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Abstract

As landscapes have become increasingly dominated by intensive agricultural production,

plant diversity has declined steeply along with communities of pollinating insects including

bees. Semi-natural habitats, such as field edge meadows and hedgerows, can be main-

tained to provide a diversity of flowering plants that can increase floral resources required by

bees. An additional habitat enhancement practice is that of sowing strips of native prairie

vegetation within row-cropped fields. In this study, conducted in Iowa, USA, we found that

increases in both the abundance and diversity of floral resources in strips of native prairie

vegetation within agricultural production fields greatly and positively influenced the bee com-

munity. The benefits to the bee community were important for both common and uncommon

species and the effect may be strongest early in the season. Using networks of co-occur-

rence between plant and bee species, we were able to identify two native prairie plants, Rati-

bida pinnata and Zizia aurea, as potentially keystone resources that can be used to support

native bees. When we evaluated the effect of reconstructed prairie strips on bees in the con-

text of the surrounding landscape, we found that these conservation practices had positive

effects on bees in agriculturally-dominated areas and that these effects were detectable in

low to high complexity landscapes with 8–69% natural habitat. In landscapes dominated by

crops with few pollen and nectar resources the inclusion of native prairie strips can buffer

the decline of bees and effectively increase bee abundance and diversity.

Introduction

Landscapes that have become dominated by crop production, particularly those crops with no

dependence on animal pollination [1,2], have experienced declines in communities of native

bees including unmanaged wild bees or non-Apis species [3], and other wild bee species

important for pollination services [2,4–12]. Intensifying agricultural production affects some

bee species more than others [13–15], and these species can differ greatly in the pollination ser-

vices they provide [14]. Kleijn et al. [14] found that common bee species, those that constitute

2% or more of the relative abundance of individuals within communities, can provide as much

as 80% of crop pollination services. These common species are important for pollination of

crop species used for edible oils, protein, nuts, stimulants, fruits, and vegetables [6]. Common
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bee species from the families Halictidae, Apidae and Andrenidae that are found in crop fields

can thrive despite habitat degradation [10,14,15], likely due to the more generalized utilization

of floral resources [see 14]. Nonetheless, despite the resilience of common bee species against

habitat degradation, these species have been reported to be vulnerable at a local scale in some

areas [e.g.,10,16]. Uncommon bee species that are represented by few individuals and occur

much less frequently in crop fields [14,15] are especially vulnerable to habitat degradation that

occurs as the result of agricultural production [10,14,15]. The lack of robustness in uncommon

bee species is possibly linked with their narrower diets and scarcity of specific floral resources

throughout the landscape [5,10]. Uncommon bee species are important for stable pollination

services to crops and for some endangered native plants [e.g., 8,10,17–20].

The utilization of native plants in flower-rich meadows, hedgerows, woodlands and other

semi-natural habitats surrounding arable fields has been suggested as a way to mitigate the loss

of bee species in agricultural landscapes. These practices enhance the landscape by providing

pollen and nectar resources as well as nesting habitats for foraging pollinators [21–23], but

their effects on bees in intensified agricultural landscapes can be species-specific [14,15]. In

this regard, Kleijn et al. [14], and Kremen and M’Gonigle [15] showed that conservation of

semi-natural habitat within intensified agricultural landscapes had stronger positive effects on

uncommon bee species than common bee species. If conservation of natural habitat better

supports uncommon bee species, refinements of this strategy that also support common bee

species who actively provide the most pollination service would be desirable, especially in

those spots of the landscapes that are at risk of losing these bee species.

The efficacy of habitat conservation practices aimed at improving pollinator communities

should be studied within the context of the surrounding landscape [11,24]. Tscharntke et al.

hypothesized that in situations where non-crop floral resources were severely limited or readily

available (i.e., “cleared landscapes” with <1% non-crop areas or “complex landscapes” with

>20% non-crop areas) habitat restoration would have few benefits to pollinator communities.

However, within “simple landscapes” with 1–20% non-crop areas, they suggested that habitat

management would have maximum benefits for the pollinator community [15,24]. The

authors also stated that this relationship may vary in different regions of the world. Conse-

quently, this hypothesis needs to be tested in a range of landscapes and geographical settings,

including within areas of intensified agricultural production with crops that are non-depen-

dent on pollinators [2].

In the midwestern U.S. state of Iowa, two crops, corn (Zea mays L.) and soybean (Glycine
max (L.) Merr.), together cover more than 75% of the landscape (Cropland Data Layer) [25].

Neither of these crops requires animal-mediated pollination and they provide little pollen and

nectar for bees [2,26]. Historically, Iowa was predominantly covered by tallgrass prairie vegeta-

tion composed of native perennial grass and forb species, many of which have been shown to

provide high quality habitat and floral resources with which to support species-rich bee com-

munities [27–29]. Over the last century, the conversion of a high proportion of prairie land in

Iowa and other Midwestern states to corn and soybean production [30–32] has greatly reduced

the habitat and floral resources important for the support of bees [1,2,28]. Zhou et al. [33] and

Schulte et al. [34] described the use of reconstructed prairie communities in Iowa to improve

soil, water, and biotic conservation, including increases in plant and bee abundance. This prac-

tice involves conversion of ~10–12% of the area within a row-crop production field to strips of

native prairie vegetation. How this land use change can influence the structure of bee commu-

nities in terms of common and uncommon species is not yet well understood.

