Check for updates

Fractional Exhaled Nitric Oxide Nonsuppression Identifies Corticosteroid-Resistant Type 2 Signaling in Severe Asthma

To the Editor:

Recently, two *post hoc* analyses of clinical trials in moderate to severe asthma showed that fractional exhaled nitric oxide (FE_{NO}) and the blood eosinophil count provide additive prognostic information on the occurrence of severe asthma attacks (1, 2). The effect is large, with a threefold increased risk in attacks seen in patients with FE_{NO} \geq 50 ppb and blood eosinophils \geq 0.3 \times 10⁹/L compared with those with a FE_{NO} <25 ppb and blood eosinophils <0.15 \times 10⁹/L (3). Importantly, this risk can be reduced with type 2 cytokine and alarmin-directed biologic agents (4–6). The additive, independent, and differentially modifiable risk associated with these biomarkers suggests that they identify different yet complementary aspects of type 2 airway inflammation.

Although raised $F_{E_{NO}}$ classically identifies corticosteroid responsiveness, the advent of $F_{E_{NO}}$ suppression testing for uncontrolled type 2-high asthma has proved that a third of patients have corticosteroid-resistant elevations in $F_{E_{NO}}$ —and disease burden—despite objective evidence of treatment adherence (7, 8). $F_{E_{NO}}$ nonsuppression provides a convenient model to control for nonadherence and independently study corticosteroid resistance in severe asthma.

We tested the hypothesis that $F_{E_{NO}}$ and blood eosinophils relate differently to inflammation observed in the sputum (reflecting airway) and blood (reflecting systemic) compartments. An important feature of our approach was to study patients in whom we had a high degree of confidence in treatment adherence to high-dose inhaled corticosteroids and/ or systemic corticosteroids.

Author Contributions: S.C. collated the data, analyzed specimens, and drafted and approved the final manuscript. R.S. participated in data collection and specimen analysis and approved the final manuscript. R.C., A.H.M., L.P.M., L.G.H., S.J.F., P.B., T.S.C.H., and I.D.P. participated in data collection and approved the final manuscript. T.S.C.H. participated in manuscript preparation, approved the final publication, and is the guarantor of this publication.

Originally Published in Press as DOI: 10.1164/rccm.202104-1040LE on June 15, 2021

Methods

Induced sputum eosinophils and sputum plus serum mediators were analyzed in a pooled cross-sectional analysis of patients with severe asthma and healthy control subjects.

We included patients with severe asthma who had sputum analyzed after a $F_{E_{NO}}$ suppression test (8) or the RASP-UK (UK Refractory Asthma Stratification Programme) trial (NCT02717689) (9). Adherence was verified using different approaches. The FE_{NO} suppression cohort underwent remotely monitored inhaled corticosteroids via a chipped inhaler and, if FENO was suppressed by <42% by Day 7, a nurse-administered triamcinolone injection (8). The RASP-UK cohort underwent 8-weekly biomarker or clinically guided treatment advisories for 1 year (9) followed by a range of objective adherence measurements (prescription refills; cortisol and prednisolone blood concentrations if applicable; $F_{E_{NO}}$ suppression testing if FE_{NO} elevated) before being recruited for the associated bronchoscopy study (NCT02883530). Healthy control subjects were nonsmokers, reported no atopy or lung disease, and had normal lung function. All subjects provided written informed consent in ethically approved studies.

Patients and control subjects underwent same-day detailed clinical assessment, sputum induction, and phlebotomy when on maximum intensity treatment; only the FE_{NO} suppression protocol included serum. Twenty-six sputum, serum, and clinical measurements were assessed (Table 1). Inflammatory proteins were measured in duplicates using multiplex electrochemiluminescent assays (Meso Scale Discovery) or single ELISAs (Cayman Chemical). Spearman correlations were computed between FE_{NO}, blood eosinophils, and analytes, controlling for a false discovery rate <0.05. To translate significant correlations, Jonckheere-Terpstra ordinal trend tests were performed across FE_{NO} (<25, 25 to <50, and \geq 50 ppb) and blood eosinophils (<0.15, 0.15 to <0.3, and \geq 0.3 \times 10⁹/L) categories. Statistical analyses were performed using SPSS v27 with a two-sided α of 0.05.

