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Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease worldwide. However, current treatments remain
suboptimal. Many factors, such as genetic and nongenetic promoters, hypertension, hyperglycemia, the accumulation of advanced
glycation end products (AGEs), dyslipidemia, and albuminuria/proteinuria itself, influence the progression of this disease. It is
important to determine the molecular mechanisms and treatment of this disease. The development of diabetes results in the
formation of AGEs, oxidative stress, and the activation of the renin-angiotensin-aldosterone system (RAAS) within the kidney,
which promotes progressive inflammation and fibrosis, leading to DN and declining renal function. A number of novel therapies
have also been tested in the experimental diabetic model, including exercise, inhibitors of the RAAS (angiotensin type 1 receptor
blockers (ARB), angiotensin-converting enzyme (ACE) inhibitors), inhibitors of AGE (pyridoxamine), peroxisome proliferator-
activated receptor (PPAR) 𝛾 agonists (pioglitazone), inhibitors of lipid accumulation (statins and eicosapentaenoic acid (EPA)), and
the vitaminD analogues.This review summarizes the advances in knowledge gained fromour studies and therapeutic interventions
that may prevent this disease.

1. Introduction

Diabetes mellitus is a major cause of chronic kidney disease
(CKD) worldwide [1] and is associated with enhanced mor-
bidity and mortality, particularly with accelerated cardiovas-
cular disease [2].

Current approaches to the prevention of diabetic neph-
ropathy (DN) include the strict control of blood glucose
and blood pressure. The strict control of blood glucose, as
quickly as possible, was shown to be effective inmajor clinical
trials [3, 4]. Blood pressure control has also been shown to
be of major importance in many studies [5–7]. In addition, in
patients who develop increased urinary albumin-creatinine
ratio (ACR) levels, one or more of the medications that
inhibit the renin-angiotensin-aldosterone system (RAAS)
axis should be used to lower ACR levels [8, 9]. These treat-
ments remain suboptimal, however, so much more re-
search is needed to determine other specific pathophysiologic

mechanisms in order to develop more treatments that are
targeted specifically to identified mechanisms.

The pathogenesis of DN appears to be multifactorial.
Several genetic and environmental factors likely contribute
to its development and progression [10]. Diabetes induces the
formation of advanced glycation end products (AGEs), which
can alter the function of proteins and stimulate pathological
cellular responses via AGE receptors. Increasing levels of
AGEs, and their deposition in diabetic kidneys, correlate with
the development of DN [11]. Of the pathophysiologic mecha-
nisms that have been identified in the development and pro-
gression ofDN, oxidative stress (more accurately described as
increased levels of reactive oxygen species; ROS) is of major
importance [12]. Recent studies have shown that kidney
inflammation is crucial in promoting the development and
progression of DN. Inflammation, which is activated by the
metabolic, biochemical, and hemodynamic derangements
known to exist in the diabetic kidney,may be a key factor [13].
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Figure 1:Majormechanistic pathways of diabetic renal injury identified.Various factors contribute to the progression of diabetic nephropathy,
as shown in this slide, and there is crosstalk between these factors.

DN progresses in stages, starting with the thickening of the
glomerular basement membrane, mesangial cell expansion,
and then gradually progressing into glomerulosclerosis and
interstitial fibrosis eventually resulting in renal failure [14].
It has been postulated that the relationship between AGE
effects, oxidative stress, RAAS activation, inflammation, and
fibrosis pathways plays an important role in the development
and progression of DN (Figure 1).

This review focuses on potential targets for new renopro-
tective therapies from our data in addition to the inhibition
of the RAAS in DN.

2. Characteristics of KK and KK-Ay Mouse

The KK mouse is an inbred mouse strain established from
Japanese nativemice.Thismouse spontaneously exhibits type
2 diabetes, associated with mild hyperglycemia, mild glucose
intolerance, mild hyperinsulinemia, mild obesity, and mild
microalbuminuria. Renal lesions in KKmice closely resemble
those in human diabetic nephropathy. Young KK mice are
considered to be suitablemodel for the study of the early stage
of type 2 DN in humans [15].

The KK-Ay mouse line was established in 1969, and these
mice are widely used as an experimental model for type 2
diabetes mellitus. KK-Ay mice spontaneously exhibit type 2
diabetes mellitus signs, including hyperglycemia, glucose
intolerance, hyperinsulinemia, obesity, and microalbumin-
uria. The mice also develop renal lesions that show diffuse
hyperplasia of the mesangial area with mesangial cell (MC)
proliferation, segmental sclerosis, overexpression of TGF-𝛽1,
and the accumulation of AGEs and ROS products [16–18].