Critical habitat components that determine bee community structure are the quality and

quantity of floral resources (i.e., nectar and pollen) [4,35], and temporal patterns of blooming

throughout the season [36,37]. In this regard, bee-plant interaction networks can be valuable
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for assessing habitat restoration practices [38,39]. Methods relevant for elucidating these inter-

actions include collecting flower visitors from individual plants [40], examining pollen loads

of bee specimens [41], and direct field observation of flower visitations. These methods are

labor- and time-intensive, and they can be skewed toward the most frequent interaction [42].

Direct observation can lead to over-collecting bees from highly abundant plant species and

under-collecting bees from rare plant species. Thus, the bee-plant networks constructed from

field observations may not estimate the true complexity of the community [42].

In this study, we examined the benefit of native prairie vegetation sown in corn and soy-

bean fields for common and uncommon bee species at four sites within the state of Iowa. We

predicted that adding strips of native prairie vegetation to corn and soybean fields in intensi-

fied agricultural landscapes would (i) increase overall bee community abundance, richness

and diversity, and (ii) increase the abundance and richness of both common and uncommon

bee species. To examine the effect of particular plant families or species for specific members

of the bee community, we developed co-occurrence networks [43], using bee and plant species

data. We expected that (iii) particular components of the plant community would have stron-

ger associations with less common members of the bee community.

Materials and methods

Study sites and experimental design

Our study was conducted in 2016 and 2017 at four paired comparison sites (i.e., 8 crop fields)

in Iowa located in Guthrie (site 1), Linn (2), Marshall (3), and Pottawattamie (4) counties. Per-

mission to work at sites 3 and 4 was provided by Iowa State University; permission to work at

sites 1 and 2 was provided by the private landowners. Our field work did not involve endan-

gered or protected species. Sites were situated in landscapes dominated by intensively man-

aged agricultural fields producing corn and soybean. At each paired study site, bees were

sampled in two crop fields. The first field was 100% crop production and provided the control

treatment. The second field also was used for crop production, however, 10–12% of the field

area had been seeded with a diverse mix of native perennial prairie species within strips

planted on the contour; this type of field represented the strip treatment.

For treatment comparisons, we did not sample bees in the cropped portion of fields with

prairie strips due to their close proximity and the possibility of bees present in strips being

attracted to traps in crops. Instead, two fields separated by 1 to 3 km were utilized, which is

beyond the flight range of the majority of bee species, with “only few individuals such as bum-

ble bees having the capability to cover long foraging distances of 1.5 km” [44–47]. This separa-

tion was intended to enhance the independence of bee communities in the control and strip

treatments while allowing each field to be subject to the same environmental conditions.

Crop identity was the same at each site for strip and control fields, but the crop differed

between locations; site 1 produced corn in 2016 and soybean in 2017, sites 2 and 4 produced

soybean in 2016 and corn in 2017, and site 3 produced corn in both years. Prairie vegetation

within strips at each site was in the early stages of establishment, ranging from one to three

years post-seeding.

Bee and plant community assessments

Bees at all sites were sampled four times each year, with approximately one month between

samples, from late May until late August. Each sample was conducted on sunny days when

temperatures were above 12.8˚C and wind was below 24 km/hr to ensure that conditions were

appropriate for bee flight. We sampled the two fields of a paired comparison site on the same

day at the same time or within a window of two hours. For the latter case, we alternated
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sampling fields in a randomized order at different periods of sampling, so that bees experi-

enced approximately similar temperatures at the time of sampling. Bees were captured along

60-m transects established at the field edge and in the middle of prairie strips in fields used for

the strip treatment, and along the edge of control crop fields and within 50 m distance from

the edge of the fields for the control treatment. We used three complementary collection meth-

ods–blue vane trapping, pan trapping, and aerial sweep netting–to more completely sample

the bee community [37].

Blue vane traps were located at the beginning and end of the 60-m transects. The transects

contained 12 pan traps (30 ml, SOLO1 brand, white plastic soufflé cups, Food Service Direct,

Hampton, VA, USA), four each of which were painted fluorescent yellow and fluorescent blue

(East Coast Guerrra Paint and Pigment, NY, USA) or left white. These traps were placed every

five meters in random color order, partially filled with a weak detergent solution and left in

place for six hours until collection [48–50]. Aerial sweep netting was conducted for 24 minutes

with two sweepers walking the transect, sweeping through the vegetation. All trapped or netted

bees, including Apis mellifera (Linnaeus) and wild unmanaged bees, were identified to species

[51–53] except those in the Lasioglossum subgenus Dialictus. In this taxon, there are 97 species

found east of the Mississippi River [54]. Gibbs described their identification as “taxonomically

challenging” and they are often considered together as a single taxon. The identified bee spe-

cies were partitioned into common and uncommon species using a ~1% abundance boundary,

with S as the total species richness [55].

We evaluated floral cover of forbs, but not grasses, within the prairie strips of each study

site, as grasses have been shown to provide no resources for bees [56]. At each study site, on

the day bees were sampled, we estimated the percent cover of each blooming forb species

within 10 1-m2-quadrats placed at 5-m intervals along the 60-m transect. We also measured

the diversity of vegetation in the surrounding landscape. We calculated landscape diversity

using the Shannon diversity index (H’s = -∑((pi) × ln (pi))), where pi is the proportional abun-

dance of ith vegetation category among land cover categories (see S5 Table), within a 3-km

radius of each treatment at each site with data obtained from the USDA National Agricultural

Statistics Service Cropland Data Layer (https://nassgeodata.gmu.edu/CropScape/) [57]. To test

whether there was a difference between the landscape diversity surrounding each treatment at

a site, we performed a two-tailed t-test [58].