Results

We included 74 patients with severe asthma and 10 healthy control subjects. Patients included from the $F_{E_{NO}}$ suppression cohort (n = 34) and RASP-UK cohort (n = 40) were similar. Patients with asthma were 55% male, 74% atopic, and 85% nonsmokers. The mean (\pm SD) age was 53 \pm 15 years; the mean Asthma Control Questionnaire score was 1.6 \pm 1.2; the mean beclomethasone dipropionate-equivalent dose was 2,391 \pm 1,084 μ g/d; the mean post-bronchodilator FEV₁ was 85 \pm 19% predicted; the mean FEV₁/FVC ratio was 70 \pm 11%; and 53% were assessed on systemic corticosteroids. There were 60 sputum supernatants and 30 serum samples available for analysis in asthma.

We observed significant correlations between $F_{E_{NO}}$ and sputum eosinophils, IL-4, IL-5, and IL-33, TSLP (thymic stromal lymphopoietin), eotaxin-3, TARC (thymus activation–regulated cytokine), and asthma attacks in the past year. Blood eosinophils correlated with serum IL-5 (Table 1). We observed no correlation between the Asthma Control Questionnaire score and the 26 analytes. Sputum eosinophils inversely correlated with lung function and closely mirrored the correlations observed with $F_{E_{NO}}$ (Figure 1).

 $F_{E_{NO}}$ nonsuppression was associated with higher sputum eosinophils (fold difference in median values, $F_{E_{NO}} < 25$ to ≥ 50 ppb: 17-fold, *P* for trend = 0.001), IL-4 (7.6-fold, *P* = 0.0006), IL-5 (8.9-fold,

³This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License. For commercial usage and reprints, please e-mail Diane Gern.

Supported by a nonrestricted research grant from Sanofi Genzyme for investigator-initiated type 2 innovation research; by the National Institute for Health Research (NIHR Leicester Biomedical Research Centre and NIHR Oxford Biomedical Research Centre); by the Medical Research Council (MRC Refractory Asthma Stratification Programme); and in part by the Wellcome Trust (211050/Z/18/Z) and Beit Fellowship (211050/Z/18/A). The views expressed are those of the authors and not necessarily those of the National Health Service, the NIHR, or the Department of Health.

