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SUMMARY

Genome-wide association studies (GWASs) of eye disorders have identified hundreds of genetic 

variants associated with ocular disease. However, the vast majority of these variants are 

noncoding, making it challenging to interpret their function. Here we present a joint single-cell 

atlas of gene expression and chromatin accessibility of the adult human retina with more than 

50,000 cells, which we used to analyze single-nucleotide polymorphisms (SNPs) implicated by 

GWASs of age-related macular degeneration, glaucoma, diabetic retinopathy, myopia, and type 2 

macular telangiectasia. We integrate this atlas with a HiChIP enhancer connectome, expression 

quantitative trait loci (eQTL) data, and base-resolution deep learning models to predict noncoding 

SNPs with causal roles in eye disease, assess SNP impact on transcription factor binding, 
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and define their known and novel target genes. Our efforts nominate pathogenic SNP-target 

gene interactions for multiple vision disorders and provide a potentially powerful resource for 

interpreting noncoding variation in the eye.

Graphical abstract

In brief

Wang et al. present a joint single-cell atlas of gene expression and chromatin accessibility of 

the adult human retina, which they use to analyze risk variants from genome-wide association 

studies of five eye diseases. They integrate this atlas with chromatin conformation data, expression 

quantitative trait loci, and deep learning models to nominate gene and cellular targets in the retina 

for hundreds of noncoding variants implicated in vision disorders.

INTRODUCTION

Genome-wide association studies (GWASs) of eye disorders, such as glaucoma, myopia, 

and age-related macular degeneration (AMD), have uncovered hundreds of genetic 

polymorphisms associated with ocular disease.1–5 However, the vast majority of variants 

identified by GWASs reside in noncoding regions of the genome, making it challenging 

to interpret their function.6 To better understand how noncoding variants mechanistically 

contribute to ocular pathology, it would be valuable to map in which cell types their 

corresponding loci are active. This information would provide novel insights into the cellular 
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biology of genetically complex eye diseases and help nominate specific cell types as targets 

for therapies.

A recent advance in studying the noncoding genome has been the development of single-cell 

multiomics technologies, such as paired single-cell RNA sequencing (scRNA-seq) and 

single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq). While 

scRNA-seq can classify the different cell types of a tissue based on their transcriptional 

profiles, its combination with scATAC-seq allows for the additional mapping of cell-type-

specific chromatin accessibility. Together, these techniques can reveal the activity of 

noncoding DNA elements identified by GWASs and have been used to interrogate risk 

variants for conditions such as Alzheimer disease, Parkinson disease, autism spectrum 

disorder, and autoimmunity.7–9

Investigations of the noncoding genome have likewise benefitted from analytical 

innovations, such as application of convolutional neural network (CNN)-based deep learning 

to predict the effects of noncoding polymorphisms.10–12 Progress in this area has recently 

led to models with resolution down to a single nucleotide, enabling accurate determination 

of the critical bases within cis-regulatory sequences.8,12,13 These models offer a validated 

approach to prioritize noncoding variants with functional relevance and are particularly 

suitable for tissues in which experimental manipulation is difficult.

Here we generated a joint scRNA- and scATAC-seq atlas of the adult human retina 

composed of more than 50,000 cells and used it to analyze single-nucleotide polymorphisms 

(SNPs) implicated by GWAS of five eye diseases: AMD, glaucoma, diabetic retinopathy 

(DR), myopia, and type 2 macular telangiectasia (MacTel). Layering this atlas with a 

HiChIP enhancer connectome,14 expression quantitative trait locus (eQTL) data,15 and base-

resolution deep learning models,12 we predicted noncoding SNPs with causal roles in eye 

disease. Our efforts nominate pathogenic SNP-target gene interactions for multiple vision 

disorders and provide a potentially powerful resource for interpreting noncoding variation in 

the eye.

RESULTS

Single-cell multiomics reveal the gene expression and chromatin accessibility landscapes 
of cell types in the human retina

To generate a single-cell multiome of the human retina, we performed joint scRNA- and 

scATAC-seq profiling on eight postmortem retinas from four individuals who had no history 

of eye disease (Table S1). After quality control filtering (Figure S1) and removal of putative 

doublets (Figures S2A and S2B), we obtained a total of 51,645 human retinal cells in 

22 clusters that we assigned to 13 different cell types (Figures 1A, 1B, and S2C). These 

included abundant cell types, like rod photoreceptors and Müller glia, as well as rarer 

cell types, such as astrocytes and microglia, which each constituted only 0.4% of profiled 

cells (Figure 1C; Table S2). Consistent with published scRNA-seq studies of the human 

retina,16–19 we observed cell-type-specific expression of many genes, including PDE6A in 

rod photoreceptors, GRIK1 in OFF-cone bipolar cells, RLBP1 in Müller glia, GRM6 in 

ON-cone and rod bipolar cells, PRKCA in rod bipolar cells, ARR3 in cone photoreceptors, 
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GAD1 in GABAergic (GABA-) amacrine cells, ONECUT1 in horizontal cells, SLC6A9 in 

AII- and other glycinergic (gly-) amacrine cells, NEFL in retinal ganglion cells, GJD2 in 

AII-amacrine cells, GFAP in astrocytes, and C1QA in microglia (Figure 1D and S3A). We 

also identified a list of candidate marker genes based on differential expression for each of 

the 13 cell types (Data S1).