Data analyses

Assessing the effect of prairie strips on bee community abundance and richness. We

compared the response variables of bee abundance and species richness (by common species,

uncommon species or families) between treatments, using generalized linear mixed models

(GLIMMIX procedure, [59]). We first constructed our model with Poisson, negative binomial,

and gamma distributions, all of which resulted in over-dispersion. We then used a normal dis-

tribution in which the response variable was transformed (ln (x+0.5)). Using this model, a

good fit was obtained, and the assumptions of normality of residuals and homoscedasticity of

variance were met. In this model, fixed effects were site, treatment, sampling month, and year,

with random effects of site nested within year and treatment and site nested within year.

We tested whether the abundance and species richness of bee families differed across sam-

pling months using the same mixed-model approach. When the effect was significant, we per-

formed a post-hoc Tukey test for multiple comparisons among means (GLIMMIX procedure,

[59]).

Bee community composition and evenness between treatments. The effect of treatment

on the bee community was evaluated using two approaches. First, dissimilarities between the
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composition of communities were tested using the multi-response permutation procedure

(MRPP) with Bray-Curtis as the distance measure (PC-ORD v.7) [60]. In the second approach,

beta dispersion (species evenness, hereafter) was tested by multivariate dispersion analysis

(MDR) in which the evenness of individuals among sampling units was compared while con-

trolling for changes related to each species’ proportional abundance, as well as changes in over-

all species richness [61]. For this, Bray-Curtis distances between sample units within each

treatment were calculated using the vegdist function of Vegan package in R v.3.3.1, and princi-

pal coordinates analysis (PCoA) was used to calculate the mean distance of each species to

each treatment centroid in multidimensional space using betadisper function of Vegan pack-

age in R [62,63]. The mean distances of species from treatment centroids were subjected to

analysis of variance to identify significant differences [63]. We categorized bee communities

using a 1% boundary, with S as the total species richness found over the entire study [56]. Spe-

cies that individually constituted >1% of relative abundance of the entire community were

considered as common. Species that individually accounted for <1% of the bee community

were delineated as uncommon. The Lasioglossum (Dialictus) species assemblage members

were ubiquitous among our experimental sites. Therefore, we used two approaches with regard

to the analysis of common species: (i) we removed the Lasioglossum (Dialictus) group from the

larger common species group to avoid possible masking effects of these species on the other

most common species; and (ii) we included Lasioglossum (Dialictus) group in the class of com-

mon species.

To determine the importance of common species, uncommon species, and all species

together to overall community diversity we calculated sample size rarefaction curves, using

three diversity measures, according to Hill’s series (ggiNext package in R) [63–66]. It has been

suggested that if uncommon species are expected to be more important in determining com-

munity species richness, S, the Hill number 0, should be selected [66]. If uncommon and com-

mon species are expected to be equally important in driving changes in the Shannon diversity

of the community, H’, the Hill number 1, should be used. If only common species are expected

to drive changes in the Simpson’s diversity of the community, D, the Hill number 2 should be

utilized [66]. We used all three Hill numbers to gain insight into the contribution of common

and/or uncommon species.

Effect of treatment, landscape diversity and prairie vegetation on the bee community.

We used linear regression models to examine the main and interactive effects of landscape

diversity and prairie strip treatment on bee abundance and species richness of all bees, com-

mon bees and uncommon bees. Our model included terms for Shannon landscape diversity

within a 3-km radius from each field, prairie strip treatment, and the interaction of landscape

and strip treatment [58].

Plant and bee community correlations. The interaction between bee and plant species is

usually measured by networks of observed bee-plant visitation. Here we developed a correla-

tion-based network of co-occurrence from pair-wise correlations between bees and plants

from monthly surveys in strip fields. One side of the correlation was abundance of each bee

species per month per site; the other side of the correlation was proportional cover of each

plant species per month per site. This approach has been used previously to study other organ-

isms, such as microbes, that are difficult to observe directly [43]. To assess the potential impor-

tance of each blooming forb species within the strips for each identified bee species, we

estimated pairwise correlations, setting r Pearson > 0 and p< 0.05 as the selection criteria to

determine the significant positive correlations [58].

After obtaining pairwise correlations, we obtained a full matrix containing the number of

pairwise correlations from possible bee-plant interactions. On this matrix we performed a

Benjamini and Hochberg (BH) False Discovery Rate correction (FDR) [43,67] to adjust the
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p values due to the numerous correlations. FDR increased the p values, and consequently

many of correlations between abundant bee and plant families that were observed in the field

became statistically insignificant. To indicate if the primary bee-plant correlation matrix was

robust to be used without adjustment using the FDR test, we tested the match between the pri-

mary bee-plant correlation-based network and the observed bee-plant visitation network. The

observed bee-plant visitation data were collected by capturing bees visiting plants at identical

times and locations as for data concerning bees captured in traps and available plant species.

This matching was conducted by a separate Pearson correlation test between the entire matrix

of bee-plant correlation-based data (co-occurrence network) and the entire matrix of observed

bee-plant visitation data (interaction network). We found that our correlation-based network

strongly matched the observed visitations. Therefore, we used the unadjusted co-occurrence

network in this study to determine floral fidelity from May-August of 2016–2017 at four study

sites.