		FENC	(qdd)			Blood Eos	(×10 ⁹ /L)		Healthy
Analyte (LLOD)*	<25 (<i>n</i> = 17)	25 to <50 (<i>n</i> = 30)	⇒50 (n=27)	r (P Value)	<0.15 (<i>n</i> = 21)	0.15 to <0.30 (<i>n</i> = 22)	≥0.30 (<i>n</i> = 31)	r (P Value)	Control Subjects (<i>n</i> = 10)
Biomarker Fe _{NO} , ppb Blood Eos, ×10 ⁹ /L	16 (13–20) 0.17 (0.1–0.54)	39 (32–42) 0.24 (0.1–0.35)	83 (60–123) [†] 0.26 (0.19–0.55) [†]	 0.24 (0.04)	38 (23–55) 0.09 (0.05–0.12)	38 (26–74) [†]) 0.23 (0.19–0.25)	45 (25–89) [†] 0.54 (0.36–0.66) [†]	0.24 (0.04)	19 (11–28) 0.14 (0.09–0.18)
Sputum Eos. % IL-4 (0.2) IL-3 (0.5) IL-13 (4.2) IL-13 (4.2) IL-33 (0.6) TSLP (0.9) Eotaxin-3 (4.2) TARC (0.4) LTE4 (7.8) PGD2 (19.5) IFN-Y (0.3) TNF (0.4)	0.8 (0.4–5.3) 0.1 (0.1–0.3) 1.2 (0.4–4.6) 6.4 (2.1–8.8) 0.9 (0.3–1.3) 2.4 (1–9.3) 17 (9–8) 17 (9–8) 241 (173–384) 0.3 (0.2–0.5) 1.5 (0.4–10.2)	$\begin{array}{c} 2.7 & (1.1-17.8)^{\dagger} \\ 0.4 & (0.1-1.1)^{\dagger} \\ 4.6 & (1.9-7.8) \\ 7 & (5.8-14.2)^{\dagger} \\ 0.9 & (0.3-2.1)^{\dagger} \\ 0.9 & (0.3-2.1)^{\dagger} \\ 133 & (23-36)^{\dagger} \\ 133 & (23-36)^{\dagger} \\ 138 & (42-465)^{\dagger} \\ 138 & (42-465)^{\dagger} \\ 0.4 & (0.2-1.8) \\ 0.4 & (0.2-1.8) \\ 2 & (0.8-7.5) \end{array}$	$ \begin{array}{c} 12.8 & (3.3-35.5)^{\dagger} \\ 0.8 & (0.2-1.2)^{\dagger} \\ 0.8 & (0.2-1.2)^{\dagger} \\ 10.9 & (2.9-29.8)^{\dagger} \\ 1.7 & (0.7-2.9)^{\dagger} \\ 1.7 & (0.7-2.9)^{\dagger} \\ 11.9 & (5-20.7)^{\dagger} \\ 333 & (3245-804)^{\dagger} \\ 333 & (3245-804)^{\dagger} \\ 133 & (325-301)^{\dagger} \\ 209 & (135-439) \\ 0.6 & (0.2-1.5) \\ 3.3 & (1.5-6.7) \\ \end{array} $	0.51 (0.0002) 0.48 (<0.0001) 0.47 (0.0002) 0.26 (0.04) 0.35 (0.06) 0.41 (0.001) 0.55 (<0.0001) 0.55 (<0.0001) 0.32 NS NS NS	$\begin{array}{c} 2.7 & (0.7-6.1) \\ 0.3 & (0.1-1)^{\dagger} \\ 2.3 & (1.1-9.7) \\ 7 & (5.1-11.5) \\ 7 & (5.1-11.5) \\ 7 & (5.2-264) \\ 35 & (19-107)^{\dagger} \\ 64 & (23-139) \\ 64 & (23-139) \\ 64 & (23-139) \\ 61 & (133-505) \\ 0.5 & (0.2-1.7) \\ 0.5 & (1-6.7) \end{array}$	$\begin{array}{c} 5.1 & (0.5-30.5)^{\dagger} \\ 0.4 & (0.1-0.9) \\ 0.4 & (0.1-0.9) \\ 5.3 & (1.5-15.1)^{\dagger} \\ 8.3 & (4-12.5)^{\dagger} \\ 1.4 & (0.5-2.6)^{\dagger} \\ 9.1 & (1.9-2.6) \\ 2.15 & (9-418)^{\dagger} \\ 4.1 & (9-101) \\ 9.4 & (48-343) \\ 2.19 & (183-389) \\ 0.4 & (0.2-2.6) \\ 0.2 & (0.5-8.5) \end{array}$	$\begin{array}{c} 4.3 & (1-21)^{\dagger} \\ 0.3 & (0.1-1)^{\dagger} \\ 4.7 & (1.8-10.8)^{\dagger} \\ 7.6 & (6-12.2)^{\dagger} \\ 1 & (0.3-2.3)^{\dagger} \\ 7.1 & (2.5-15)^{\dagger} \\ 191 & (2.9-390)^{\dagger} \\ 36 & (17-89) \\ 36 & (17-89) \\ 163 & (49-676)^{\dagger} \\ 163 & (49-676)^{\dagger} \\ 222 & (117-439) \\ 0.3 & (0.2-0.8) \\ 2 & (0.7-8.6) \end{array}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\begin{array}{c} 0.3 \\ 0.3 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.3 \\ 0.2 \\ 0.3 \\ 0.2 \\ 0.3 \\ 0.2 \\ 0.3 \\ 0.2 \\ 0.2 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.5 \\ 0.2 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.5 \\ 0.4 \\ 0.5 \\$