Using shared barcodes from joint multiomics profiling, we next assigned scATAC-seq 

profiles to the 13 cell types characterized by scRNA-seq. The resulting chromatin 

accessibility profiles clustered by cell type (Figure S4A) and were highly similar to those 

from a public human retina scATAC-seq dataset (Figure S3B), supporting the validity of our 

multiome. Peak calling performed on scATAC-seq profiles from each cell type combined 

into pseudo-bulk ATAC replicates uncovered a total of 620,386 chromatin accessibility 

peaks (Figure 2A; Data S2). These scATAC peaks were concordant among donors (Figures 

S4B and S4C) and included more than 90% of peaks from a published bulk ATAC-seq study 

of the human retina (Figures 2B),20 indicating that single-cell multiomics can recapitulate 

bulk ATAC-seq data. Conversely, more than half of the scATAC peaks were unique to the 

single-cell dataset (Figure 2B), and nearly 40% of scATAC peaks were accessible in only 

one cell type (Figure S5A). In line with this, we found 197,826 scATAC marker peaks 

enriched in a cell-type-specific manner (Figure 2C; Data S3), including many located near 

cell-type-specific genes (Figure 2D).

With these scATAC peaks, we conducted a motif enrichment analysis to predict which 

transcription factors (TFs) might be active in each cell type (Figure 3A; Data S4). In 

accordance with published literature, we observed enrichment of binding motifs for TFs 

with known cell-type-specific functions, such as OTX2 in photoreceptors and bipolar cells,21 

ONECUT family members in horizontal cells,22 POU4F family members in retinal ganglion 

cells,23 and SPI1 (PU.1) in microglia.24 For some TFs, cell-type-specific activity was also 

supported by footprinting analysis of scATAC peaks (Figure 3B), which revealed motif 

centers to be protected from Tn5 transposition, consistent with TF occupancy. These data 

offer a cell-type-specific catalog of candidate TFs in the adult retina and may aid our 

understanding of gene-regulatory networks controlling vision.

Single-cell multiomics uncover the cellular contexts of variants implicated by ocular 
disease GWASs

With our single-cell multiome, we sought to better understand risk loci identified by GWASs 

of complex eye disorders. To this end, we compiled a list of 1,331 unique index SNPs 

from the NHGRI-EBI GWAS Catalog representing GWAS hits for five eye diseases: AMD, 

glaucoma, DR, myopia, and MacTel (Figure 4A; Table S3).25 The vast majority (96.5%) of 

these SNPs localized to noncoding regions of the genome and, thus, could not be interpreted 

with scRNA-seq data alone. We performed linkage disequilibrium (LD) expansion on all 

index SNPs to include nearby variants with high probability of coinheritance (LD R2 > 0.9 

based on phase 3 genotypes from the 1000 Genomes Project) (Figure S5B).26 From this, we 

obtained a total of 7,100 SNPs in loci associated with complex eye disorders, 7,034 (99.1%) 

of which were noncoding.
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We first examined the small number of LD expanded SNPs that encoded an amino 

acid change or premature stop codon (Data S5). Using our scRNA-seq data, we found 

that coding variants implicated in AMD and glaucoma were most strongly expressed in 

microglia and Müller glia, respectively (Figure S6A). As a comparison, we also assessed 

the cell type expression of mutations known to cause monogenic retinal diseases based on 

gene annotations from the Retinal Information Network (Figure S6B).27 Consistent with 

expectations, genes for primary photoreceptor disorders, such as cone-rod dystrophy and 

retinitis pigmentosa, were most highly expressed in rods and cones, whereas disease genes 

for optic atrophy, a condition hallmarked by degeneration of retinal ganglion cells, showed 

the greatest expression in this cell type.

We next turned to the 7,034 unique SNPs after LD expansion that localized to the noncoding 

genome (Data S6). To determine in which retinal cell types these SNPs might be active, 

we overlapped SNP locations with scATAC peaks from our dataset. We found that 1,152 

noncoding SNPs (16.4%) overlapped with a scATAC peak (Figure 4B, S5C, and S5D) and 

that most SNP-containing peaks were present in only one or two cell types (Figure S5E). 

We then conducted two orthogonal analyses to refine our list of SNPs for those more likely 

to possess gene regulatory functions. First we identified SNPs in scATAC peaks that were 

co-accessible with peaks in promoter regions, reasoning that this would select for SNPs in 

active enhancers. We detected 39,552 such promoter peaks in the human retina, 58.3% of 

which were co-accessible with at least one scATAC peak (Figure 4C). Leveraging our paired 

scRNA- and scATAC-seq data, we also searched for SNPs in peaks whose accessibility 

correlated with the expression of a nearby gene and termed genes that met this criterion 

‘‘predicted target genes.’’ Using this method, we predicted target genes for 199,055 (32.1%) 

of the 620,386 scATAC peaks in our dataset (Figures 4D and S5F). For nearly half (44.3%) 

of these peaks, our predictions differed from the nearest gene on the linear genome (Figure 

S5G), suggesting that noncoding SNPs do not necessarily regulate their nearest gene.

We identified 241 SNPs in scATAC peaks that were co-accessible with promoter peaks 

and 374 SNPs that had predicted target genes, with 202 SNPs meeting both criteria. As an 

example, we examined rs4821699 residing in an intron of TRIOBP on chromosome 22. This 

locus has been implicated in glaucoma by multiple GWASs and encodes a protein thought 

to regulate cytoskeletal organization.2,28,29 We observed that rs4821699 was most accessible 

in retinal ganglion cells (Figure 4E), the major cell type that undergoes degeneration during 

glaucoma. Based on correlations with gene expression, the peak containing this SNP was 

predicted to target TRIOBP. We hypothesize that rs4821699 might therefore play a role in 

glaucoma by altering TRIOBP expression in retinal ganglion cells.

