
Citation: Paz, H.A.; Pilkington, A.-C.;

Zhong, Y.; Chintapalli, S.V.; Sikes, J.;

Lan, R.S.; Shankar, K.; Wankhade, U.D.

Gut Microbiome and Metabolome

Modulation by Maternal High-Fat

Diet and Thermogenic Challenge. Int.

J. Mol. Sci. 2022, 23, 9658.

https://doi.org/10.3390/ijms23179658

Academic Editor: Walter Wahli

Received: 8 June 2022

Accepted: 23 August 2022

Published: 25 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Gut Microbiome and Metabolome Modulation by Maternal
High-Fat Diet and Thermogenic Challenge
Henry A. Paz 1,2 , Anna-Claire Pilkington 1,2, Ying Zhong 1,2, Sree V. Chintapalli 1,2 , James Sikes 1,
Renny S. Lan 1,2, Kartik Shankar 3 and Umesh D. Wankhade 1,2,*

1 Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences,
Little Rock, AR 72205, USA

2 Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
3 Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Anschutz Medical

Campus, Aurora, CO 80045, USA
* Correspondence: uwankhade@uams.edu; Tel.: +1-501-364-2866

Abstract: The gut microbiota plays a critical role in energy homeostasis and its dysbiosis is associ-
ated with obesity. Maternal high-fat diet (HFD) and β-adrenergic stimuli alter the gut microbiota
independently; however, their collective regulation is not clear. To investigate the combined effect of
these factors on offspring microbiota, 20-week-old offspring from control diet (17% fat)- or HFD (45%
fat)-fed dams received an injection of either vehicle or β3-adrenergic agonist CL316,243 (CL) for 7
days and then cecal contents were collected for bacterial community profiling. In a follow-up study,
a separate group of mice were exposed to either 8 ◦C or 30 ◦C temperature for 7 days and blood
serum and cecal contents were used for metabolome profiling. Both maternal diet and CL modulated
the gut bacterial community structure and predicted functional profiles. Particularly, maternal HFD
and CL increased the Firmicutes/Bacteroidetes ratio. In mice exposed to different temperatures, the
metabolome profiles clustered by treatment in both the cecum and serum. Identified metabolites
were enriched in sphingolipid and amino acid metabolism in the cecum and in lipid and energy
metabolism in the serum. In summary, maternal HFD altered offspring’s response to CL and altered
microbial composition and function. An independent experiment supported the effect of thermogenic
challenge on the bacterial function through metabolome change.

Keywords: gut microbiota; thermogenesis; maternal high fat diet; CL316,243; cold exposure; metabolome

1. Introduction

A diverse microbiome plays a vital role in health and longevity. Key metabolic
functions are aided by the microbiota, including—but not limited to—digestion, synthesis
of essential nutrients, and regulation of energy balance [1,2]. Disruption of the gut microbial
equilibrium is associated with the progression of metabolic abnormalities such as obesity
and concurrent co-morbidities [3]. Microbial colonization of the gut primarily begins right
after birth and is modulated by genetic and environmental factors, especially composition
of the diet [4,5]. The intrauterine environment has a pivotal role in conferring disease risk
in later life. Using animal models of diet-induced maternal obesity, we have shown that
offspring of obese dams are hypersensitive to weight gain and exhibit insulin resistance,
metabolic dysfunction, and hepatic steatosis when challenged with a high-fat diet (HFD)
post-weaning [6,7]. In addition, we have also demonstrated the sexual dimorphic nature
of programming of microbiome in offspring, suggesting the microbiome as a potential
mechanism that contributes to developmental programming of fatty liver disease [8].

A large body of literature suggests that there are critical windows of development
(preconception, early gestation, late gestation) where maternal obesity can program off-
spring organ development and physiology [9,10]. Adipose tissue is one such organ whose
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development hinges on maternal environment and can be programmed based on di-
etary/environmental challenges. Being a primary driver of metabolic dysfunction in the
obese state, it is critical to understand the development and function of adipose tissue [11].
White adipose tissue (WAT) is known to store excessive energy in the form of lipids;
whereas brown adipose tissue (BAT) is known for its thermogenic properties, which can
potentially be used to counteract excessive weight gain and obesity. Increased fat mass and
overall weight gain in offspring of obese dams are hallmarks of the metabolic programming
phenomena [6,12].