Serum IL-4 (0.1) IL-5 (0.4) IL-13 (6.7) IL-33 (0.4) IL-33 (0.4) IL-33 (0.4) TSLP (0.5) Eotaxin-3 (4.2) IFN-Y (0.3) TNF (0.4)	$\begin{array}{c} 0.1 & (0.1 - 0.1) \\ 1.1 & (1 - 1.2)^{\dagger} \\ 3.3 & (3.3 - 3.3) \\ 0.2 & (0.2 - 0.3) \\ 1.3 & (1 - 2.1) \\ 9 & (6 - 30) \\ 9.4 & (0.4 - 0.5) \\ 0.4 & (0.9 - 3.8)^{\dagger} \end{array}$	$\begin{array}{c} 0.1 & (0.1 - 0.1) \\ 0.6 & (0.5 - 0.9)^{\dagger} \\ 3.3 & (3.3 - 9.9) \\ 0.8 & (0.2 - 0.8) \\ 0.8 & (0.6 - 2.5) \\ 1.8 & (0.6 - 2.5) \\ 18 & (7 - 32) \\ 0.5 & (147 - 463) \\ 0.5 & (0.2 - 0.7) \\ 0.6 & (0.2 - 2) \end{array}$	$\begin{array}{c} 0.1 & (0.1-0.1) \\ 0.6 & (0.4-1.6) \\ 0.2 & (0.2-0.8) \\ 0.2 & (0.2-0.8) \\ 0.2 & (1.8-4.5) \\ 16 & (13-29) \\ 0.3 & (0.2-1.2) \\ 1.2 & (0.2-4.2) \\ \end{array}$	N N N N N N N N N N N N N N N N N N N	0.1 (0.1-0.1) 0.4 (0.4-0.6) 3.3 (3.3-3.3) 0.2 (0.2-0.8) 1.7 (1.2-3.6) 18 (14-31) 0.3 (0.2-0.6) 0.3 (0.2-0.6) 1.7 (0.2-2.3) [†]	$\begin{array}{c} 0.1 & (0.1-0.1) \\ 0.6 & (0.6-1.6)^{\dagger} \\ 0.8 & (3.3-13.3) \\ 0.4 & (0.2-0.8) \\ 0.4 & (0.2-0.8) \\ 2.3 & (1.9-4.4)^{\dagger} \\ 2.3 & (1.9-4.4)^{\dagger} \\ 2.9 & (12-34)^{\dagger} \\ 190 & (92-252) \\ 0.7 & (0.2-2) \\ 0.6 & (0.2-2) \end{array}$	$\begin{array}{c} 0.1 & (0.1-0.1) \\ 0.8 & (0.6-1.5)^{\dagger} \\ 0.8 & (0.6-1.5)^{\dagger} \\ 3.3 & (3.3-10) \\ 0.2 & (0.2-0.8) \\ 1.8 & (0.8-2.7) \\ 1.8 & (0.8-2.7) \\ 1.8 & (7-18) \\ 344 & (146-480) \\ 0.2 & (0.2-0.6) \\ 0.9 & (0.3-1.9)^{\dagger} \end{array}$	0.41 (0.03) NS NS NS NS NS NS NS NS	0.1 (0.1-0.1) 0.2 (0.2-0.4) 9.2 (7.8-9.8) 0.4 (0.4-0.4) 1.4 (0.9-1.5) 8 (4-13) 0.4 (0.2-0.7) 0.2 (0.2-0.3)
Clinical ACQ-5 score FEV ₁ , % predicted FEV ₁ /FVC, % Asthma attacks in the past year	1.2 (0.5–1.8) 88 (78–103) 72 (64–82) 1 (0–3)	1.6 (0.2–2.2) 85 (75–98) 68 (61–79) 1 (0–4)	2 (0.8–3) 81 (72–96) 72 (60–77) 3 (0–5)	NS NS NS 0.25 (0.03)	1.6 (0.5–2.1) 81 (77–94) 71 (62–82) 1 (0–5)	1.7 (0.7–2.9) 83 (74–97) 68 (61–77) 1.5 (0–4)	1.2 (0.6–2.2) 85 (76–99) 72 (61–80) 1 (0–4)	S N N S N S N N S N S N N S N	
Definition of abbreviati LTE4 = leukotriene E4; lymphopoietin. <i>P</i> values ≥0.05 are no Data are presented as Spearman correlation c *Cytokine levels that w †Adjusted <i>P</i> value <0.0	<i>ons</i> : ACQ-5 = five NS = not significe t significant. median (interque coefficients (<i>n</i>) an ere not quantified 35 compared with	→item Asthma Cc ant; PGD2 = prost artile range) in po d associated P v d were assigned h healthy control	introl Questionnaire; aglandin D2; TARC g/ml unless stated c alues are in bold if the arbitrary value o subjects on Kruska	; Eos = eosinophi : = thymus activat itherwise. retained after co of 0.5 × the lower ul-Wallis test adju	ls; FE _{NO} = fraction. ion-regulated cyt ion-rundling for a fals innit of detection sted for six comp	al exhaled nitric o okine (CCL17); TN e discovery rate < t to allow analysis. arisons.	kide; LLOD = lower IF = tumor necrosis <0.05 across the 52	limit of detectic factor; TSLP = computed coi	n; thymic stromal relations.

