average biases of the
trait correlation matrices were slightly negative under all con-
ditions, as an indicator of remnant ipsativity, and they became
closer to zero under the conditions with uncorrelated traits as
well as with the increment of questionnaire length and items-
to-blocks ratio. The average estimate recovery with the BF
search (i.e., BFavg) was considerably worse than both BFbest
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and GA under all conditions. Such results draw attention to
what may be expected for questionnaires assembled using
only structural criteria, such as the number of items per
dimension.

The ANOVA effect sizes are presented in Table 3. It can be
observed that the accuracy of the latent trait estimates (i.e., ρ2

θbθ
and RMSEbθ ) was mainly affected by the number of blocks

(i.e., J), followed by the assembly method, the generated trait

Fig. 3 Average posterior marginal reliability over time for the best candidates in the genetic algorithm and a brute-force search. Note. J = number of
blocks; N:J ratio = items-to-block ratio.

Table 2 Average trait recovery across 20 replications for questionnaires assembled using the genetic algorithm and a brute-force search

Φ J N:J Ratio ρ2
θbθ RMSEbθ BiasbΦ

GA BFbest BFavg GA BFbest BFavg GA BFbest BFavg

Identity 30 2 0.72 0.68 0.65 0.54 0.57 0.59 −0.10 −0.12 −0.14
8 0.75 0.70 0.65 0.51 0.55 0.59 −0.07 −0.11 −0.14

60 2 0.82 0.79 0.76 0.43 0.46 0.49 −0.08 −0.10 −0.12
8 0.84 0.80 0.76 0.40 0.44 0.49 −0.05 −0.08 −0.12

NEO
PI-R

30 2 0.69 0.65 0.59 0.56 0.60 0.64 −0.13 −0.16 −0.20
8 0.74 0.68 0.59 0.51 0.57 0.64 −0.07 −0.12 −0.20

60 2 0.81 0.77 0.73 0.44 0.48 0.52 −0.08 −0.11 −0.15
8 0.84 0.79 0.73 0.40 0.46 0.52 −0.04 −0.09 −0.15

Note.Φ = true trait correlation matrix; J = number of blocks; N:J ratio = items-to-blocks ratio; ρ2
θbθ = true reliability; RMSEbθ = root mean square error;

BiasbΦ = trait correlation bias; GA: genetic algorithm; BFbest = best brute-force solution; BFavg = average of brute-force solutions. The standard deviations

of the indicators across replications ranged from 0.003 to 0.016.
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correlation matrix (i.e.,Φ), and theN:J ratio. In addition, large
effect sizes (i.e., η2G≥0:14 ) were found for the two-way inter-
actions of the assembly method withΦ and with the N:J ratio.
The first interaction effect indicates that the improvement seen
by using the GA as opposed to the BF search solutions (i.e.,
BFbest and BFavg) was substantially higher when the traits
being measured were positively correlated. The second inter-
action indicates that when the assembly condition required
selecting items in addition to pairing them (i.e., N:J ratio =
8:1), the GA was notably more effective than the BF search.
Similarly, the biases of the correlation estimates were higher
when the traits were correlated (i.e., Φ from the NEO PI-R),
the test length was short, and there was no possibility of
selecting items (i.e., N:J = 2). However, it should be noted
that the assembly method had a greater effect size, indicating
that assembling the questionnaires properly can be even more
effective than making them longer or using greater item pools
and can substantially attenuate the ipsativity inherent in posi-
tively correlated traits. Three- and four-way interactions of-
fered small effect sizes in all three comparison criteria.

Conditional estimation errors

As shown in Fig. 4, the questionnaires assembled with the GA
showed the recovery of θ in all simulation conditions and
throughout the θ continuum. In accordance with the reliability
results, the effect of the assembly method increased as the N:J

ratio increased. As can be inferred from the conditional Biasbθ
results, the distribution ofbθwas compressed toward the mean,
as is characteristic of Bayesian estimators. In addition, as can
be expected from the definition of the objective function in
Eq. 18, the recovery of θ was best for those θ closer to 0, as a
higher weight is given to the conditional error variances for
θ→ 0 in the calculation of the marginal posterior reliabilities.
Finally, as expected, under the conditions with the generated
NEO PI-R correlation matrix (dotted lines in Fig. 4), the dis-
tributions of estimation errors were similar or worse than un-
der the conditions with independent traits (solid lines).