Findings that linked impaired thermogenesis with obesity in murine models have
led to an interest in brown fat as a candidate to counteract obesity [13]. However, in most
humans, presence of brown fat—especially in the absence of stimulant such as cold—is
debated. In rodents, cold exposure (typically between 4 and 18 ◦C) and chemical stimulation
via β-adrenergic agonists such as CL316,243 (CL) are a couple of known ways to activate
BAT and promote the appearance of brown-like/beige adipocytes in WAT, i.e., browning.
Recent reports show that the gut microbial profile changes during cold exposure and
microbiota transplantation from cold challenged mice increased WAT browning, energy
expenditure, and tolerance to cold temperatures [14]. In microbiota-depleted (ABX) and
germ-free mice, the thermogenic capacity of BAT has been observed to be impaired through
decreased expression of uncoupling protein 1 (UCP1) and reduced browning in WAT [15].
Although these seminal studies have set the field of adipose tissue and microbiome on a
proper course, the links between them require further elucidation.

To date, there are no studies exploring the interaction between maternal HFD and
β3-adrenergic agonists such as CL on offspring gut microbiome composition. Generational
effect of HFD on programming of microbiome and its possible interaction with CL warrants
further research. Effects of other β3-adrenergic stimulants, such as cold temperature on
microbial-derived metabolites, are also not thoroughly studied. Thus, the aim of this study
was two-fold: First, to evaluate the effects on the gut microbiota composition in response to
a combination of maternal HFD and CL. Second, using cold temperature as a β3-adrenergic
stimulant, we wanted to assess its effect on microbiome and metabolome composition. We
showed that both maternal HFD and CL challenge modulated the bacterial community
structure and predicted functional profiles. We also demonstrated that thermogenic stimu-
lus through cold exposure alone altered the cecum and serum metabolomes in mice. Taken
together, these results suggest that maternal HFD could regulate thermogenic responses in
offspring through perturbations on the gut bacterial community that promote changes in
microbial-derived metabolites.

2. Results
2.1. Gut Microbial Diversity

Two studies were conducted to evaluate the effects of maternal diet and CL on off-
spring’s cecal bacterial community structure and predicted functional profile and to evalu-
ate cold exposure effects on the cecal and serum metabolome profiles (Figure 1). α-diversity
describes the structure of a microbial community through metrics of richness (number
of taxa), evenness (relative abundance of the taxa), or integration of those two. In study
1, both the bacterial community richness and evenness were not influenced by maternal
diet (p ≥ 0.14) or CL challenge (p ≥ 0.08) at the phylum- or genus-levels (Table 1). The
Shannon diversity index marginally increased (p = 0.04) in offspring receiving CL compared
to vehicle at the genus-level (2.73 ± 0.05 vs. 2.59 ± 0.05), but no changes were observed at
the phylum-level by either maternal diet or CL challenge (p ≥ 0.15) (Table 1).
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8 °C (n = 5) or 30 °C (n = 5) for 7 days. 

Table 1. Alpha diversity indices at the phylum and genus levels 
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Figure 1. Overview of the conducted studies. In Study 1, CCV = offspring from control diet-fed dams
treated with vehicle (n = 5), CCCL = offspring from control diet-fed dams treated with CL316,243
(n = 5), HCV = offspring from high fat diet-fed dams treated with vehicle (n = 4), HCCL = offspring
from high fat diet-fed dams treated with CL316,243 (n = 4). In Study 2, mice were exposed to either
8 ◦C (n = 5) or 30 ◦C (n = 5) for 7 days.

Table 1. Alpha diversity indices at the phylum and genus levels.

Level Index
Treatment 1 p-Value 2

CCV CCCL HCV HCCL Maternal CL316,243 Interaction

Phylum Observed OTUs 5.80 ± 0.37 6.00 ± 0.55 6.00 ± 0.01 5.75 ± 0.25 0.95 1.00 0.58
Pielou’s evenness 0.72 ± 0.04 0.76 ± 0.03 0.81 ± 0.03 0.76 ± 0.02 0.14 0.92 0.14

Shannon index 1.81 ± 0.09 1.95 ± 0.11 2.10 ± 0.06 1.92 ± 0.01 0.15 0.96 0.09
Genus Observed OTUs 21.8 ± 0.97 23.0 ± 1.18 21.3 ± 0.85 23.5 ± 0.29 0.98 0.10 0.59

Pielou’s evenness 0.57 ± 0.01 0.61 ± 0.02 0.60 ± 0.01 0.59 ± 0.01 0.48 0.17 0.06
Shannon index 2.51 ± 0.07 2.76 ± 0.10 2.66 ± 0.04 2.70 ± 0.02 0.52 0.04 0.14

1 CCV = offspring of control diet-fed dams treated with vehicle (n = 5); CCCL = offspring of control diet-fed
dams treated with CL316,243 (n = 5); HCV = offspring of high-fat diet-fed dams treated with vehicle (n = 4);
HCCL = offspring of high-fat diet-fed dams treated with CL316,243 (n = 4). Data are expressed as mean ± SEM.
2 Two-way ANOVA was used to determine the main effects of maternal diet, CL316,243 challenge and their
interaction (statistically significant p-values are bolded).