P r	Fe _{NO}	Blood Eos	Sputum Eos	Sputum IL-4	Sputum IL-5	Sputum IL-13	Sputum IL-33	Sputum TSLP	Sputum Eotaxin-3	Sputum TARC	Serum IL-5	ACQ-5 score	FEV1	FEV ₁ /FVC ratio	Asthma attacks (past yr)	
Fe _{NO}		0.04	0.0002	<0.0001	0.0002	0.04	0.006	0.001	<0.0001	0.02	ns	ns	ns	ns	0.03	r
Blood Eos	0.24		ns	ns	ns	ns	ns	ns	ns	ns	0.03	ns	ns	ns	ns	0.9
Sputum Eos	0.51	0.25		0.0005	<0.0001	0.02	ns	0.002	0.001	0.005	ns	ns	0.04	0.02	ns	0.8
Sputum IL-4	0.48	0.06	0.49		<0.0001	0.0004	< 0.0001	< 0.0001	<0.0001	<0.0001	ns	ns	ns	ns	ns	0.7
Sputum IL-5	0.47	0.14	0.55	0.71		<0.0001	< 0.0001	< 0.0001	<0.0001	< 0.0001	0.006	ns	ns	0.01	ns	0.6
Sputum IL-13	0.26	0.05	0.33	0.44	0.60		<0.0001	< 0.0001	<0.0001	<0.0001	ns	ns	ns	ns	ns	0.5
Sputum IL-33	0.35	0.03	0.25	0.81	0.65	0.48		< 0.0001	<0.0001	< 0.0001	ns	ns	ns	ns	ns	0.4
Sputum TSLP	0.41	0.14	0.44	0.65	0.84	0.57	0.61		< 0.0001	< 0.0001	ns	ns	ns	ns	0.049	0.3
Sputum Eotaxin-3	0.55	0.15	0.51	0.79	0.89	0.63	0.70	0.83		<0.0001	ns	ns	ns	ns	ns	0.2
Sputum TARC	0.32	0.02	0.42	0.63	0.83	0.51	0.56	0.85	0.70		0.04	ns	ns	0.04	ns	0.1
Serum IL-5	0.03	0.41	0.27	0.14	0.62	0.36	0.17	0.40	0.83	0.85		ns	ns	0.01	ns	0
ACQ-5 score	0.19	0.00	0.22	0.04	0.08	0.09	-0.11	0.07	0.06	0.13	0.00		ns	ns	ns	-0.1
FEV ₁	-0.17	0.04	-0.29	-0.16	-0.21	0.05	-0.06	-0.09	-0.14	-0.14	-0.06	-0.05	<	0.0001	ns	-0.2
FEV ₁ /FVC ratio	-0.14	0.01	-0.34	-0.18	-0.31	-0.07	-0.08	-0.23	-0.22	-0.27	-0.48	-0.03	0.69		ns	-0.3
Asthma attacks	0.25	0.00	0.17	0.21	0.18	0.11	0.16	0.26	0.25	0.09	0.11	-0.01	-0.15	0.02		-0.4