Follow-up study

As discussed in the Introduction section, the decision to in-
clude opposite-keyed item pairs is still unclear. On the one
hand, as Bürkner et al. (2019) have argued, questionnaires
including hetero-polar blocks may be intuitively understood
as less robust to SDR and faking in certain situations, as re-
spondents may easily identify and select the most desirable
option in a block. On the other hand, questionnaires including
only positively keyed items may have remnant ipsativity, as
suggested by the negatively biased trait intercorrelations
found in the previous study, and lower precision of trait esti-
mates (e.g., Brown & Maydeu-Olivares, 2011; Bürkner et al.,
2019). Thus, a second simulation study was conducted to

Table 3 Generalized eta-squared effect sizes for mixed-effects ANOVAs of trait estimate recovery indicators

ρ2
θbθ RMSEbθ BiasbΦ

Within-group effects

Method 0.91** 0.91** 0.81**

Method × J 0.12** 0.01* 0.01*

Method × N:J Ratio 0.28** 0.32** 0.21**

Method × Φ 0.31** 0.27** 0.28**

Method × J × N:J Ratio 0.01* 0.00 0.01*

Method × J × Φ 0.02** 0.00 0.03**

Method × N:J Ratio × Φ 0.02** 0.02** 0.02**

Method × J ×N:JRatio ×Φ 0.00 0.00 0.00

Between-group effects

J 0.96** 0.96** 0.58**

N:J Ratio 0.40** 0.43** 0.30**

Φ 0.54** 0.51** 0.41**

J × N:J Ratio 0.01 0.00 0.01

J × Φ 0.09** 0.04* 0.11**

N:J Ratio × Φ 0.02* 0.02* 0.03*

J × N:J Ratio × Φ 0.01 0.00 0.01

Note. J = number of blocks; N:J ratio = items-to-blocks ratio; ρ2bθθ = true reliability;Φ = true trait correlation matrix; RMSEbθ = root mean square error;

BiasbΦ = trait correlation bias; * p < 0.05; ** p < 0.001.
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investigate the performance of the proposed GA for forced-
choice pairing, including hetero-polar blocks.

This study replicated the two chosen ratios of item pool
size to FCQ length (N:J = 2:1 and N:J = 8:1) and the two
FCQ lengths (J = 30 and J = 60). As in Brown and Maydeu-

Olivares (2011), the FCQs were constrained to having one
half consisting of homo-polar blocks and the other half
consisting of hetero-polar blocks. Therefore, to fulfill this con-
straint, item pools were simulated with a quarter of negatively
keyed items, which is the proportion of negative items in the

Fig. 4 Average conditional RMSE, bias, and standard errors of estimates for different assembly methods and true trait correlation matrices (Φ)
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final constraint-compliant questionnaires. The discrimination
parameters of the negatively keyed items were sampled from
an N(−1.5, 0.5) distribution, and all other parameters were
replicated from the previous study. In addition, as in the pre-
vious study, the recovery of trait estimates was assessed by the
true reliability, the RMSEbθ, the trait correlation bias, and the

average conditional standard error, and the results were com-
pared with a quasi-exhaustive BF search.

The results for the trait recovery indicators with the FCQ
composed of one half homo-polar blocks and the other half
hetero-polar blocks are presented in Table 4. Compared to the
questionnaires with all homo-polar blocks in the previous
study (Table 2), all θ recovery indicators were better. On the
one hand, due to the inclusion of hetero-polar blocks, the
average trait correlation bias was especially reduced, regard-
less of the assembly method (η2G ¼ 0:02 for the assembly
method factor). In addition, Φ had a smaller impact on the
recovery of the person parameters (η2G ¼ 0:20, η2G ¼ 0:22,

and η2G ¼ 0:13 for ρ2
θbθ, RMSEbθ and BiasbΦ, respectively) com-

pared with the FCQ with all homo-polar blocks. On the other
hand, although this general improvement was observed in all
indicators, using the GA still provided substantial gains in ρ2

θbθ
and RMSEbθ (η2G ¼ 0:86 and η2G ¼ 0:87 for assembly method

over ρ2
θbθ and RMSEbθ, respectively).

Discussion

The precision of trait estimates has been thoroughly pointed
out as a main weakness in the use of FCQs (Brown &

Maydeu-Olivares, 2011; Kreitchmann et al., 2019; Meade,
2004; Wetzel et al., 2020). Accordingly, the aim of this study
was to investigate the effect of the assembly of pairwise FCQs
on the recovery of trait estimates, presenting an efficient au-
tomated optimization procedure. In general, it has been shown
that a single-stimulus item pool can lead to FCQs with very
different psychometric properties. Therefore, naively pairing
blocks without accounting for psychometric criteria can lead
to suboptimal questionnaires that do not take full advantage of
items’ potential. Accordingly, researchers are advised to take
special care when comparing reliabilities and validities be-
tween different response formats (e.g., single-stimulus,
forced-choice pairs, triplets, quads), as sub-optimally assem-
bled questionnaires can provide less accurate trait estimates,
thus lowering the upper boundary of validities. In this sense,
in both scenarios, i.e., with and without hetero-polar blocks,
the proposed GA appears to be an effective solution, offering
substantially better trait estimates than a quasi-BF searchwith-
in a reasonable time. Such improvements were especially im-
portant when the traits were positively correlated with each
other. When using only homo-polar blocks, however, the trait
correlations were, on average, negatively biased, indicating
that some ipsativity remained, and this was not entirely con-
trolled by assembling FCQs with the GA. Questionnaires in-
cluding hetero-polar blocks did not have this problem and are
recommended whenever SDR and faking are not expected.
When exclusively using homo-polar blocks, designing longer
questionnaires and optimizing them with the GA was shown
to reduce remnant ipsativity. In addition, although the negative
intercorrelation biases were considerably smaller than what
would be expected for completely ipsative sum scores, that
is, an expected average correlation of −1/(D − 1) = − 0.25, the
effect of remnant ipsativity in the correlations with external