β-diversity describes the (dis-)similarity among microbial communities. Visualiza-
tion of Bray-Curtis dissimilarities using the PCoA plot (Figure 2A) revealed clustering
of bacterial communities by treatment with samples from offspring of HFD-fed dams
(HCV and HCCL) displaying less variation compared to those from offspring of control
diet-fed dams (CCV and CCCL). Based on PERMANOVA, maternal HFD and CL challenge
significantly (p ≤ 0.03) impacted the bacterial community composition. To further assess
bacterial community differences, a hierarchical clustering analysis was performed and the
constructed dendrogram supported grouping based on maternal diet and postnatal CL
treatment (Figure 2B).
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Figure 2. Murine gut bacterial community composition driven by maternal diet and CL316,243
challenge. (A) Genus-level principal coordinate analysis plot based on Bray–Curtis dissimilarities. Axes
show the first two principal components and their corresponding percentage of variance explained.
Ellipses define the 95% confidence level. Two-way PERMANOVA was used to determine the main
effects of maternal diet, CL316,243 challenge and their interaction (statistically significant p-values are
bolded). (B) Hierarchical dendrogram based on Ward’s method displaying clustering by treatment.
CCV = offspring of control diet-fed dams treated with vehicle (n = 5); CCCL = offspring of control
diet-fed dams treated with CL316,243 (n = 5); HCV = offspring of high-fat diet-fed dams treated with
vehicle (n = 4); HCCL = offspring of high-fat diet-fed dams treated with CL316,243 (n = 4).

2.2. Taxonomic Profile Differences

Taxonomic analysis uncovered significant differences in the bacterial community com-
position driven by maternal diet or CL challenge (Figure 3). At the phylum-level, a maternal
diet effect was observed in the mean relative abundance of Actinobacteria, Bacteroidetes,
and the Firmicutes/Bacteroidetes ratio. For the vehicle-treated group, offspring of HFD-fed
dams had a lower (p < 0.001) abundance of Bacteroidetes (33.2 vs. 49.4%) which resulted
in a greater (p < 0.001) Firmicutes/Bacteroidetes ratio (0.88 vs. 0.56) compared to those
of control-fed dams. For CL treated, offspring of HFD-fed dams had a greater (p ≤ 0.05)
abundance of Actinobacteria (0.04 vs. 0.01%) compared to offspring of control-fed dams. The
relative abundance of Actinobacteria in the cecum of C57BL/6 mice has been previously
reported to be ~0.1% [16]. The CL challenge promoted an increase (p < 0.001) in the mean
relative abundance of Firmicutes (40.0 vs. 29.0%) and the Firmicutes/Bacteroidetes ratio
(1.69 vs. 0.88) and a decrease (p < 0.001) in the abundance of Verrucomicrobia (0.08 vs.
5.71%) in offspring of HFD-fed dams, whereas CL had no effect among phyla in offspring of
control-fed dams.

At the family-level (Figure 4A), a maternal diet effect was observed for Rikenellaceae
which had a greater (p < 0.001) mean relative abundance in offspring from maternal control
diet compared to those from maternal HFD when treated with vehicle (3.66 vs. 0.0%).
In offspring of maternal HFD, the CL challenge increased (p < 0.001) the abundance of
Streptococcaceae (0.17 vs. 0.04%) and Lachnospiraceae (1.91 vs. 0.85%) and decreased
(p < 0.001) the abundance of Verrucomicrobiaceae (0.08 vs. 5.71%) compared to vehicle.
These responses were in line with those observed at the phylum-level. At the genus-level
(Figure 4B), the abundance of Akkermansia decreased (p < 0.001; 5.71 vs. 0.08%), whereas
the abundance of Lactococcus increased (p < 0.001; 0.04 vs. 0.17%) in response to the CL
challenge in offspring of maternal HFD.
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Figure 3. Phylum-level differences across treatments. CCV = offspring of control diet-fed dams treated
with vehicle (n = 5); CCCL = offspring of control diet-fed dams treated with CL316,243 (n = 5); HCV =
offspring of high-fat diet-fed dams treated with vehicle (n = 4); HCCL = offspring of high-fat diet-fed
dams treated with CL316,243 (n = 4). Nonparametric multiple comparisons (* p < 0.05, *** p < 0.001).
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Figure 4. Family- and genus-level differences across treatments. Relative abundance of specific
(A) families and (B) genera. CCV = offspring of control diet-fed dams treated with vehicle (n = 5);
CCCL = offspring of control diet-fed dams treated with CL316,243 (n = 5); HCV = offspring of high-fat
diet-fed dams treated with vehicle (n = 4); HCCL = offspring of high-fat diet-fed dams treated with
CL316,243 (n = 4). Nonparametric multiple comparisons (*** p < 0.001).