A handful of SNPs associated with eye diseases have been studied experimentally using 

retinal organoids derived from induced pluripotent stem cells. One such SNP is rs17421627, 

an index SNP from GWASs of MacTel, representing a T-to-G substitution on chromosome 

5.5,30 We determined rs17421627 to be one of only five SNPs for MacTel with a predicted 

target gene and found the SNP to be most accessible in Müller glia and astrocytes (Figure 

4E). Using linked gene expression data, we also predicted rs17421627 to act on LINC00461, 

a long noncoding RNA. Consistent with these predictions, deletion of the locus containing 

rs17421627 in human retinal organoids has been shown to significantly downregulate 
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LINC00461, with the strongest effect in Müller glia.31 These examples illustrate how single-

cell multiomics can reveal the cellular targets of noncoding variants in the retina and show 

how they might contribute to eye disorders.

Integration of the single-cell multiome with HiChIP and eQTL data validates SNP-target 
gene predictions

To further prioritize our list of SNPs, we combined our data with two complementary 

methods for identifying functional SNP-gene interactions genome wide. We first performed 

HiChIP for acetylated histone H3 lysine 27 (H3K27ac), a mark of active enhancers and 

promoters,32 to characterize the three-dimensional (3D) enhancer ‘‘connectome’’ of the 

human retina (Figures S7A and S7B).14,33 We uncovered 16,692 loop anchors connected 

by 9,670 HiChIP loops, including several linking regions of chromatin accessibility to the 

transcription start sites (TSSs) of cell-type-specific genes (Figure S7C; Data S7). Of these 

loops, more than 95% overlapped with a scATAC peak in both anchors, and more than 99% 

overlapped with a peak in at least one anchor (Figure 5A). This result shows that accessible 

chromatin sites identified in scATAC-seq data possess biochemical characteristics of active 

enhancers and supports their connection to target genes. We also analyzed our list of SNPs 

using published human retina eQTL data from the Eye Genotype Expression (EyeGEx) 

database.15 For more than 90% of SNPs in scATAC peaks, retina eQTL data were available 

(Figure 5B), enabling genes whose mRNA expression in the human retina changed with 

specific SNPs to be identified at the bulk tissue level.

We found 187 disease-associated SNPs in scATAC peaks that were linked to a gene by 

a H3K27ac HiChIP loop. These included rs9966620, the top SNP from a GWAS of DR 

representing a G-to-A transition in an intron of TTC39C on chromosome 18.34 Using our 

multiome, we determined that the scATAC peak containing rs9966620 was most accessible 

in rods (Figure 5C). However, this peak also correlated with the expression of multiple target 

genes, hampering efforts to interpret how the SNP might function. Incorporating our HiChIP 

data, we were able to locate a 3D loop connecting rs9966620 with a region 75 kb upstream. 

This region intersected the TSS of only one gene, TTC39C-AS1, suggesting that rs9966620 

may modulate DR risk by interacting with TTC39C-AS1 in rods.

We also detected 596 disease-associated SNPs in scATAC peaks that were significantly 

associated with a gene by eQTL analysis. One example is rs2730260, an SNP in an intron 

of VIPR2 that has been implicated in myopia.35 This locus encodes one of two known 

receptors for vasoactive intestinal peptide (VIP), a signaling molecule involved in visual 

processing.36 We found that rs2730260 resided in a chromatin accessibility peak specific 

to Müller glia that again had multiple predicted target genes (Figure 5C). This ambiguity 

was clarified by retina eQTL data, which showed that variation at rs2730260 significantly 

correlated with the expression of only VIPR2 (Figure 5D), supporting this gene as the 

SNP’s primary target. Integration of eQTL data similarly improved our interpretation of 

rs66475830 on chromosome 6 in the FRK-NT5DC1-COL10A1 risk locus for AMD.37,38 

This region contains nearly 20 genes within a span of a megabase, making it particularly 

difficult to functionally annotate GWAS hits. From our single-cell data, we determined 

rs66475830 to be accessible in amacrine and horizontal cells and predicted TSPYL1 and 
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TSPYL4 as target genes (Figure 5C). Retina eQTL analysis revealed that variation at this 

position was significantly associated with TSPYL4 expression but not that of other nearby 

genes (Figure 5D), nominating TSPYL4 as the effector gene of rs66475830.

Last, we identified many SNP-target gene relationships supported by HiChIP and eQTL 

data, such as rs77272443 and rs4102217 located in risk loci for myopia and glaucoma, 

respectively.39,40 For both of these SNPs, HiChIP and eQTL analyses again refined target 

gene predictions (Figures S8A and S8B), demonstrating how the combination of single-cell 

multiomics with other assays can enhance interpretation of noncoding variants in eye 

disease.

Integration of the single-cell multiome with base-resolution deep learning nominates 
functional mechanisms for disease-associated SNPs

CNN-based deep learning models have proven capable of discerning disease-associated 

SNPs from other noncoding variants.8,10,11 As a final method to prioritize SNPs in our 

dataset, we therefore trained CNNs derived from the BPNet architecture on scATAC-seq 

profiles for each of the 13 retinal cell types (Figure 6A, S9A, and S9B).12 At each SNP 

region, we compared the projected per-base change in chromatin accessibility between 

reference and alternate alleles using models specific to the different cell types. These 

calculations allowed us to identify ‘‘high-effect’’ SNPs, which we defined as SNPs 

predicted to cause a statistically significant (false discovery rate < 0.01) absolute log2 fold 

change of allele-specific read counts of greater than 0.5 in local chromatin accessibility in 

any cell type.