Table 4 Average trait recovery across 20 replications for questionnaires assembled using the genetic algorithm and a brute-force search with one half
consisting of hetero-polar blocks

Φ J N:J Ratio ρ2
θbθ RMSEbθ BiasbΦ

GA BFbest BFavg GA BFbest BFavg GA BFbest BFavg

Identity 30 2 0.77 0.75 0.71 0.49 0.50 0.54 0.00 0.00 0.00

8 0.81 0.77 0.72 0.45 0.48 0.53 0.00 0.00 0.00

60 2 0.87 0.86 0.84 0.37 0.38 0.40 0.00 0.00 0.00

8 0.89 0.87 0.84 0.34 0.37 0.40 0.00 0.00 0.00

NEO PI-R 30 2 0.78 0.76 0.73 0.48 0.49 0.52 0.01 0.01 0.02

8 0.82 0.78 0.74 0.44 0.47 0.51 0.01 0.01 0.01

60 2 0.87 0.86 0.85 0.36 0.37 0.39 0.00 0.01 0.01

8 0.89 0.87 0.85 0.33 0.36 0.39 0.00 0.01 0.01

Note.Φ = true trait correlation matrix; J = number of blocks; N:J ratio = items-to-blocks ratio; ρ2
θbθ = true reliability; RMSEbθ = root mean square error;

BiasbΦ = trait correlation bias; GA: genetic algorithm; BFbest = best brute-force solution; BFavg = average of brute-force solutions. The standard deviations

across the replications ranged from 0.004 to 0.026.
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variables was not investigated. In this sense, as indicated by
Hicks (1970), the sum of the correlations between the
completely ipsative scores measured by the FCQ and each
external criterion is zero. Therefore, future studies may con-
sider addressing the relationship between homo-polar-only
FCQ scores and external variables to investigate how remnant
ipsativity affects convergent/discriminant and criterion
validities.

It should be noted that the current convergence crite-
rion of the proposed GA (i.e., achieving a unique solu-
tion in a generation) might be considered too strict, as
the true reliabilities remain somewhat stable for a con-
siderable time before convergence. In real-time imple-
mentation, it is possible to reduce the runtime by stop-
ping the heuristics whenever a certain desired degree of
stability in the objective functions is achieved.

Some caveats related to this study are acknowledged.
First, as van der Linden and Li (2016) have pointed out,
an important drawback of GAs is their lack of generaliz-
ability to other problems. One limitation of the presented
procedure is that it was only conceived to form pairwise
FCQs. Although it is possible to adapt the definitions of
the node histogram and constraint matrices to greater di-
mensionalities (i.e., more items per block), we restricted
the study to the most basic format. However, this is a very
popular format in the current literature (e.g., Bunji &
Okada, 2020). Nonetheless, given the potential reliability
gain to be had by using triplets instead of pairs (Joo et al.,
2020), a future study could attempt to extend this method
to other formats. Second, in the present simulation study,
we did not consider the items’ social desirability. Note,
however, that it could be easily incorporated into the GA,
either by setting zeros in the block constraint matrix C for
those pairs that are not matched in social desirability or
accounting for it in the IRT model. A third caveat is related
to the fact that the posterior marginal reliabilities were
calculated using the single-stimulus item parameters, as-
suming they were invariant in the forced-choice format.
Nonetheless, this might not be problematic, as there is al-
ready some evidence about the invariance across formats
(Lin & Brown, 2017; Morillo et al., 2019).

Finally, it should be noted that assembling questionnaires
based uniquely on content constraints or item characteristics
such as social desirability ratings or keyed direction may serve
to increase robustness against social desirability responding
and faking in high-stakes assessments (Cao & Drasgow,
2019). However, it does not guarantee the best possible trait
score accuracy. Accordingly, aiming to promote best practices
in the assembly of pairwise FCQs, a user-friendly implemen-
tation of the presented GA has been made available at https://
psychometricmodelling.shinyapps.io/FCoptimization/. In
addition, R codes can be made available upon request to the
corresponding author.
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