Figure 1. Correlation matrix for $F_{E_{NO}}$, blood Eos, and selected analytes in severe asthma. Bold Spearman coefficient of correlations (*r*) and *P* values were those retained after controlling for a false discovery rate <0.05 in the primary analysis (first two columns and rows); the rest of the matrix is exploratory. Asthma attacks are defined as acute events requiring \geq 3 days of systemic corticosteroids in the past year. ACQ-5 = five-item Asthma Control Questionnaire; Eos = eosinophils; $F_{E_{NO}}$ = fractional exhaled nitric oxide; ns = not significant (*P* \geq 0.05); TARC = thymus activation–regulated cytokine (CCL17); TSLP = thymic stromal lymphopoietin.

P = 0.006), IL-33 (1.8-fold, *P* = 0.02), TSLP (5-fold, *P* = 0.002), eotaxin-3 (10-fold, *P* = 0.00003), TARC (3.5-fold, *P* = 0.005), and asthma attacks in the past year (3-fold, *P* = 0.03). Greater blood eosinophils (<0.15 to ≥0.3 × 10⁹/L) was associated with higher serum IL-5 (1.9-fold, *P* = 0.04) (Table 1).

The highest $F_{E_{NO}}$ and blood eosinophil categories generally had greater sputum eosinophils, sputum/serum type 2 cytokine, and chemokine and alarmin levels than healthy control subjects (Table 1).

The directions of trends were consistent when removing systemic corticosteroid-treated patients or when separating the RASP-UK and $F_{E_{NO}}$ suppression cohorts. Exploratory multiple regression showed no additive effect for biomarkers to identify inflammation levels.

Discussion

We found that in severe asthma, $F_{E_{NO}}$ nonsuppression identifies increased airway type 2 cytokines (IL-4 and IL-5), chemokines (eotaxin-3 and TARC), alarmins (IL-33 and TSLP), and sputum eosinophilia. In contrast, blood eosinophils correlate with serum IL-5 and not with any assessed measure of airway inflammation. We base these conclusions on our cross-sectional study of patients with extremely high corticosteroid exposure and proven adherence.

Our results are consistent with the cross-sectional bronchial biopsy-based ADEPT study (10) but extend their findings by showing correlations between Fe_{NO} and almost all of the assessed components of the airway type 2 immune response for a population with confirmed treatment adherence. The most striking finding of our study was the different relationship between Fe_{NO} , blood eosinophils, and markers of airway and systemic type 2 inflammation. Our findings imply that Fe_{NO} and blood eosinophils relate to different components and compartments of type 2 inflammation: Fe_{NO} reflects airway type 2 activity and the chemotactic pull to the airways,

whereas blood eosinophils reflect the systemic pool of available effector cells and circulating IL-5.