We found 23 SNPs (2.0%) residing in scATAC peaks that qualified as high-effect, a greater 

percentage than among index SNPs, LD expanded SNPs, random SNPs matched for GC 

content, and random SNPs residing in scATAC peaks (Figure 6B; Data S8). One of the 

top-scoring SNPs was rs1532278, an index SNP associated with myopia and residing in an 

intron of CLU on chromosome 8.3 Our atlas predicted rs1532278 to regulate CLU, a notion 

reinforced by eQTL data, and determined the SNP to be accessible in nine of 13 retinal 

cell types (Figures 6C and 6D). Despite this, base-resolution models projected a T-to-C 

transition at rs1532278 to alter chromatin accessibility only in Müller glia, specifically by 

disrupting the motif of a homeodomain TF. Our findings suggest that even though rs1532278 

is accessible across multiple cell types, its functional effect in the retina might be restricted 

to Müller glia because of a cell-type-specific homeodomain TF. We speculate that this TF 

could be LHX2, given its robust expression in Müller glia by our scRNA-seq data (Figure 

6E) as well as data from animal models.41

Another high-effect SNP was rs1874459 located in an intron of CDH11 on chromosome 

16, a locus implicated by multiple GWASs for glaucoma.2,28 Using our multiome, we 

found rs1874459 to be most accessible in rod bipolar cells and predicted CDH11 as one 

of its target genes, an idea supported by eQTL data (Figures 6C and 6F). Incorporating 

base-resolution models, we then determined that the G-to-C transversion represented by 

rs1874459 introduced a new basic-helix-loop-helix (bHLH) domain, which was expected to 

increase accessibility in rod bipolar, OFF-cone bipolar, ON-cone bipolar, gly-amacrine, and 

AII-amacrine cells. Of the bHLH TFs, members of the neuroD and neurogenin families in 
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particular were predicted by motif analysis to be significantly enriched in these five cell 

types (Figure 3A; Data S4). We thus compared all neuroD and neurogenin family members 

using our scRNA-seq data, which revealed only NEUROD4 to be specific to bipolar and 

amacrine cells (Figure 6G), consistent with its role in specifying these cell types during 

development.42,43 Our results suggest that rs1874459 may act on CDH11 in bipolar and 

amacrine cells by creating a new bHLH domain recognized by NEUROD4.

DISCUSSION

In this study, we applied single-cell multiomics, HiChIP, eQTL analysis, and base-resolution 

deep learning to the human retina to decipher the role of noncoding risk variants in five 

eye diseases. Integrating these methods allowed us to predict gene and cellular targets in 

the retina for hundreds of SNPs and nominate dozens as potentially pathogenic and meriting 

functional validation. From an initial list of more than 7,000 noncoding SNPs, we identified 

1,152 located in chromatin accessibility peaks. We subsequently focused on SNPs (1) that 

were co-accessible with a promoter, (2) whose accessibility correlated with the expression 

of a nearby gene, (3) that were linked to a gene in 3D space by a H3K27ac HiChIP loop, 

(4) that demonstrated significant association with a gene based on retina eQTL data, and (5) 

that were predicted to alter local chromatin accessibility as determined by base-resolution 

models. We propose that SNPs meeting most or all of these criteria (Figure S10; Data S6) be 

prioritized in future validation efforts.

Our findings build upon recent studies that used primarily fetal tissue and stem-cell-

derived organoids to map cell-type-specific chromatin accessibility in the human retina.31,44 

Datasets from these studies are a rich resource for decoding retinal development and 

understanding congenital eye diseases. However, they might not fully recapitulate the 

biology of the mature retina, making them potentially less suitable for studying vision 

disorders that present later in life. Here we generated a single-cell multiome that 

complements prior datasets by pinpointing cellular targets for disease-associated SNPs in the 

adult human retina. We combined this multiome with multiple orthogonal analyses to define 

putative SNP-target gene interactions. By performing base-resolution deep learning, we 

were able to uncover insights not readily apparent from single-cell, HiChIP, and eQTL data, 

such as the predicted effect of SNPs on TF binding and the directionality of these effects. To 

facilitate its use, our atlas is publicly available at https://eyemultiome.su.domains/.

Limitations of the study

Limitations of this study include the relatively low number of cells profiled from rarer cell 

types like microglia and retinal ganglion cells. Expansion of the current atlas with more 

cells and donors would be helpful to resolve functionally distinct cell subtypes and could 

reveal subtype-specific regions of chromatin accessibility that were overlooked here. During 

SNP prioritization, use of HiChIP and eQTL data from bulk retina may have also favored 

SNPs from more abundant cell types. Limited overlap of GWAS hits and significant eQTL 

because of systemic differences in study design may have led to lower concordance among 

our prioritization criteria.45
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Finally, it should be noted that the majority of SNPs we examined did not overlap with 

any chromatin accessibility peaks, suggesting that they were not active in the retina. We 

hypothesize that many of these unassigned SNPs may instead function in other parts of the 

eye and thus could not be captured by our analysis. For instance, although the neural retina 

is damaged in AMD and DR, the retinal pigment epithelium and vasculature, respectively, 

are thought to be the primary sites of pathology.46,47 In glaucoma, the trabecular meshwork 

and ciliary body can modulate disease severity as evidenced by treatments that act on these 

tissues.48 Likewise, the choroid and sclera may be involved in myopia, given that they 

elongate alongside the retina with increasing nearsightedness.49 Multiomics characterization 

of these additional ocular regions would enable a more complete understanding of how 

noncoding SNPs contribute to vision disorders.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Dr. Howard Y. Chang 

(howchang@stanford.edu).