2.3. Predicted Functional Profiles

Consistent with bacterial community differences, the predicted bacterial metabolic
profiles clustered together per treatment as shown in the PCoA plot with the effects of
maternal diet and CL challenge being significant (p ≤ 0.02; Figure 5A). The maternal
diet effect on the metabolic profiles was more pronounced in offspring receiving vehicle
compared to CL. Pathways associated with carbohydrate, energy, and lipid metabolism
demonstrated hierarchical clustering by treatment (Figure 5B). To further evaluate these
differences, the effects of maternal diet and CL challenge were determined on the metabolic
profile of mice (Figure 5C). For the vehicle-treated group, metabolism-related pathways
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—such as fatty acid biosynthesis and tricarboxylic citrate cycle—increased (p < 0.001) while
primary/secondary bile acid biosynthesis, inositol phosphate metabolism, and starch and
sucrose metabolism decreased (p < 0.001) in offspring of HFD-fed dams compared to those
of control diet-fed dams. For offspring of maternal HFD, the CL challenge decreased
(p < 0.001) fatty acid elongation in mitochondria, primary/secondary bile acid biosynthesis,
inositol phosphate metabolism, and the tricarboxylic citrate cycle.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 18 
 

 

effect on the metabolic profiles was more pronounced in offspring receiving vehicle com-

pared to CL. Pathways associated with carbohydrate, energy, and lipid metabolism 

demonstrated hierarchical clustering by treatment (Figure 5B). To further evaluate these 

differences, the effects of maternal diet and CL challenge were determined on the meta-

bolic profile of mice (Figure 5C). For the vehicle-treated group, metabolism-related path-

ways—such as fatty acid biosynthesis and tricarboxylic citrate cycle—increased (p < 0.001) 

while primary/secondary bile acid biosynthesis, inositol phosphate metabolism, and 

starch and sucrose metabolism decreased (p < 0.001) in offspring of HFD−fed dams com-

pared to those of control diet-fed dams. For offspring of maternal HFD, the CL challenge 

decreased (p < 0.001) fatty acid elongation in mitochondria, primary/secondary bile acid 

biosynthesis, inositol phosphate metabolism, and the tricarboxylic citrate cycle. 

 

Figure 5. Distinct PICRUSt-predicted functional profiles in the mice gut driven by maternal diet and 

CL316,243 challenge. (A) Principal coordinate analysis plot based on Bray−Curtis dissimilarities 

generated from the pathways relative abundance. Axes show the first two principal components 

and their corresponding percentage of variance explained. Ellipses define the 95% confidence level. 

(B) Heatmap of pathways related to carbohydrate, energy, and lipid metabolism. (C) Significantly 

different metabolic-related pathways across treatments. Statistically significant p-values are bolded. 

CCV = offspring from control diet-fed dams treated with vehicle (n = 5); CCCL = offspring from 

control diet-fed dams treated with CL316,243 (n = 5); HCV = offspring from high fat diet-fed dams 

treated with vehicle (n = 4); HCCL = offspring from high fat diet-fed dams treated with CL316,243 

(n = 4). Nonparametric multiple comparisons (*** p < 0.001). 

Figure 5. Distinct PICRUSt-predicted functional profiles in the mice gut driven by maternal diet
and CL316,243 challenge. (A) Principal coordinate analysis plot based on Bray-Curtis dissimilarities
generated from the pathways relative abundance. Axes show the first two principal components
and their corresponding percentage of variance explained. Ellipses define the 95% confidence level.
(B) Heatmap of pathways related to carbohydrate, energy, and lipid metabolism. (C) Significantly
different metabolic-related pathways across treatments. Statistically significant p-values are bolded.
CCV = offspring from control diet-fed dams treated with vehicle (n = 5); CCCL = offspring from
control diet-fed dams treated with CL316,243 (n = 5); HCV = offspring from high fat diet-fed dams
treated with vehicle (n = 4); HCCL = offspring from high fat diet-fed dams treated with CL316,243
(n = 4). Nonparametric multiple comparisons (*** p < 0.001).