Our study has several limitations. Its cross-sectional design assessed correlation, not causality. The analysis of serum analytes was underpowered ($\beta = 0.43$ for r = 0.40 with critical P < 0.041), and we pooled two cohorts that used different approaches to confirm treatment adherence, although a sensitivity analysis analyzing both independently was supportive of our results. Unexpectedly, sputum IL-13 did not correlate with FE_{NO} after controlling for multiplicity of testing. This may reflect the complex dimeric receptor system signaling both IL-4/-13, a greater steroid-sensitivity of IL-13, and/or a slightly underpowered analysis.

To conclude, we found that $F_{E_{NO}}$ and blood eosinophils provide different and complementary mechanistic information in severe asthma. How airway signaling (reflected by $F_{E_{NO}}$) and an increased systemic eosinophil pool (reflected by blood eosinophils) relate to the pathogenesis of asthma attacks and the response to treatment remains an important question.

<u>Author disclosures</u> are available with the text of this letter at www.atsjournals.org.

Acknowledgment: The authors thank Catherine Borg, Clare Connolly, Tilly Downs, Beverley Hargadon, Anna Hayman, Gareth Hynes, Karolina Krassowska, Angela Moran, Sophie Morgan, Sarah Poole, Timothy Powell, and Samantha Thulborn for participation in data collection and/or specimen processing; the participants for their time and generosity; and Sanjay Ramakrishnan for manuscript revision. This study includes data from www.clinicaltrials.gov trial number NCT 02883530.

Simon Couillard, M.D., F.R.C.P.C.* University of Oxford Oxford, United Kingdom and Université de Sherbrooke Sherbrooke, Quebec, Canada

Rahul Shrimanker, M.R.C.P., D.Phil. University of Oxford Oxford, United Kingdom

Rekha Chaudhuri, M.B.B.S., M.D. University of Glasgow Glasgow, United Kingdom

Adel H. Mansur, F.R.C.P., Ph.D. University of Birmingham and Heartlands Hospital Birmingham, United Kingdom

Lorcan P. McGarvey, M.D., F.R.C.P. Liam G. Heaney, M.D., F.R.C.P. *Queen's University Belfast School of Medicine Dentistry and Biomedical Sciences Belfast, United Kingdom*

Stephen J. Fowler, M.D., F.R.C.P. University of Manchester Manchester, United Kingdom

Peter Bradding, D.M., F.R.C.P. University of Leicester Leicester, United Kingdom

Ian D. Pavord, D.M., F.R.C.P., F.E.R.S., F.Med.Sci. Timothy S. C. Hinks, M.D., M.R.C.P., Ph.D. *University of Oxford Oxford, United Kingdom*

In collaboration with the MRC UK Refractory Asthma Stratification Programme (RASP-UK)

ORCID IDs: 0000-0002-4057-6886 (S.C.); 0000-0002-2730-9978 (R.S.); 0000-0001-8007-949X (R.C.); 0000-0002-8615-8778 (A.H.M.); 0000-0002-2860-0302 (L.P.M.); 0000-0002-9176-5564 (L.G.H.); 0000-0002-4524-1663 (S.J.F.); 0000-0001-8403-0319 (P.B.); 0000-0002-4288-5973 (I.D.P.); 0000-0003-0699-2373 (T.S.C.H.).

*Corresponding author (e-mail: s.couillard@usherbrooke.ca).

References

- Shrimanker R, Keene O, Hynes G, Wenzel S, Yancey S, Pavord ID. Prognostic and predictive value of blood eosinophil count, fractional exhaled nitric oxide, and their combination in severe asthma: a post hoc analysis. Am J Respir Crit Care Med 2019;200:1308–1312.
- Busse W, Wenzel S, Bateman E, Casale T, FitzGerald J, Rice M, et al. Baseline FeNO as a prognostic biomarker for subsequent severe asthma exacerbations in patients with uncontrolled, moderate-to-severe asthma receiving placebo in the LIBERTY ASTHMA QUEST study: a post hoc analysis. *Lancet Respir Med* [online ahead of print] 25 Jun 2021; DOI: 10.1016/S2213-2600(21)00124-7.
- Couillard S, Laugerud A, Jabeen M, Ramakrishnan S, Melhorn J, Hinks T, et al. Derivation of a prototype asthma attack risk scale centred on blood eosinophils and exhaled nitric oxide. *Thorax* [online ahead of print] 6 Aug 2021; DOI: 10.1136/thoraxjnl-2021-217325.
- Castro M, Corren J, Pavord ID, Maspero J, Wenzel S, Rabe KF, et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N Engl J Med 2018;378:2486–2496.
- Pavord ID, Korn S, Howarth P, Bleecker ER, Buhl R, Keene ON, et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet 2012;380:651–659.