Materials availability—Due to the limiting nature of primary samples, human tissues 

used in this study are not available upon request. This study did not involve any other unique 

materials.

Data and code availability—Raw and processed scRNA-seq, scATAC-seq, and HiChIP 

data from this study have been uploaded to Gene Expression Omnibus under the accession 

number GSE196235. A web page summarizing these data is also available at https://

eyemultiome.su.domains/. Code used for scRNA- and scATAC-seq analysis is available at 

https://doi.org/10.5281/zenodo.6795162. Code used for BPNet model training is available 

at http://doi.org/10.5281/zenodo.6796067. BPNet models are available at https://doi.org/

10.5281/zenodo.6330053.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Postmortem adult human retinas were procured from consented donors by Lions VisionGift 

(Portland, OR, USA) or Lions Gift of Sight (St Paul, MN, USA) under protocols approved 

by the Eye Bank Association of America. None of the donors had a history of ocular 

disease. De-identified retinas were flash-frozen in liquid nitrogen with a maximum death-to-

preservation interval of 12 hours and shipped to Stanford University for processing. Donor 

information is listed in Table S1.

METHOD DETAILS

Nuclei isolation—Nuclei were isolated from frozen retinas using the Omni-ATAC 

protocol (https://doi.org/10.17504/protocols.io.6t8herw).50 Briefly, tissues were Dounce 

homogenized in cold homogenization buffer containing 0.3% IGEPAL CA-630 in the 

presence of protease and RNase inhibitors to release nuclei from frozen cells. Nuclei 

were subsequently purified via iodixanol gradient centrifugation and washed with ATAC 
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resuspension buffer containing RNase inhibitor and 0.1% Tween-20 before permeabilization 

following the 10x Genomics demonstrated protocol for complex tissues (CG000375, Rev. 

B). After resuspension in diluted nuclei buffer, nuclei were counted using a manual 

hemocytometer to achieve a targeted nuclei recovery of 10,000 nuclei per sample.

scRNA- and scATAC-seq library generation—Joint scRNA- and scATAC-seq 

libraries were prepared using the 10x Genomics Single Cell Multiome ATAC + Gene 

Expression kit according to manufacturer’s instructions. Libraries were sequenced with 

paired-end 150-bp reads on an Illumina NovaSeq 6000 to a target depth of 250 million read 

pairs per sample.

HiChIP library generation—H3K27ac HiChIP libraries were prepared as previously 

reported with minor modifications.14 Briefly, following isolation of nuclei from frozen 

retinas as described above, ~8 million nuclei from each sample were washed with nuclei 

isolation buffer from the diploid chromatin conformation capture (Dip-C) protocol and fixed 

with 2% paraformaldehyde at room temperature for 10 minutes.51 Fixed nuclei were then 

washed twice with cold 1% bovine serum albumin in phosphate-buffered saline before 

resuspension in 0.5% sodium dodecyl sulfate and resumption of the published HiChIP 

protocol. Digestion was performed using the MboI restriction enzyme, and sonication was 

conducted using a Covaris E220 with 5 duty cycles, peak incident power of 140, and 200 

cycles per burst for 4 minutes. The ab4729 ChIP validated antibody from Abcam was used 

to target H3K27ac. HiChIP libraries were sequenced with paired-end 75-bp reads on either 

an Illumina HiSeq 400 or Illumina NextSeq 550.

QUANTIFICATION AND STATISTICAL ANALYSIS

scRNA- and scATAC-seq data preprocessing and quality control—
Demultiplexed scRNA- and scATAC-seq fastq files were inputted into the Cell Ranger 

ARC pipeline (version 2.0.0) from 10x Genomics to generate barcoded count matrices of 

gene expression and ATAC data. For each sample, count matrices were loaded in ArchR 

and selected for barcodes that appeared in both the scRNA-seq and scATAC-seq datasets.52 

Samples in ArchR were quality control filtered for nuclei with 200–50,000 RNA transcripts, 

<1% mitochondrial reads, <5% ribosomal reads, TSS enrichment >6, and >2,500 ATAC 

fragments. Quality control filtered nuclei subsequently underwent automated removal of 

doublets using the filter-Doublets function in ArchR, which identifies and removes the 

nearest neighbors of simulated doublets.52

scRNA-seq data analysis—scRNA-seq data from nuclei remaining after quality control 

filtering and automated removal of doublets were analyzed using Seurat (version 3.1.5).53 

After merging all preprocessed samples into a single Seurat object, gene expression counts 

were normalized using the NormalizeData function, scaled using the ScaleData function, 

and batch corrected using Harmony.54 Graph-based clustering was then performed on the 

Harmony-corrected data using the top 20 principal components at a resolution of 0.5. Cluster 

identities were manually annotated based on the expression of genes from published scRNA-

seq studies of the human retina.16–18 Marker genes for each cluster were additionally 

identified using the FindAllMarkers function with a minimum fraction of 0.5 and a log2 fold 
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change of 1 (Data S1). Clusters expressing canonical marker genes from different cell types 

were designated as putative doublets and excluded, after which re-clustering was performed 

using the same parameters. Clusters with no detected marker genes were also excluded, 

after which the dataset was also re-clustered. Clusters in the final dataset representing 

subpopulations of the same cell type were grouped together for downstream analyses.