2.4. Gut Microbial Diversity and Taxonomy from Mice Exposed to Different Temperatures

The number of taxa and their relative abundance at the phylum- and genus-levels were
similar between mice exposed to 8 ◦C or 30 ◦C (Table 2). Mice exposed to cold temperature
had a lower (p = 0.04) Shannon diversity at the phylum-level compared to mice exposed to
thermoneutral temperature, but this effect was not consistent at the genus level (p = 0.74;
Table 2).
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Table 2. Alpha diversity indices at the phylum and genus levels from the cecum of mice exposed to
different temperatures.

Treatment 1

Level Index 8 ◦C 30 ◦C p-Value 2

Phylum Observed OTUs 4.60 ± 0.24 5.00 ± 0.01 0.14

Shannon index 0.71 ± 0.07 1.09 ± 0.14 0.04

Pielou’s evenness 0.32 ± 0.03 0.47 ± 0.06 0.06

Genus Observed OTUs 26.4 ± 0.51 26.6 ± 1.33 0.89

Shannon index 2.70 ± 0.23 2.80 ± 0.17 0.74

Pielou’s evenness 0.57 ± 0.05 0.59 ± 0.03 0.73
1 Mice exposed to either 8 ◦C (n = 5) or 30 ◦C (n = 5) for 7 days. Data are expressed as mean ± SEM. 2 Unpaired
t-test (statistically significant p-values are bolded).

The cecal bacterial community composition differed (p = 0.01) between mice exposed
to cold and thermoneutral temperatures (Figure 6). This was clearly reflected through the
clustering of samples by temperature in both the PCoA plot and dendrogram (Figure 6A,B).
At the phylum-level, the relative abundance of Actinobacteria was lower (p < 0.05) in
mice exposed to cold compared to thermoneutral temperature (1.53 vs. 12.9%; Figure 6C).
The remaining phyla and the Firmicutes/Bacteroidetes ratio were similar between temper-
atures (Figure 6C).
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Figure 6. Beta diversity and phylum-level differences from the cecal bacterial community of mice
exposed to different temperatures. (A) Genus-level principal coordinate analysis plot based on
Bray-Curtis dissimilarities. Axes show the first two principal components and their corresponding
percentage of variance explained. Ellipses define the 95% confidence level. (B) Hierarchical dendro-
gram based on Ward’s method displaying clustering by temperature. (C) Phylum-level classification
of the cecal bacterial community. Mice exposed to either 8 ◦C (n = 5) or 30 ◦C (n = 5) for 7 days.
Wilcoxon rank sum test (* p < 0.05).
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2.5. Cecum and Serum Metabolomic Profiling

PICRUSt results provided a glimpse into the functional potential of the microbiome in
offspring treated with CL. Unfortunately, we did not have access to either cecal content or
serum from these mice to perform metabolomics. Thus, to understand how thermogenic
challenge (β-adrenergic stimulation) would impact fecal and serum metabolomes, we
performed an independent study where we exposed male mice to cold (8 ◦C, CE) and
thermoneutral (30 ◦C, TN) temperatures. Then, untargeted metabolomics was performed
on the cecal and serum samples from these mice.

The PCA of all the detected metabolite features (known/unknown) showed clus-
tering of samples by temperature (Figure 7A,B). Heatmaps of identified metabolites re-
vealed more pronounced differences in the serum (75 identified metabolites) compared
to the cecum (108 identified metabolites) (Figure 7C,D). The quantitative enrichment
analysis was performed on known metabolites to identify enriched functionally related
metabolites and their associated pathways. In the cecum, the relative abundance of D-
sphingosine was greater (p = 0.05) in CE mice compared to TN mice (Figure S2A); while
in the serum, the relative abundance of citric acid, glycerol 3-phosphate, fumaric acid,
succinic acid, isocitric acid, β-alananine, and lactic acid were lower (p < 0.001) in CE mice
compared to TN mice (Figure S2B–H). In the cecum, sphingolipid metabolism pathways
involved in specific amino acids metabolism and bile acid biosynthesis were among the top
15 pathways associated with enriched metabolites (Figure 8). Bile acid biosynthesis was
highlighted in the bacterial predicted pathways from the CL treated offspring of HFD-fed
dams (Figure 5C) which is consistent with findings from the CE mice metabolome in the
second experiment. Although we agree that this is not an exact replication of the exper-
iment due to the lack of the maternal factor. The systemic nature of these changes was
evident in that more pathways were significantly affected in the serum compared to the
cecum (Figure 8).
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Figure 8. Metabolic pathways (top 15) in the (A) cecum and (B) serum associated with enriched
metabolites in mice exposed to cold (8 ◦C) or thermoneutral (30 ◦C) temperatures. Quantitative
enrichment analysis was performed on identified metabolites in the cecum (n = 108) and serum
(n = 75) using MetaboAnalyst v5.0.