To determine the association of bee groups with native prairie or exotic and weedy species,

we grouped the correlations. The plant side of the correlations was classified as native prairie

and exotic/weedy species and plant families; the bee side of the correlations was categorized by

abundance (common and uncommon) and family (Apidae, Halictidae, Andrenidae, Colletidae

and Megachilidae). We calculated the ratio of correlations between each bee group with native

prairie plants to that of exotic/weedy plants.

To elucidate the importance throughout the season of plant families for bee families we

used the significant positive correlations for each month to construct bipartite networks of co-

occurrence (plotweb function of the bipartite package in R; [63–68]). In the generated net-

works, the length of the plant rectangle represents the relative frequency of significant correla-

tions among all bee species, while the length of the bee family rectangle represents the relative

frequency of significant correlations among all plant species. Link widths represent the magni-

tude of co-occurrence of a bee and a plant family, with wider links representing frequent co-

occurrence and narrower links less frequent co-occurrence.

Results

Bee and plant communities

A total of 5,088 individual bees was collected over the entire study. We identified 2,969 indi-

viduals across 88 species and placed the remaining specimens into a single subgenus, Lasiglos-
sum (Dialictus) (S1 Table). There were 8 species, all members of the Halictidae or Apidae

families, that individually constituted >1% of relative abundance of the entire community and

were thus delineated as ‘8 common bees’. Individuals placed in the subgenus Lasioglossum
(Dialictus) very likely represented many unidentified species, but were ubiquitous among our

experimental sites, and were treated as a single taxon. This taxon also constituted >1% of rela-

tive abundance of the entire community, and therefore we considered them as common spe-

cies and added a second class of common species that included Lasioglossum (Dialictus),

which will be referred to as ‘9 common bees’ hereafter. The remaining 80 species that individu-

ally accounted for<1% of the bee community were delineated as uncommon bees. All bees

collected were members of the following families in order of relative abundance: Halictidae,

Apidae, Andrenidae, Colletidae and Megachilidae.

The strips contained 55 blooming forb species (S2 Table), among the following families in

order of relative cover/1 m2: Asteraceae, Fabaceae, Amaranthaceae, Lamiaceae, Polygonaceae,

Apiaceae, Plantaginaceae, Onagraceae, Brassicaceae, Malvaceae, Apocynaceae, Rosaceae, Urti-

caceae, Scrophulariaceae, Oxalidaceae, Ranunculaceae, and Euphorbiaceae. There were rela-

tively equal numbers of prairie species (27) and exotic/weedy species (28). Shannon landscape
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diversity estimates were relatively low and did not differ among sites nor between treatments

except at the Linn County site where the landscape diversity surrounding the control treat-

ment was greater than that of the strip treatment (1.153 and 1.005, respectively; t-test: t1 =

25.86, p = 0.0205; see S3 Table).

Assessing the effects of prairie strips on bee community abundance and

richness

Comparison of the bee community within prairie strips to that within controls showed that

the strip treatment significantly increased bee abundance and species richness. We observed

1.6 times more individual bees (abundance) in the strips relative to the controls (3,199 vs.

1,887; F1,6 = 10.96, p = 0.016). The strip treatment also supported 1.7 times more bee species

(81 vs. 46) (F1,6 = 19.62, p = 0.004). Furthermore, the strip treatment significantly enhanced

the abundance and species richness of bees within all families (Table 1). The Apidae and Halic-

tidae contained both common and uncommon species, whereas the other bee families, Andre-

nidae, Colletidae, and Megachilidae, consisted entirely of uncommon species.

Our findings also indicate that the abundance and richness of some bee families, but not all,

differed among months. The overall abundance of members of both the Apidae and Halictidae

was highly affected by sampling month (F3,36 = 4.90, p = 0.006 and F3,36 = 3.41, p = 0.028,

respectively), with the highest activity of each family occurring in July (Fig 1a; S4 Table). Simi-

larly, species richness in the Apidae was greatest in July and August (F3,36 = 4.51, p = 0.008).

However, species richness of the Halictidae did not differ across months as this family

included the taxon of Lasioglossum (Dialictus) spp., for which we pooled the abundance of all

individuals and counted them as one species. The presence of Lasioglossum (Dialictus) spp. in

Halictidae, during the course of the experiment may have resulted in an even distribution of

species richness within this family throughout the season (Fig 1b; S4 Table). Among families

represented exclusively by uncommon species, the Andrenidae was most abundant and species

rich in June (F3,36 = 3.51, p = 0.025 and F3,36 = 3.13, p = 0.037, respectively) (Fig 1c and 1d; S4

Table). The other families of uncommon species, the Colletidae and Megachilidae, were simi-

larly abundant and species rich throughout the season, however, abundance and species rich-

ness were strikingly lower than those of the families of common bees.

Bee community composition and evenness between treatments

Bee community composition was greatly affected by prairie strip treatment (MRPP; T = -2.23,

A = 0.016, p = 0.039). The abundance and species richness of uncommon bees were

Table 1. Bee abundance and species richness of each family in strip and control treatments across four sites during May-August of 2016 and 2017 from all trapping

methods.