scATAC-seq data analysis—scATAC-seq data were analyzed using ArchR (version 

1.0.1) based on barcoded cell type identities from scRNA-seq.52 For each cell type, pseudo-

bulk ATAC replicates were created using the addGroupCoverages function with default 

parameters, which generated between two to five replicates depending on how many cells of 

that type were present in each sample. Chromatin accessibility peaks on chromosomes 1–22 

and X and outside of blacklist regions were then called using the addReproduciblePeakSet 

function and MACS2,55,56 with scATAC peaks for each cell type defined as those present 

in at least two pseudo-bulk ATAC replicates (Data S2). Marker peaks were identified using 

the getMarkerFeatures function with a log2 fold change ≥1 and false discovery rate ≥ 0.01 

as determined by Wilcoxon pairwise comparisons (Data S3). Promoter peaks were defined 

as scATAC peaks within 2,000 bp upstream or 100 bp downstream of a TSS, and peaks 

co-accessible to promoter peaks were identified using the getCoAccessibility function with 

a correlation cutoff of 0.3 and resolution of 1. Predicted target genes for each scATAC peak 

were generated using the getPeak2GeneLinks function integrating barcode-matched RNA 

expression data from scRNA-seq with a correlation cutoff of 0.3 and resolution of 1. Nearest 

genes were determined using the BEDTools closest function based on gene annotations from 

TxDb.Hsapiens.UCSC.hg38.knownGene.57

Bulk ATAC-seq data analysis—Bulk ATAC-seq analysis was performed on published 

ATAC-seq data from five healthy human retinas.20 After adapter trimming, fastq files were 

mapped to the hg38 genome using Bowtie2 and filtered to remove PCR duplicates and retain 

reads from only chromosomes 1–22 and X.58 Peak calling was then conducted individually 

on each sample using MACS2,55 followed by exclusion of peaks in blacklist regions.56 Peak 

calls present in at least two of the five retinas were included in the bulk ATAC-seq peak set.

Sequencing tracks—Sequencing tracks of chromatin accessibility were generated in 

ArchR using the plotBrowserTrack function and were normalized by the total number 

of reads in TSS regions.52 In some cases, bigWig files generated in ArchR using the 

getGroupBW function were visualized on the WashU Epigenome Browser.59 All data were 

aligned and annotated to the hg38 reference genome unless otherwise stated.

Motif enrichment analysis—TF motif enrichment analysis was performed on scATAC 

peaks using the peakAnnoEnrichment function in ArchR with default parameters based on 

position frequency matrices from Cis-BP (Data S4).52,60 Footprinting analysis of TFs was 

conducted using the get-Footprints function in ArchR.52 To correct for Tn5 insertion bias, 

the Tn5 insertion signal was subtracted from footprinting signals prior to plotting.

SNP selection and LD expansion—Index SNPs implicated in AMD, glaucoma, DR, 

myopia, or MacTel and located on chromosomes 1–22 and X were collected from the 

NHGRI-EBI GWAS Catalog, a curated collection of human GWAS.25 LD expansion was 
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then performed using LDlinkR to add any SNPs in LD with each index SNP,61 defined as a 

LD R2 value >0.9 in the phase 3 genotypes of the 1000 Genomes Project.26 LD expanded 

SNPs were filtered to exclude variants in coding regions based on annotations in dbSNP to 

obtain the final set of noncoding SNPs (Data S6).62 A list of all GWAS used in this study is 

provided in Table S3.

HiChIP data analysis—HiChIP sequencing files were initially processed using the HiC-

Pro pipeline (version 2.11.0) to remove duplicate reads, assign reads to MboI restriction 

fragments, filter for valid interactions, and generate binned interaction matrices.63 Filtered 

read pairs from HiC-Pro were subsequently converted into .hic files and inputted into 

HiCCUPS from the Juicer pipeline to call loops (Data S7).64 HiChIP interaction maps 

depicting all valid interactions identified by HiC-Pro were visualized using Juicebox.65

eQTL analysis—Retina eQTL data were obtained from the Eye Genotype Expression 

(EyeGEx) database.15 Each of the 1,152 SNPs overlapping with a scATAC peak was 

searched in the database and the nominal p value of any gene associations with that SNP 

noted. Adjusted p values were calculated by multiplying the nominal p value by the number 

of SNP-gene pairs tested for that SNP. Interactions with an adjusted p value < 0.05 were 

considered significant.

Deep learning model training—scATAC-seq reads from the Cell Ranger ARC pipeline 

were aggregated by cell type to generate cell type-specific fragments files. The fragments 

files were converted to BigWig tracks of base-resolution Tn5 insertion sites with an +4/−4 

shift to account for Tn5 shift. For each cell type, in addition to the peak regions, we selected 

an equal number of non-peak regions that were matched for GC content in their peaks. We 

then trained cell type-specific BPNet models to predict the log counts and base-resolution 

Tn5 insertion profiles as previously reported.8,12 Briefly, the BPNet model takes as input a 

2,114 bp one-hot encoded input sequence and predicts the ATAC-seq profile and log counts 

in a 1,000 bp window centered at the input sequence. Following BPNet formulation, we 

used a multinomial negative log likelihood (MNLL) for the profile output of the model and 

a mean square error (MSE) loss for the log counts output of the model. The relative loss 

weight used for the counts loss was 0.1 times the mean total counts per region. During each 

epoch, training examples were jittered by up to 500 bp on either side and a random half of 

the sequences were reverse complemented. Each batch contained a 10:1 ratio of peaks to 

non-peak regions. Five models were trained for each cell type corresponding to five disjoint 

training folds. Model training was performed using Keras/Tensorflow 2.