3. Treatment of Diabetic Nephropathy

3.1. The Effect of Renin-Angiotensin-Aldosterone System Inhib-
itors. Angiotensin II (Ang II) exerts both hemodynamic
effects, leading to increased glomerular capillary pressure,
and nonhemodynamic effects such as cellular hypertrophy
stimulation and extracellular matrix (ECM) accumulation.
These effects are mediated through the interaction of Ang
II with its angiotensin type 1 (AT1) receptor. Angiotensin-
converting enzyme (ACE) inhibitors and AT1 receptor block-
ers (ARB) have been demonstrated to improve glomerular
hemodynamics and structures in both human and experi-
mental DN [19–21]. Our study demonstrated that treatment
with candesartan, an ARB, reduced blood pressure and
mesangial ECM accumulation and reduced ACR and type
IV collagen excretion without altering glucose metabolism
[22].Many studies have reported that high glucose andAng II
stimulate collagen production by TGF-𝛽 activation [23, 24].
TGF-𝛽 is an important mediator of fibrosis in the repair tis-
sues. Smad7 is generally considered to be a TGF-𝛽 signaling
inhibitor inmature T cells. In our study, TGF-𝛽 expression by
immunohistochemistry in glomeruli wasmarkedly increased
in themild diabeticmodel of KKmice. Candesartan adminis-
tration significantly reducedTGF-𝛽 expression.Our data also
demonstrated that candesartan treatment led to an increase
in glomerular Smad7 expression [22]. It appears that these
protective effects of candesartan were associated with lower
glomerular hydraulic pressure, reduced TGF-𝛽 expression,
and increased Smad7 expression. These data supported the
previous data that the TGF-𝛽/Smad signal system could play
an important role in the development and progression of DN
in KK mice [15].
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Oxidative and nitrosative stresses are widely recognized
as key factors in the development of DN. We demon-
strated that nitrooxidative stress and AGE production are
enhanced in the kidneys of KK mice. Candesartan decreased
nitrooxidative stress by downregulating NAD(P)H oxidase
p37phox and iNOS expression, and modified interaction
between AGEs and RAGE by attenuating RAGE expression,
contributing to the reduction of AGE accumulation and
subsequent albuminuria [15, 25].

Evidence has accumulated over the past few years indicat-
ing that adenosine monophosphate activated protein kinase
(AMPK) may be a useful target for the pharmacologic treat-
ment of type 2 diabetes. The actions of AMPK were ini-
tially defined as the regulation of fatty acid and cholesterol
synthesis pathways [26]. In parallel with their activation of
AMPK, antidiabetic adipokines, that is, adiponectin, stimu-
late phosphorylation of acetyl CoA carboxylase (ACC), fatty
acid oxidation, glucose uptake, and lactate production. Our
data demonstrated that enalapril and/or losartan improved
the urinary ACR levels through the activation of adiponectin
and AMPK in the kidneys of KK-Ay mice [27]. These results
suggested that the RAS inhibitors activated renal AMPK
through its phosphorylation. Therefore, the effects of ACE
inhibitors and/or ARBs, especially in combination treatment,
might be associated with tissue-specific adiponectin-AMPK
activity.

3.2. Effect of Angiotensin-(1–7). There is emerging evidence
that in DN, the generation of ROS is a major factor in the
development of diabetes and its associated complications
[28, 29]. NAD(P)H oxidase is an enzymatic complex that is
responsible for ROS production. Ang II-mediated ROS is an
important second messenger for the transcriptional effects of
Ang II, and NAD(P)H oxidase is the central enzyme complex
of Ang II-induced ROS [30, 31]. The recent discovery of the
renal RAS [28, 29], ACE carboxypeptidase (ACE2), and Ang-
(1–7) has changed the way the RAS is viewed. Ang-(1–7)
is a biologically active heptapeptide component of the RAS
and is generated in the kidney at relatively high levels via
enzymatic pathways that include ACE2.The biological effects
of Ang-(1–7) in the kidney are primarily mediated by their
interaction with the G-protein-coupled receptor Mas [32].
We found that mice coinfused with Ang II + Ang-(1–7) had
a lower increase in urinary ACR than mice infused with Ang
II alone. In this animal model, Ang-(1–7) attenuated Ang II-
mediated NAD(P)H oxidase activation and ROS production
in diabetic glomeruli and MCs. These findings were related
to improved mesangial expansion and the production of
fibronectin and TGF-𝛽1 in the diabetic kidney and cultured
MCs as opposed to Ang II. We also found that Ang II-
inducedNF-𝜅BandMAPKactivationwas attenuated byAng-
(1–7) in the MCs [18]. Our findings suggest that Ang-(1–7)
may attenuate Ang II-stimulated NAD(P)H dependent ROS-
mediated renal injury in diabetes. The ACE2-Ang-(1–7)-Mas
receptor axis should be investigated further as a novel target
of treatment of DN.