- Corren J, Parnes JR, Wang L, Mo M, Roseti SL, Griffiths JM, et al. Tezepelumab in adults with uncontrolled asthma. N Engl J Med 2017;377:936–946.
- Heaney LG, Busby J, Bradding P, Chaudhuri R, Mansur AH, Niven R, et al.; Medical Research Council UK Refractory Asthma Stratification Programme (RASP-UK). Remotely monitored therapy and nitric oxide suppression identifies nonadherence in severe asthma. *Am J Respir Crit Care Med* 2019;199:454–464.
- McNicholl DM, Stevenson M, McGarvey LP, Heaney LG. The utility of fractional exhaled nitric oxide suppression in the identification of nonadherence in difficult asthma. *Am J Respir Crit Care Med* 2012;186: 1102–1108.
- Heaney LG, Busby J, Hanratty CE, Djukanovic R, Woodcock A, Walker SM, et al.; investigators for the MRC Refractory Asthma Stratification Programme. Composite type-2 biomarker strategy versus a symptomrisk-based algorithm to adjust corticosteroid dose in patients with severe asthma: a multicentre, single-blind, parallel group, randomised controlled trial. *Lancet Respir Med* 2021;9:57–68.
- Silkoff PE, Laviolette M, Singh D, FitzGerald JM, Kelsen S, Backer V, et al.; Airways Disease Endotyping for Personalized Therapeutics (ADEPT) study investigators. Identification of airway mucosal type 2 inflammation by using clinical biomarkers in asthmatic patients. J Allergy Clin Immunol 2017;140:710–719.

Copyright © 2021 by the American Thoracic Society

Check for updates

Selective Modulation of the Pulmonary Innate Immune Response Does Not Change Lung Microbiota in Healthy Mice

To the Editor:

Although long considered sterile, healthy lungs are now known to harbor diverse and dynamic low-abundance bacterial communities. Recent studies in humans (1) and animals (2) have revealed that lung immunity, even in health, is variable across individuals and correlated with variation in lung microbiota. Yet the causal relationships driving this correlation between lung microbiota and lung immunity remain undetermined. Does variation in lung microbiota propel variation in lung immunity activation? Or does variation in lung immunity create an altered respiratory microenvironment, resulting in altered lung bacterial communities?

A recent report in this journal by Wu and colleagues (3) demonstrated that direct modulation of murine lung microbiota results in rapid and persistent changes in lung immunity, conveying sustained protection from subsequent respiratory infection. These results reveal that the correlation between lung microbiota and lung immunity is, at least in part, attributable to the microbiome's influence on lung immunity. Yet, to our knowledge, the inverse

Supported by NIH grants R01HL144599 (R.P.D.) and R35HL144805 (S.E.E.).

Author Contributions: Conception and design: J.P.G., R.P.D., and S.E.E. Acquisition of data: J.P.G., K.J.H., N.R.F., R.P.D., and S.E.E. Analysis and interpretation of data: J.P.G., R.P.D., and S.E.E. Drafting or revising of manuscript: J.P.G., K.J.H., N.R.F., R.P.D., and S.E.E. Final approval of manuscript: J.P.G., K.J.H., N.R.F., R.P.D., and S.E.E.

Originally Published in Press as DOI: 10.1164/rccm.202104-0836LE on June 21, 2021