SNP scoring with BPNet—To score LD expanded SNPs associated with eye disease, 

we centered the input window at the SNP and obtained the log2 fold change in predicted 

counts between the reference and alternate alleles for each cell type-specific model. We 

averaged the log2 fold change over the five model folds for each SNP and cell type. To 

obtain p values, we performed one-sided Poisson tests of the predicted alternate allele count 

with the rate parameter set to the predicted reference allele count (counts averaged over five 

folds). For each SNP, we combined p values across cell types with Fisher’s method and 

performed Benjamini-Hochberg correction. SNPs with an absolute fold-averaged log2 fold 
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change >0.5 and false discovery rate <0.01 were assigned putative ‘‘high effect’’ annotation. 

To obtain a background set, random noncoding SNPs were chosen by shuffling a list of 

all SNPs from the 1000 Genomes Project,26 filtering out coding regions, and selecting the 

first 10,000 entries. Only random SNPs localized to chromosomes 1–22 and X were then 

retained, leaving 9,984 background SNPs. Background SNPs had similar GC content as 

disease-associated LD expanded SNPs (51% versus 52%) and were scored as described 

above. Base importance tracks were visualized using Logomaker.66
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Single-cell RNA and chromatin profiling of human retina characterizes 13 

cell types

• H3K27ac HiChIP of human retina identifies enhancer-promoter connections

• Deep learning predicts effects of single base changes on chromatin 

accessibility

• Integrative approach prioritizes noncoding risk variants in complex eye 

diseases
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Figure 1. Transcriptional profiles from joint scRNA- and ATAC-seq identify major cell types of 
the human retina
(A) Schematic of the human retina, depicting the cell types analyzed in this study.

(B) Uniform manifold approximation and projection (UMAP) plot of the 51,645 human 

retinal cells detected by scRNA-seq after quality control filtering and removal of putative 

doublets. Eight postmortem retinas from four donors were profiled. A total of 22 clusters 

were resolved and assigned to 13 cell types.

(C) Frequency of different cell types in the human retina as determined by scRNA-seq. 

Numbers above each bar denote absolute counts out of 51,645.

(D) Dot plot visualizing the normalized RNA expression of selected marker genes by cell 

type. The color and size of each dot correspond to the average expression level and fraction 

of expressing cells, respectively.
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Figure 2. Chromatin accessibility profiles from joint scRNA- and ATAC-seq of the human retina 
reveal cell-type-specific epigenetic landscapes
(A) Number of chromatin accessibility peaks for each cell type as determined by scATAC-

seq. Peaks were required to be present in a least two pseudo-bulk ATAC replicates (n = 2 for 

astrocyte and microglia, n = 5 for all other cell types).

(B) Overlap of scATAC peaks with peaks from published human retina bulk ATAC-seq data. 

Overlapping was defined as peaks with any overlapping bases.

(C) Heatmap of scATAC marker peaks enriched in each cell type. Each column represents a 

marker peak.

(D) Sequencing tracks of chromatin accessibility near selected marker genes by 

cell type. Each track represents the aggregate scATAC signal of all cells from the 

given cell type normalized by the total number of reads in TSS regions. Genes 

in the sense direction (TSS on the left) are shown in red, and genes in the 

antisense direction (TSS on the right) are shown in blue. Coordinates for each 

region are as follows: PDE6A (chr5:149924792–149964793), GRIK1 (chr21:29905031–

29955033), RLBP1 (chr15:89201750–89241751), GRM6 (chr5:178975297–179015298), 

NIF3L1 (chr2:200874325–200914327), ARR3 (chrX:70248304–70288305), GAD2 
(chr10:26186306–26246307), ONECUT1 (chr15:52781076–52821078), SLC6A9 
(chr1:44005465–44035467), NEFL (chr8:24937109–24977110), CALB2 (chr16:71323711–
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71368713), PAX2 (chr10:100715602–100755603), and HLA-DRA (chr6:32419841–

32459842).
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Figure 3. Motif analysis of accessible DNA regions in the human retina predicts cell-type-specific 
TFs
(A) Heatmap of selected TF binding motifs enriched in each cell type. Darker colors indicate 

more significant enrichment.

(B) Footprinting analysis of selected TFs across cell types. Footprints were corrected for 

Tn5 insertion bias by subtracting the Tn5 insertion signal from the footprinting signal.
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Figure 4. Single-cell multiomics pinpoints the cellular targets of noncoding variants in eye 
diseases
(A) Overview of SNP selection for interrogating ocular disease GWASs. Index SNPs 

obtained from GWASs of each disease were subjected to LD expansion, and the resulting 

noncoding SNPs intersected with scATAC peaks.

(B) Percentage of LD expanded noncoding SNPs from each disease that overlapped with 

chromatin accessibility peaks for each cell type.

(C) Number of scATAC peaks co-accessible with each promoter peak. Co-accessible was 

defined as scATAC peaks whose accessibility showed a correlation score greater than 0.3.

(D) Number of predicted target genes for each scATAC peak. Predicted target genes were 

defined as genes whose RNA expression showed a correlation score >0.3 relative to the 

accessibility of the tested scATAC peak.

(E) Sequencing tracks of chromatin accessibility near rs4821699 (chr22:37719685) and 

rs17421627 (chr5:88551768). Genes in the sense and antisense directions are shown in red 

and blue, respectively. The location of each SNP is depicted by a vertical gray line. Gray 

arcs indicate predicted target genes for the scATAC peak containing the SNP of interest.
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Figure 5. Integration of the single-cell multiome with HiChIP and eQTL data prioritizes 
functional noncoding polymorphisms in the human retina
(A) Overlap of H3K27ac HiChIP loop anchors (n = 2 biological replicates) with scATAC 

peaks.