Family Abundance Species richness

Mean Mean

strip control SE F1,6 p value strip control SE F1,6 p value

Apidae 1.83 (5.71) 1.33 (3.26) 0.18 11.89 0.014 1.2 (2.82) 0.61 (1.34) 0.103 36.58 0.001

Halictidae 4.02 (55.36) 3.15 (22.91) 0.25 9.46 0.022 1.84 (5.83) 1.49 (3.95) 0.107 12.32 0.013

Andrenidae 0.43 (1.03) -0.57 (0.06) 0.25 7.79 0.032 0.13 (0.64) -0.59 (0.05) 0.179 7.41 0.035

Colletidae -0.11 (0.40) -0.64 (0.03) 0.12 6.21 0.047 -0.27 (0.26) -0.66 (0.02) 0.09 7.14 0.037

Megachilidae 0.02 (0.52) -0.57 (0.06) 0.1 31.51 0.001 -0.03 (0.465) -0.59 (0.05) 0.089 34.87 0.001

Mean estimated values from generalized linear model analysis of variance. Ln (x+0.5) transformed and back-transformed means (in parentheses) are provided. SEs of

mean differences Fdf statistic and p values for paired comparisons are also presented.

https://doi.org/10.1371/journal.pone.0240354.t001
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significantly higher for the strip treatment than the control (F1,6 = 7.91, p = 0.031 and F1,6 =

12.42, p = 0.012, respectively). For the 8 common class analyzed as a group, the abundance and

richness were significantly greater in the strip treatment than the control (F1,6 = 12.69,

p = 0.012 and F1,6 = 7.09, p = 0.037, respectively). The inclusion of taxon Lasioglossum (Dialic-

tus) spp. in the class of common species, presented as 9 common bees, again resulted in a sig-

nificantly greater abundance and richness in the strip treatment than control (F1,6 = 7.01,

p = 0.038 and F1,6 = 6.11, p = 0.048, respectively).

There was no significant difference in bee community evenness between strip and control

treatments (F1,62 = 2.45, p = 0.123) when the subgenus Lasioglossum (Dialictus) spp. was

included in the analysis, possibly due to the masking effect of individuals placed in this group

on other species. However, by excluding the subgenus Lasioglossum (Dialictus) spp. from the

analysis, we detected a significant difference in bee community evenness between the strip and

control treatments (F1,62 = 6.16, p = 0.016), with a higher evenness for strip than control. The

latter result indicated a balance in distribution of abundances among bee species of the strip

compared to the control treatment. Use of rarefaction curves for different diversity indices by

Hill numbers enabled us to determine that both common and uncommon species contributed

Fig 1. Monthly changes in abundance (a) and species richness (b) of bees in Apidae and Halictidae, and abundance (c) and species richness (d) of

bees in Colletidae, Megachilidae, and Andrenidae. For each family, different letters above month bars indicate significant differences (p< 0.05).

Values presented are back transformed from natural log values.

https://doi.org/10.1371/journal.pone.0240354.g001
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to higher bee community diversity in the strip treatment relative to the control (Fig 2). The

species richness curve (q = 0) clearly indicated that additional sampling in the strip treatment

could quickly capture a higher number of individuals of uncommon bee species and that the

likelihood of collecting additional uncommon species was greater among strips than controls

(Fig 2a). The strip treatment also resulted in higher bee diversity than that of the control as

shown by the greater Shannon (q = 1) and Simpson’s (q = 2) diversities, indicating that strips

had greater numbers of uncommon as well as common species (Fig 2b and 2c).

Effect of treatment, landscape diversity, and prairie vegetation on the bee

community

Regression analyses with the presence or absence of prairie strips and Shannon landscape

diversity as independent variables indicated that strip treatment had a highly significant effect

on the abundance of all bees (Fig 3a and S6 Table; p = 0.0006), 8 common bees (Fig 3b;

p = 0.0014), 9 common bees (Fig 3c; p = 0.0022), and uncommon bees (Fig 3d; p = 0.0002).

Similarly, strip treatment significantly affected species richness among all bees (Fig 3e;

p< 0.0001), 8 common bees (Fig 3f; p = 0.0003), 9 common bees (Fig 3g; p = 0.0004), and

uncommon bees (Fig 3h; p< 0.0001). These results agree with those from the previous mixed

model analyses and species composition analysis. Landscape diversity also significantly

affected both abundance and species richness among all bees (p< 0.0001 to 0.0017), 8 com-

mon bees (0.0005 to< 0.0001) and 9 common bees (< 0.0001 to< 0.0001). The magnitude of

the difference between strips and non-strip treatments varied only for the richness of common

bee species (both 8 common and 9 common) across landscape gradients (Fig 3f and 3g;

p = 0.0373 and 0.0234): here both strip and control reached the same level of richness where

the landscape diversity was the highest. However, neither the abundance nor species richness

of uncommon bees were affected by landscape diversity (Fig 3d and 3h; p = 0.278 and 0.265,

respectively).

The ratio number of significant positive correlations for each group of bees with native

prairie forbs to that of exotic/weedy plants indicates the association relationship between vari-

ous groups of bees and different types of vegetation. As depicted in Fig 4, the ratios > 1

Fig 2. Sample-size-based rarefaction (solid lines) and extrapolation (dotted lines) curves with 95% confidence intervals (shaded areas) for the

strip and control treatments by diversity order: a) q = 0 (species richness), b) q = 1 (Shannon diversity) and c) q = 2 (Simpson’s diversity).

https://doi.org/10.1371/journal.pone.0240354.g002
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Fig 3. Bee abundance and species richness as affected by treatment (+/- prairie strips), Shannon landscape

diversity and the interaction of landscape diversity with treatment for all bees (a and e), 8 common bees (b and f),

9 common bees, which represents 8 common species plus all individuals in subgenus Lasioglossum (Dialictus) spp.