3. Discussion

Maternal programing and its role in shaping metabolic dysfunction is well demon-
strated [17]. Alterations in the gut microbiome are linked to metabolic dysfunctions that
are present in obesity [18,19]. Mounting evidence supports an effect of maternal HFD on
the offspring’s gut microbiota composition and consequently on important metabolic or-
gans such as liver [8,20]. Although recent studies have established a connection between
dysbiosis of gut microbiota and adipose tissue function [14,21], the effect of β-adrenergic
challenges such as CL on the microbiome composition and its interaction with maternal
HFD is unknown. Using a mouse model of maternal diet-induced obesity, we demonstrated
that maternal HFD and CL challenge affected the microbiome composition in offspring. We
also observed that cold exposure promoted changes in the metabolome profile that were
more pronounced in the serum compared to the cecum. This study provides insight into
how maternal programming shapes the microbiome and impacts postnatal response to CL
challenges and shows the ability of ambient temperature to change the metabolome in mice.

In the current study, maternal HFD promoted marked differences in β- but not α-
diversity in the offspring’s cecal microbiota, which is consistent with previously reported
results from ours and other groups [7,22,23]. Similarly, findings from several human stud-
ies revealed that there are differences in the gut microbiota composition between infants
from overweight and normal weight women suggesting a relationship between mater-
nal dietary habits, gestational weight, and programming of offspring microbiome [24,25].
In children born to obese mothers, the gut microbiota has been observed to display tax-
onomic compositional changes, greater homogeneity, and species diversity compared to
those born to non-obese mothers; although these responses can be impacted by the socioe-
conomic status of mothers [26,27]. Firmicutes and Bacteroidetes are the dominant phyla
in the human gut [28]. The Firmicutes/Bacteroidetes ratio changes with age and has been
commonly observed to increase with obesity; however, its use as a marker of gut dysbiosis
is currently debated [29–31]. Furthermore, variations in microbial abundances may not al-
ways impact the functional capacity due to functional redundancy [32]. However, maternal
high-fat diets have been shown to increase the Firmicutes/Bacteroidetes ratio in the mother
with persistent effects observed in early stages in the offspring [22,33]. A negative correla-
tion was reported between the relative abundance of Bacteroides species (within the Bac-
teroidetes phylum) in children and maternal fat intake during pregnancy [20]. Consistent
with the aforementioned literature, in this study maternal HFD promoted decreased Bac-
teroidetes, increased Firmicutes, and consequently increased the Firmicutes/Bacteroidetes
ratio in offspring.
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Both CL challenge and cold exposure significantly affected β-diversity, but their
impact on the taxonomic profile differed. CL and cold exposure are thermogenic stimulants
that mediate their actions through β-3 adrenergic receptors with metabolic responses that
can differ [34]. In addition, differences between conducted studies could be attributed to
factors such as maternal diet background (maternal factor vs. no maternal factor), housing
temperature (22 ◦C vs. 8 ◦C and 30 ◦C) and age (24-week-old mice and 16-week-old
mice) [8,14,35]. However, the impact of β-adrenergic stimuli on the bacterial community
structure was clear.