3.3. Effect of Pyridoxamine. Chronic hyperglycemia pro-
motes the generation of AGEs as a result of sequential

biochemical reactions involving the nonenzymatic glycation
of protein and lipids [33]. The formation of AGEs occurs in
normal aging, but it is accelerated in the diabetic state. AGEs
increase the expression of growth factors and cytokines,
including TGF-𝛽, connective tissue growth factor (CTGF),
and vascular endothelial growth factor (VEGF) [34]. AGEs
can induce the expression of the monocyte chemoattractant
protein-1 (MCP-1) in podocytes through the activation of the
AGE receptor (RAGE) and the generation of intracellular
ROS [35]. Eventually, these products cause glomerular and
tubulointerstitial injury. In therapeutic interventions for
reducing AGEs, many compounds have been reported as
AGE inhibitors, such as aminoguanidine, phenacylthia-
zolium bromide, 2-isopropylidenehydrazono-4-oxo-thia-
zolidine-5-yl-acetanilide (OPB-9195), 2,3-diaminophena-
zine, vitamin C, vitamin E, Ang II receptor inhibitor, and
pyridoxamine [25, 36–38]. Pyridoxamine was introduced
by Khalifah et al. [39, 40] as an inhibitor of AGE formation
from Amadori products [41]. The effects of pyridoxamine
include (a) the inhibition of AGE formation by blocking the
oxidative degradation of the Amadori intermediate of the
Millard reaction, (b) the scavenging of toxic carbonyl
products of glucose and lipid degradation, and (c) the
trapping of ROS [42]. We demonstrated that pyridoxamine
(K-163) ameliorates the levels of urinary ACR and serum
3-deoxyglucosone (3DG) in KK-Ay mice without changing
systemic blood pressure. Furthermore, pyridoxamine pre-
vented accumulations of Nq-(carboxymethyl)lysine (CML),
nitrotyrosine, TGF-𝛽1, and laminin-𝛽1 in the kidney tissues
[41]. AGEs and oxidative stress might activate autocrine Ang
II signaling and subsequently induce TGF-𝛽1-Smad signaling
in mesangial cells [43, 44]. Our findings suggested that the
amelioration of urinary ACR was related to the improvement
of TGF-𝛽1 and laminin-𝛽1 expressions in the kidney because
CML and nitrotyrosine accumulations were improved and
the levels of serum 3DG were reduced by anti-AGE and/or
the antioxidant effects of pyridoxamine.

3.4. Effect of Pioglitazone. Thiazolidinediones (TZDs), PPAR𝛾
agonists, such as troglitazone, pioglitazone, and rosiglitazone,
are insulin-sensitizing agents [45]. It is generally considered
that these drugs have preventive effects on impaired glucose
tolerance (IGT) and urinary ACR excretion in diabetics [46–
48]. In the kidney, PPAR𝛾 messages were localized pre-
dominantly in the inner medullary collecting ducts and
renal medullary interstitial cells but not in the cortex [49].
However, previous reports have shown that TZDs amelio-
rate renal microcirculation, glomerular hyperfiltration, and
mesangial expansion in DN [50–52]. The increase of renal
perfusion and glomerular filtration rate (GFR) occurs early
in the course of DN. Nitric oxide (NO) might be one of the
causes of glomerular hyperfiltration [53]. Veelken et al. [54]
reported that early glomerular hyperfiltration was dependent
on increased NO generation due to greater expression and
activity of endothelial constitutiveNOS (ecNOS) in glomeruli
and afferent arterioles in untreated hyperfiltrating diabetic
rats. Therefore, ecNOS might be a more important hemo-
dynamic factor in the early stage of DN. We demonstrated
that pioglitazone, one of the TZDs, ameliorates urinary ACR
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and IGT in diabetic KK mice without changing systemic
blood pressure and blood glucose levels. We localized ecNOS
protein in the endothelium of preglomerular arteries, arte-
rioles, and glomerular tufts. Moreover, this positive staining
in KK mice treated with pioglitazone was less than that
in control mice. It appears that the decrease of urinary
ACR excretion might be related to the improvement of
glomerular enlargement, including hyperfiltration, since the
levels of ecNOS protein were reduced by pioglitazone in the
glomerular vessels [55].