(c and g), and uncommon bees (d and g). Both abundance and species richness data, presented as ln(x+0,5)-

transformed, are based on the number of bees per 60-m transect per day. Solid and dashed lines represent the strip

treatment and control respectively. See S6 Table for results of statistical analyses.

https://doi.org/10.1371/journal.pone.0240354.g003
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represent a greater correlation between native prairie plant species and a group of bees,

whereas the ratios< 1 suggest a weaker correlation with native plant species (or stronger rela-

tionship with exotic/weedy species).

Both the common and uncommon bee species were associated more with native prairie

forbs than exotic/weedy ones. However, the ratio for common bee species was closer to 1, indi-

cating that common bees were nearly equally correlated with prairie and exotic weedy forbs

(Fig 4). Among bee families, the abundant bee families including both the common and

uncommon bee species (Apidae and Halictidae) had relatively greater ratios compared to

uncommon families (Megachilidae, Colletidae and Andrenidae). The abundant bee families

were more closely associated with prairie forb species. Among families of uncommon bee spe-

cies with the fewest individuals, the Andrenidae (134) and Megachilidae (31) were associated

more closely with the native plant species. The Colletidae (35) was the only bee family that was

more closely associated with exotic/weedy forb species (Fig 4).

Plant and bee community correlations

Pair-wise correlations between each forb and bee species provided a means of assessing inter-

actions between bee and plant species. By identifying the significant positive correlations, we

were able to demonstrate the proportion of such correlations between each plant and bee fam-

ily (Table 2). The two most speciose plant families of forb species, the Asteraceae (21 species)

and Fabaceae (10 species), also had the highest cover when proportional cover values of all spe-

cies within that family were accumulated (5.167 and 1.242, respectively) and the highest pro-

portions of significant positive correlations across all bee families, 0.484 and 0.208,

respectively. The Amaranthaceae, although represented by only 3 exotic/weedy species, had

the next highest proportional cover (1.049), but its proportion of significant positive correla-

tions among all bee families was low (0.024). The Lamiaceae, Apiaceae and Apocynaceae,

which were mostly comprised of native forb species, were each represented by few species

Fig 4. The ratio of the number of significant positive correlations between the native prairie and exotic/weedy species

for bee families and bee abundance groups. The dashed line represents the value at which the number of correlations

between bees and native prairie and exotic/weedy species are equal. Values>1 and<1 indicate the greater affinity with

native prairie and exotic/weedy species, respectively.

https://doi.org/10.1371/journal.pone.0240354.g004
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(1–4) but had notably high correlations with families of uncommon bees. Furthermore, several

plant families of few species and proportionately low cover were positively correlated with

some, or all, of the bee families composed of uncommon species.

The co-occurrence networks of bee and plant species for each month during the season can

provide insight into the phenology of flowering and activity of bees. In May (Fig 5a), the Apia-

ceae, represented by a single native prairie species, Zizia aurea (L.) W.D.J. Koch (S2 Table),

can be seen to have wide lanes of positive correlations with members of all active families

including families containing uncommon bee species in the Andrenidae, Colletidae, and

Megachilidae (Fig 1). In addition, three exotic species within other plant families, Polygonum
pensylvanicum L. (Polygonaceae), Veronica perigrina L. (Scrophulariaceae), and Capsella
bursa-pastoris (L.) Medik (Brassicaceae), have high numbers of positive correlations with

members of the families that include common bees, the Halictidae and Apidae. By June (Fig

5b), the Apiaceae continued to be positively correlated with species in all bee families. At this

time, the Asteraceae, represented by 9 species (6 native and 3 exotic), became widely correlated

with all active bee families, followed by the Fabacae (3 exotic and 3 native species), Lamiaceae

(1 native species: Monarda fistulosa L.), and Oxalidaceae, which was composed entirely of 1

exotic species, Oxalis stricta L. The most common bees, members of the Halictidae, showed

strong levels of co-occurrence with all the plant families throughout the season as did the

members of the other family containing common bees, the Apidae, except in July. At this time,

four plant families had wide lanes of correlation with the Andrenidae, a family including only

uncommon bees. As the season progressed from May to August the number of plant families

positively correlated with bees continuously increased.

Table 2. The proportion of significant positive correlations between species within each plant family and each bee family across all plant and bee communities col-

lected over the course of the experiment (May-August of 2016 and 2017). Plant families among strips are presented in order of proportional cover (proportion of the

ground area covered by each family) within 1 m2 and bee families with the numbers in the parentheses provide (number of species that were collected); and (relative abun-

dance of species collected from that family within the entire bee community). As the proportions for a crossed bee-plant family increases the support of that plant family

for that bee family rises. Rises in the total proportions of a plant family indicates the larger support of plant family for bee community and the increases in the total propor-

tion of a bee family indicates higher support of entire plant community for that bee family.