(B) Percentage of SNPs in scATAC peaks for each disease with available retina eQTL data.

(C) Sequencing tracks of chromatin accessibility near rs9966620 (chr18:24100771), 

rs2730260 (chr7:159054238), and rs66475830 (chr6:116087639). Genes in the sense and 

antisense directions are shown in red and blue, respectively. The location of each SNP is 

depicted by a vertical gray line. Gray arcs indicate predicted target genes for the scATAC 

peak containing the SNP of interest. The black arc overlapping with rs9966620 indicates a 

H3K27ac HiChIP loop with the region encompassed by the opposite anchor, highlighted in 

purple.

(D) Significance of SNP-gene associations for rs2730260 or rs66475830 and their nearby 

genes, as determined by retina eQTL analysis. Adjusted p values for each gene were 
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calculated by multiplying the nominal p value listed in the EyeGEx database by the number 

of SNP-gene pairs tested for that SNP.
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Figure 6. Integration of the single-cell multiome with base-resolution deep learning nominates 
functional mechanisms for disease-associated SNPs
(A) Schematic of the CNN-based deep learning pipeline.

(B) Percentage of noncoding index SNPs (n = 1,284), LD expanded SNPs (n = 7,034), LD 

expanded SNPs in scATAC peaks (n = 1,152), randomly selected GC-matched SNPs (n = 

9,984), and randomly selected SNPs in scATAC peaks (n = 1,160) that were categorized as 

high-effect.

(C) Top: predicted per-base accessibility for rs1532278 (chr8:27608798) and rs1874459 

(chr16:65041801) in Müller glia and rod bipolar cells, respectively, as determined by 

deep learning models. A 100-bp window depicts the importance of each base to predicted 

accessibility at the SNP, and a 1,000-bp window depicts predicted per-base counts for the 

reference (blue) and alternate (orange) alleles. SNP bases are highlighted in purple. For 

rs1874459, similar changes in accessibility were predicted for OFF-cone bipolar, ON-cone 

bipolar, gly-amacrine, and AII-amacrine cells. Bottom: sequencing tracks of chromatin 
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accessibility near rs1532278 and rs1874459. Genes in the sense and antisense directions are 

shown in red and blue, respectively. The location of each SNP is depicted by a vertical gray 

line. Gray arcs indicate predicted target genes for the scATAC peak containing the SNP of 

interest.

(D and F) Significance of SNP-gene associations for rs1532278 (D) or rs1874459 (F) and 

their nearby genes, as determined by retina eQTL analysis. Adjusted p values for each gene 

were calculated by multiplying the nominal p value listed in the EyeGEx database by the 

number of SNP-gene pairs tested for that SNP.

(E) Dot plot visualizing the normalized RNA expression of 40 different homeodomain TFs 

in Müller glia. The selected TFs correspond to the 40 homeodomain factors whose binding 

motifs were most significantly enriched in Müller glia, as determined by motif analysis 

(Data S4).

(G) Dot plot visualizing the normalized RNA expression of neuroD and neurogenin family 

members by cell type.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-histone H3 (acetyl K27) antibody Abcam Cat# ab4729; RRID: AB_2118291

Biological samples

Frozen adult postmortem human retinas Lions VisionGift, Lions Gift of Sight N/A

Chemicals, peptides, and recombinant proteins

IGEPAL CA-630 Sigma-Aldrich Cat# I8896

RNase inhibitor New England BioLabs Cat# M0314

Protease inhibitor Roche Cat# 11697498001

Tween-20 Roche Cat# 11332465001

Bovine serum albumin Miltenyi Biotec Cat# 130-091-376

Digitonin Thermo Fischer Scientific Cat# BN2006

Glycerol Ricca Chemical Cat# 3290-16

Paraformaldehyde Electron Microscopy Sciences Cat# 50-980-487

Sodium dodecyl sulfate Invitrogen Cat# 15553027

Triton X-100 Sigma-Aldrich Cat# 93443

MboI New England BioLabs Cat# R0147

Biotin-14-dATP Jena Bioscience Cat# NU-835-BIO14

Klenow fragment New England BioLabs Cat# M0210

T4 DNA ligase New England BioLabs Cat# M0202

Dimethylformamide Sigma-Aldrich Cat# 227056

Sodium deoxycholate Bioworld Cat# 40430018

Critical commercial assays

Single Cell Multiome ATAC + Gene Expression kit 10x Genomics Cat# 1000285

Deposited data

scRNA-seq, scATAC-seq, and HiChIP data This paper Gene Expression Omnibus: GSE196235

BPNet models This paper Zenodo: https://doi.org/10.5281/zenodo.6330053

Software and algorithms

Cell Ranger-ARC 10x Genomics v2.0.0

ArchR Granja et al., 2021 v1.01

Seurat Stuart et al., 2019 v3.1.5

Harmony Korsunsky et al., 2019 v1.0

MACS2 Feng et al., 2012 v2.1.1

BEDTools Quinlan et al., 2010 v2.30.0

LDlinkR Myers et al., 2020 v1.2.0
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REAGENT or RESOURCE SOURCE IDENTIFIER

HiC-Pro Servant et al., 2015 v2.11.0

Juicer Rao et al., 2014 v1.6

Juicebox Durand et al., 2016 v1.11.08

Logomaker Tareen et al., 2020 v0.8

Other

Dounce homogenizers Sigma-Aldrich Cat# D8938

SPRIselect beads Beckman Coulter Cat# B23317

Protein A Dynabeads Invitrogen Cat# 10001D

Streptavidin Dynabeads Invitrogen Cat# 65001
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