3.5. Effect of Eicosapentaenoic Acid. Eicosapentaenoic acid
(EPA) is one of the n-3 polyunsaturated fatty acids (PUFA)
which are contained in fish oil. It was shown that EPA has
many effects, such as antithrombotic, hypolipidemic, anti-
atherogenic, anti-inflammatory, and antimitogenic actions.
The feeding of fish oil rich in n-3 PUFA reduces the ex vivo
production of interleukin-1 (IL-1), IL-6, tumour necrosis
factor (TNF), and IL-2 by peripheral blood mononuclear
cells and reduces the response to endotoxin and to proin-
flammatory cytokines, resulting in increased survival. MCP-1
is the strongest known chemokine, which has the function
of recruiting and activating monocytes/macrophages from
the circulation to inflammatory sites. Macrophages and its
products play an important pathogenic role in the tubuloint-
erstitial inflammatory and noninflammatory conditions and
have been implicated as effector cells of tubulointerstitial
damage and mesangial matrix accumulation in DN [56]. We
demonstrated that EPA, one of the n-3PUFA, ameliorates
urinary ACR and MCP-1 levels and attenuates mesangial
matrix accumulation and tubulointerstitial fibrosis in KK-Ay

mice without changing systemic blood pressure and fasting
blood glucose levels. Moreover, EPA ameliorates IGT and
hypertriglyceridemia and lowers leptin levels in KK-Ay mice.
BecauseMCP-1 inducesmonocyte immigration and differen-
tiation to macrophages, which augment extracellular matrix
production and tubulointerstitial fibrosis, and also because it
directly induces tubulointerstitial inflammation and vascular
damage in the kidney, we propose that the observed down-
regulation of MCP-1 is critically involved in the beneficial
effect of EPA, probably in concert with the improvement
of other clinical parameters. The potential of EPA in the
treatment of DN might be of particular relevance to patients
with comorbidities such as dyslipidaemia and obesity [57].

3.6. Effect of Statins. The 3-hydroxy-3-methylglutaryl-coen-
zyme A (HMGCoA) reductase inhibitors (statins) have plei-
otropic effects on cardiovascular, cerebrovascular, and
microvascular diseases independent of their cholesterol-
lowering effect [58, 59]. Statins also have beneficial effects
on kidney disease, including DN. Previous reports have
shown the pleiotropic effects of statins, such as their anti-
inflammatory effects and antioxidative stress effects in
vitro and in vivo [58, 60]. Mechanisms of improvement of
urinary ACR by statin treatment have been proposed in
some reports [59, 61, 62]. These reports have stated that
statins improved the urinary ACR of diabetic rats through
an anti-inflammatory effect and/or through the inhibition

of macrophage recruitment and activation and also by
the inhibition of TGF-𝛽 overexpression. We suggested
that oxidative stress and nitrotyrosine are related to the
progression of DN [41]. Oxidative stress is defined as a tissue
injury induced by an increase of ROS, such as the hydroxyl
radical, superoxide anion, or hydrogen peroxide. Thus,
oxidative stress is considered to be one of the factors involved
in the development of diabetic complications [63, 64]. Iso-
prenoids, such as farnesyl pyrophosphate or geranylgeranyl
pyrophosphate, are generated from HMG-CoA through
mevalonate depletion. Isoprenoids inhibit the generation
of eNOS and GTPCH-1, and they also increase NAD(P)H
oxidase through the inhibition of the Rho pathway and
activation of Rac-1. Since pitavastatin inhibits HMGCoA
reductase and blocks synthesis of the isoprenoids, the
generation of NAD(P)H oxidase is inhibited and signals
to generate eNOS are upregulated. Furthermore, statins
activate GTPCH-1 and lead to the upregulation of BH4,
which is essential for eNOS to form a dimer. As a result,
pitavastatin activates eNOS dimerization and enforces their
stability through this cascade. As the monomerization of
eNOS, which involves NO and ROS imbalance, is decreased,
oxidative stress is decreased. Moreover, upregulated dimeric
eNOS acts as an NO generator and may work against
shear stress in the early stage of DN [17]. We demonstrated
that pitavastatin improves the levels of urinary ACR,
urinary 8-OHdG, and insulin resistance in KK-Ay mice
independent of cholesterol-lowering effect. Furthermore,
pitavastatin prevented the accumulation of monomeric
eNOS, nitrotyrosine, and p47 phox in kidney tissues. It
appears that pitavastatin improved not only urinary ACR
but also HbA1c and impaired glucose tolerance in KK-Ay

mice, which might be because of the suppression of eNOS
uncoupling and its antioxidant effects on DN.