Proportion of significant positive correlations between species of each plant and bee family

Plant family followed by no. species of

prairie (P), exotic or weedy native (EW)

Plant family

prop. cover

Halictidae (26);

(0.848)

Apidae (27);

(0.092)

Andrenidae (17);

(0.041)

Colletidae (5);

(0.011)

Megachillidae (7);

(0.008)

Totals

Asteraceae (12P) (9EW) 5.167 0.138 0.141 0.122 0.041 0.043 0.484

Fabaceae (6P) (4EW) 1.242 0.060 0.053 0.045 0.012 0.038 0.208

Amaranthaceae (3EW) 1.049 0 0.019 0 0.005 0 0.024

Polygonaceae (2EW) 0.615 0.002 0.002 0 0 0 0.005

Lamiaceae (1P) 0.491 0.017 0.014 0.010 0 0.002 0.043

Apiaceae (2P) (2EW) 0.488 0.031 0.029 0.029 0.007 0.010 0.105

Plantaginaceae (1EW) 0.201 0.002 0 0 0 0 0.002

Onagraceae (1P) 0.088 0 0.002 0 0 0 0.002

Brassicaceae (2EW) 0.082 0.005 0 0 0 0 0.005

Malvaceae (1EW) 0.066 0 0.007 0 0 0 0.007

Apocynaceae (3P) 0.053 0.010 0.017 0.007 0.000 0.005 0.038

Rosaceae (1P) 0.014 0.002 0 0.005 0.000 0.002 0.010

Oxalidaceae (1EW) 0.013 0.005 0.002 0.005 0.002 0.002 0.017

Urticaceae (1E) 0.013 0.002 0.002 0.005 0.005 0.002 0.017

Scrophulariaceae (1EW) 0.010 0.005 0.005 0.005 0.002 0.002 0.019

Ranunculaceae (2P) 0.007 0.002 0.002 0.005 0.000 0 0.010

Euphorbiaceae (1EW) 0.004 0.000 0.005 0 0 0 0.005

Totals 0.282 0.301 0.237 0.074 0.106

https://doi.org/10.1371/journal.pone.0240354.t002
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Discussion

This study produced data concerning how strips of reconstructed native prairie vegetation

placed in corn and soybean fields effectively sustained bee communities and restored

Fig 5. Co-occurrence networks (significant positive correlations) of bee and plant species, within their respective

families, among prairie strips by month: (a) May, (b) June, (c) July, and (d) August. The width of the connections

from one community to another represents the number of significant positive correlations between bee and plant

species (r> 0 and P< 0.05).

https://doi.org/10.1371/journal.pone.0240354.g005
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important pollinators. Our results indicated that placing prairie strips in intensively managed

agricultural landscapes could compensate for impoverishment of the floral resources in these

landscapes that are characterized by domination of crops with no dependency on pollinators.

As we predicted, native prairie strips enhanced bee abundance, species richness and diver-

sity of the entire bee community, with increases in both common and uncommon species.

Generally, the level of complexity within the landscape did not affect the positive impact of

prairie strips on most groups of bees. But for common bee species richness, less complex land-

scapes showed larger positive impacts from prairie strips than that of the more complex land-

scapes. In order to achieve a better understanding of this effect and to evaluate the

effectiveness of strip habitat implementation, we compared our results with other studies that

assessed the efficiency of habitat enhancement practices within the context of surrounding

landscapes [14,24]. This was performed by transforming the Shannon landscape diversity

index used in the present study to the proportion of non-crop area (see S5 Table).

The proportion of non-crop area in our study ranged from 8% to 69%, which was compara-

ble with scales in studies of Kleijn et al. and Tscharntke’s et al. [14,24]. Within the ranges of

non-crop area in our landscape, benefits that we detected for prairie strips were not always

similar to the efficiency of management practice reported by the previous studies [e.g., 14,24].

Unlike previous investigations [15,24], in this study we obtained a surprisingly high benefit

from prairie strips for increasing common bee species abundance across all ranges of land-

scape (more than 8% but less than 69%), that according to Tscharntke’s et al. should be defined

as “simple” to “complex” landscapes. Within the lowest range of non-crop area there was an

effective enhancement in the richness of common bee species including 8-common and the

9-common, the category in which we included the Lasioglossum (Dialictus) sp. More impor-

tantly, among these common bee species, four crucial pollinators including Augochlorella aur-
ata (Smith); Halictus ligatus (Say); Melissodes bimaculatus (Lepeletier); Melissodes trinodis
(Robertson), were restored by implementing prairie strip habitats. Unlike previous studies

[15,24], the positive influence of prairie strips in our study was pronounced throughout all

ranges of landscape complexities by disproportionate rise in the abundance of common bee

species. However, the response of common bee species richness to the prairie strips at the

highest level of complexity, i.e., approximately 69% of non-crop area was similar to those of

Kleijn et al. and Tscharntke’s et al. Within the most complex landscape, there was no effect

from prairie strips on common bee species richness. Nevertheless, we noticed that uncommon

bee species consistently benefited from prairie strips in all landscapes and were not impacted

by the simplicity or complexity of the landscape, which is in in agreement with other studies

[14,15].

The possible enhancement or restoration of common bee species within a less complex

landscape is an important factor for evaluating the efficiency and success of a conservation

strategy [14]. This is because the rise in common bee species is linked with increased produc-

tion of crops [6,8,10,14,19,20,22,69,70] that depend on pollinators (e.g., blue-berries, clover,

tomatoes), estimated to be worth billions of dollars annually [71,72]. Even though uncommon

species may not be as important for crop pollination as common species [3,4,14], conservation

practices that support uncommon bee species may augment pollination services to some crops

as well as endangered plant species [e.g., 8,10,17–20].