A healthy gut microbial community benefits the host’s metabolic homeostasis and
reciprocally, the host can influence the microbial composition through gut environmental
conditions, nutrients from the diet, chemicals, and gut hormone secretion among oth-
ers [14,36–38]. In our study, we demonstrated that CL—a β3-adrenergic receptor agonist,
known to activate BAT and to induce browning in WAT—impacts the gut microbiota
composition. CL had significant effect on the relative abundance across taxonomic levels.
Li et al. [15] showed that mice lacking gut microbiota had impaired thermogenesis in
response to acute cold exposure as well as CL. These findings support the notion that the
microbiota could contribute to the regulation of thermogenesis. In the current study, the
CL challenge altered the relative abundance of taxonomic groups in offspring of mater-
nal HFD. Similar shifts in the cecal microbiota such as an increase in Firmicutes and a
decrease in Verrucomicrobia were reported in mice under thermogenic stimulus by cold
exposure [14]. A decrease in Akkermansia muciniphila has been suggested to enable the
adaptive increase in the intestinal surface during cold exposure [14]. We observed a near
depletion of the genus Akkermansia in offspring exposed to the CL challenge. Worthmann
et al. [39] has demonstrated that cold induced thermogenesis triggers a metabolic program
that orchestrates lipoprotein processing in BAT and hepatic conversion of cholesterol to bile
acids accompanied by distinct changes in gut microbiota. This is a plausible mechanism of
thermogenesis-induced changes in the gut microbiota.

Bile acids secreted into the intestinal lumen in response to a meal intake are modified
by the gut flora and act as messengers between gut microbiota and adipose tissue [40].
Additionally, bile acids themselves can regulate the composition of the gut microbiota [41].
Our group had previously identified significant correlations between bacterial families and
bile acid species in the cecum of offspring of HFD-fed dams [8]. In line with the latter, in
the current study changes in the predicted functional profile by the CL challenge involved
significant differences in primary/secondary bile acid biosynthesis in offspring of HFD-fed
dams. Furthermore, cold exposure led to changes in the cecal and serum metabolomes.
Bile acid biosynthesis was among the pathways affected in the cecum metabolome which
supported the predictive functional change from the gut microbiome by CL, which mimics
cold exposure causing thermogenic stress.

Gut microbiome plays a critical role in composition of gut and serum metabolome
through primary or secondary synthesis of metabolites such as bile acids and short chain
fatty acids (SCFA) among others. SCFA levels are positively associated with increased
energy metabolism [42–44], while other microbially derived metabolites—such as trimethy-
lamine and imidazole propionate—show negative associations with host health [45–47].
In our study where we exposed mice to cold (8 ◦C) and thermoneutral (30 ◦C) tempera-
tures, we showed differences in the metabolome profile that were more pronounced in
the serum compared to the cecum. From the identified metabolites, pathways involved
in sphingolipid and amino acid metabolism and bile acid biosynthesis were impacted by
cold exposure in the cecum, whereas pathways involved in lipid and energy metabolism
were impacted in the serum. During acute cold exposure (4 h), pathways related to amino
acid metabolism and redox regulation have been shown to be impacted in BAT [48]. In-
deed, under cold exposure, increased bile acid synthesis has been shown to alter the gut
microbiota composition [39] and as observed in this study resulting in different cecal and
serum metabolite profiles that could be linked to thermogenic responses. These findings
were derived from the study where there was no maternal HFD impact. Activation of
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thermogenic adipose tissues is being considered as a potential opportunity to reduce obe-
sity and metabolic disorders. β-adrenergic stimulation has been a target of therapeutic
strategies due to its importance in the thermogenic response. In humans, β3-adrenergic
agonists have the potential to promote thermogenesis and increase resting energy expendi-
ture [49]; however, negative side effects have hindered their use in clinical trials [50]. Our
current study also suggests that as β3-adrenergic agonists continue to develop, evaluation
of their interaction with the gut microbiota is relevant as microbially derived metabolites
can influence their response.

While the conducted studies showed that CL and cold exposure impact the cecal bacterial
community structure, the studies presented some limitations. Direct comparison of the
bacterial changes from β-adrenergic stimuli were not conducted due to the differences in
experimental conditions between studies—such as maternal background, collection age, and
housing temperatures. Metabolome analysis was only performed in mice exposed to different
temperatures (Study 2) and not in mice of different maternal dietary background and receiving
vehicle or CL (Study 1), thus it was not possible to contrast metabolome responses to CL and
cold exposure. The untargeted metabolomics approach provides a semiquantitative analysis,
therefore the absolute concentration differences between the significantly distinct metabolites
are unknown. However, the objective was to determine whether β-adrenergic stimulus
altered the metabolome profiles of the cecum and serum and not to compare metabolome
responses between different β-adrenergic stimuli. Furthermore, metabolome results from
this study provide insights of metabolites from the gut microbiota that could explain adipose
tissue function during thermogenic stimuli. Previously, it has been shown that metabolic
responses differed between CL and cold exposure in white adipose tissue [34], this poses a
likely possibility of different metabolic response from the microbiome, metabolome, and other
tissues. The current studies provide a primary evaluation of the effects of maternal diet and
β-adrenergic stimuli on the gut microbial profile and the gut and serum metabolome profiles.
Further research is needed to elucidate the links between microbiome and metabolome
changes promoted by maternal dietary background or β-adrenergic stimuli and how these
responses impact adipose tissue.