3.7. Effect of Vitamin D Analogues. The natural activator
of the vitamin D receptor, calcitriol, is produced by the
kidney, but plasma concentrations decline as estimated GFR
(eGFR) reduces [65]. In a multivariable analysis of patients
with chronic kidney disease (CKD), lower calcitriol con-
centrations strongly correlated with higher risk of diabetes,
higher urinary ACR, and lower eGFR [65]. Calcitriol, 1,25-
dihydroxyvitamin D 3 (1,25(OH) 2 D 3), and its analogs
have been shown to attenuate renal diseases [66–68]. For
example, the knockout of the vitamin D receptor in diabetic
mice was associated with severe albuminuria and glomeru-
losclerosis from increased thickening of the glomerular
basement membrane (GBM) and podocyte effacement [69].
1,25(OH) 2 D 3 is a negative endocrine regulator of RAS and
suppresses renin biosynthesis [70, 71]. These studies provide
the molecular basis for exploring the potential of 1,25(OH)
2 D 3 to regulate the RAS by inhibition of renin [70]. We
investigated the effect of therapy with 1,25(OH) 2 D 3 upon
DN in KK-Ay mice. It appears that therapy with 1,25(OH)
2 D 3 reduced the urinary ACR level by suppressing the
compensatory renin increase in type 2 DN. These beneficial
effects might be related to suppressed renal expression of
renin, ERK1/2, and TGF-𝛽 which may or may not be Ang II



The Scientific World Journal 5

dependent [72]. Moreover, a recent trial reported antial-
buminuric effects of another analogue, paricalcitol, further
strengthening the evidence for vitamin D analogues as
renoprotective agents [73]. Paricalcitol lowers residual albu-
minuria in patients with DN and could be a novel approach
to lower residual renal risk in diabetes.

3.8. Effect of Exercise. Lifestyle modification, especially ap-
propriate exercise, is recommended for the management of
type 2 DN through improvements of metabolic risk factors
such as blood pressure, blood glucose, plasma lipids, and
oxidative stress markers. On the other hand, appropriate
exercise also consumes considerable amounts of oxygen,
leading to the production of high levels of ROS. There is
also evidence that ROS and high glucose exposure contribute
to podocyte apoptosis in experimental DN [74]. There are
several mechanisms for the renoprotective effects of exercise
in DN. In general, exercise training ameliorates renal func-
tion by improving metabolic factors such as plasma lipids,
blood glucose, blood pressure, and body weight. It is also
known to improve renal histology without altering metabolic
factors. Boor et al. [75] demonstrated that exercise training
reduced AGEs in both serum and kidney tissues of obese
Zucker rats, an animal model of type 2 diabetes, without
altering inflammatory biomarkers or metabolic factors. In
contrast, our study clearly showed that the exercised mice
showed attenuated renal expression ofMCP-1 and infiltration
of macrophage in the kidneys. We demonstrated that the
exercise training improved urinary NAG levels as well as the
change rate of urinary ACR, independent of body weight
and glycemic status in the kidneys of KK-Ay mice, although
moderate-intensity exercise increased expression of HIF-1𝛼
in the kidneys. In our study, no significant changes were
observed in the levels of Ccr between sedentary KK-Ay and
exercised KK-Ay mice. Therefore, it is indicated that the
decrease of urinary ACR was not due to the reduction of
renal blood flow/glomerular filtration rate, but more likely to
the effect of exercise. It is thought that appropriate exercise
increases antioxidant enzymes, although excessive exercise
causes inflammation, increases oxidative stress associated
with ROS, and decreases the renal blood flow and glomerular
filtration rate. In our study, both exercises decreased urinary
8-OHdG levels, an oxidative stressmarker.However, contrary
to our expectation, low-intensity exercise was more effective
than moderate-intensity exercise in terms of renal function.
Further investigation is required to determine appropriate
exercise intensity. It appears that low-intensity exercise atten-
uates the progression of early DN without affecting marked
renal ischemia. Thus, attention should be paid to renal
ischemia even though albuminuria has improved. Reductions
in the rate of urinary ACR change, urinary NAG, and
maintained podocyte numbers, with parallel improvements
in oxidative damage and chronic inflammation, might be
related to beneficial effects of exercise in DN [76].

4. Conclusion

Despite the successful use of lifestyle changes, metabolic
control, and blood pressure control, includingACE inhibitors

and ARB therapy, residual renal risk remains very high,
leaving the diabetic population with a clear unmet need for
novel treatment options. As outlined in this review, various
drugs are in development. It is anticipated that some of the
newer agents that are currently the focus of clinical trials will
ultimately lead to improvements in slowing the progression
and eventually improving the prognosis of this devastating
disease.
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