Furthermore, comparing our results in the context of “intermediate landscape-complexity

hypothesis” presented by Tscharntke’s et al [24], we determined that prairie strips were highly

effective in enhancing the bee communities. Tscharntke et al.’s hypothesis states that the effec-

tiveness of local biodiversity conservation management is lowest either when the landscape

diversity (complexity) is extremely low in “cleared landscapes” (<1% non-crop coverage) or

very high in “complex landscapes” (>20% non-crop coverage). Management is most effective
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at an intermediate level of landscape complexity, coined the “simple landscape” (1–20% non-

crop coverage), with the possibility of shifting this threshold in different regions of the world.

According to our results prairie strips delivered maximum effectiveness within all ranges of

the complexities of our landscapes, except for the highest range (approximately 69%).

Tscharntke et al. [24] noted that the maximum benefit of conservation management is

achieved only in the “simple landscape.” But our study showed that the threshold levels of

“simple landscapes” can shift from 1–20% non-crop area to higher levels (i.e., 8–69% non-crop

area, Fig 3). This raises the question: why this might have occurred in the landscapes of our

study?

Part of the discrepancies between our study and others might be attributed to a lower pro-

portion of flowering crops providing pollen and nectar for bees [1,2] in our study landscapes.

Furthermore, the effect size of a conservation practice, e.g. the rise in common and uncom-

mon bee species, might depend on the initial status of the bee community and its baseline

characteristics (e.g. richness) at a local scale. Bee communities in our study were notably

depauperate and low in species-richness, i.e., 30 genera and subgenera, in comparison with

that of the most bee depauperate region in the world, e.g., the Oriental faunal region with 89

genera and sub-genera, and the other regions such as sub-Saharan Africa with175 bee species

and even the North America, South America, and Europe [3,14,73]. We believe these factors

taken together enhanced the effectiveness of the prairie strip conservation practice in our land-

scape in comparison with other regions of the world.

As we expected, similar to other studies [e.g., 14,15,74,75], we found that the bee commu-

nity was enhanced by increasing the abundance of blooming forbs. Unlike previous investiga-

tions, we found that both common and uncommon bee species had stronger associations with

native forbs than exotic/weedy forb species. Although the strong connections found between

uncommon bees and native prairie plants were expected, high associations between common

bees and native plants were surprising. The more robust associations of uncommon bees with

native prairie species than with exotic plant species could be related to features of prairie strip

habitat including provision of pollen, nectar and nesting sites [2,28,15,40]. Common species

are often generalist pollinators and are expected to have associations with weedy species [76–

78] due to the extended periods of activity from multiple generations within a season. This can

be harmonized with spatio-temporal availability of weeds throughout the landscape [77,79].

But the responses we determined in this study indicate that native plant species were more

favorable than exotic weedy species for both common and uncommon bees.

The effects we observed in this study were from prairie strips 1–3 years after establishment

with nearly equal numbers of native and exotic plant species and similar mean cover/m2. We

expect that as the plant communities of the strips mature over time, the abundance of native

forbs increases [80]. Consequently, the dependence of bees on exotic plants will likely shift to

native prairie species. The alteration of visitation toward native plant species has been reported

by Morandin and Kremen [22], who found that as time progressed maturing hedgerows

become dominated by native plants and the majority of bee species changed their preference

of visitation from exotic to native plant species. Thus, over time, prairie strips may support a

broader range of bee species than what we observed, particularly early in the season, as was

found by Moorhouse [81].

Using the seasonal correlation-based co-occurrence networks explored in our study, we

were able to identify individual plant species as possible keystones supporting bee species

throughout the season. Three plant families, the Apiaceae, Asteraceae and Fabaceae, were

especially important for increasing the abundant bee families. Our findings suggest that the

native species Zizia aurea (L.) W.D.J. Koch, may be an important floral resource early in the

season for the entire bee community. This supports the findings of Harmon-Threatt and
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Hendrix, who also concluded that Z. aurea as one of four key species supporting prairie bees

[40], especially beginning in the season. Among the late-season-blooming Asteraceae, two

native prairie species included in our study, Ratibida pinnata (Vent.) Barnhart and Solidago
rigida L., and two exotics, Cirsium arvense (L.) Scop., and Taraxacum officinale (L.) Weber ex

F.H. Wigg, were highly correlated with bee species. These four species were the most abundant

species within the prairie vegetation, and possibly the two native plant species could be as

attractive as exotic weedy species. Furthermore, our study suggests the native plant of R. pin-
nata, or its regional equivalent, is a useful species to be included in plant communities

intended to support bees [40].

Co-occurrence networks explored in this study can possibly be a complementary tool for

observed bee-plant networks, since this method might resolve the biases accompanied by net-

works of visitation [e.g, 42]. We acknowledge, however, that co-occurrence networks should

be used with caution so as to not over-estimate some bee-plant interactions with no biological

meaning. We suggest using co-occurrence networks along with visitation networks whenever

possible to achieve a more accurate and comprehensive picture of the structural complexity of

bee-plant interactions.

Here we showed that prairie strips occupying 10–12% of the area of crop fields constituted

an efficacious conservation strategy for restoring and sustaining bee communities, including

both uncommon and common bee species, within the simplified landscapes of Midwest US.

This effect was found even within more complex landscapes with >20% of non-crop area,

where we did not expect to gain benefits from the conservation practice. The latter result may

be linked to the domination of landscape with crops that have no dependency on insect polli-

nators in addition to the depauperate status of bee communities within the studied area. We

conclude that strips of native prairie habitat and the forb species they contain can compensate

for the scarcity of floral resources and buffer the decline of bees in agriculturally dominated

landscapes in the Midwest U.S.
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