4. Materials and Methods
4.1. Experimental Design

The Institutional Animal Care and Use Committee at the University of Arkansas for
Medical Sciences (IACUC #4094) approved all experimental protocols used in the two
studies described in this manuscript.

4.1.1. Study 1

Five-week-old female C57BL6/J mice (stock 0664, Jackson Laboratories, Bar Harbor,
ME, USA) housed under conventional conditions were given ad libitum access to control
diet (17% fat Harlan Teklad TD95095, n = 10) or HFD (45% fat, TD08811, n = 10) for
12 weeks. At 17 weeks of age, females were bred with lean male mice (fed control diet
TD8640). This protocol was identical to those published previously by our group [7,8].
Upon birth, all offspring remained with birth dams until weaning and litter sizes were
adjusted to 6 pups per litter. Female offspring were then separated and used in a different
experiment and male offspring from control diet and HFD-fed dams were given access to
the control diet which led to two groups of offspring: viz. offspring born to control diet-fed
dams weaned onto control diet (CC, n = 10) and offspring born to HFD-fed dams weaned
onto control diet (HC, n = 8). On week 20, mice received a daily intraperitoneal injection
(1 mg/kg body weight) of either vehicle (CCV, n = 5; HCV, n = 4) or β3-adrenergic agonist
CL (CCCL, n = 5; HCCL, n = 4) for 7 days (Figure 1). Food intake was not recorded on this
study. On the morning of the day 8, mice were euthanized by carbon dioxide asphyxiation
and cecal contents were collected and immediately snap frozen for further analysis.
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4.1.2. Study 2

Results from Study 1 provided a glimpse into the functional potential of the micro-
biome in offspring treated with CL. Unfortunately, we did not have access to either cecal
content or serum from these mice to perform metabolomics. Thus, to understand the impact
of thermogenic challenge (β-adrenergic stimulation) on cecal and serum metabolomes,
16-week-old male C57BL6/J mice (Jackson Laboratories, Bar Harbor, ME, USA) housed
under conventional conditions were exposed to either 8 ◦C (cold exposure, n = 5) or 30 ◦C
(thermoneutral, n = 5) temperature for 7 days (Figure 1). Mice were housed individually
using environmental chambers (Power Scientific Inc., Doylestown, PA, USA). On the morn-
ing of the day 8, mice were euthanized and cecal contents were collected as described in
Study 1. In addition, blood was collected via cardiac puncture and serum was separated
and stored at −20 ◦C until further analysis.

4.2. Microbial Community Profiling Using 16S rRNA Amplicon Sequencing

Genomic DNA was extracted from the cecal samples using the MO BIO PowerSoil
DNA Isolation kit (Qiagen, MD, USA, Catalog # 12955-4) with a few modifications. 7 Cecal
contents (20–25 mg) were added directly onto 96-well plates with beads and recommended
buffers in the wells. Sealed plates were shaken horizontally at 20 Hz for 20 min using
a mixer mill (Retsch MM 400). The remaining steps were performed according to the
manufacturer’s protocol. Extracted DNA was quantitated spectrophotometrically and
stored at −20 ◦C. Fifty nanograms of genomic DNA were utilized for amplification of the
V4 variable region of the 16S rRNA gene using the 515F/806R primers. Forward and reverse
primers were dual-indexed as described by Kozich et al. [51]. Paired-end sequencing (2 ×
250 bp) of pooled amplicons was carried out on an Illumina MiSeq with ~30% PhiX DNA.

4.3. Bioinformatics Analysis

Processing and quality filtering of reads were performed by using scripts in QIIME
(v1.9.1) [52] and other in-house scripts [7]. Paired reads were stitched with PEAR, an over-
lapping paired-end reads merger algorithm which evaluates all possible paired-end read
overlaps minimizing false positive hits [53]. Reads were further filtered based on Phred
quality scores and for chimeric reads using USEARCH61 [52,54] resulting in an average of
20,700 quality-filtered reads across samples and filtered reads were demultiplexed using
QIIME. UCLUST was used to cluster sequences into operational taxonomical units (OTUs
based on >97% identity) [54]. OTU picking was performed using an open-reference method
which encompasses clustering of reads against a reference sequence collection and which
also performs de novo OTU picking on the reads which fail to align to any known reference
sequence in the database [55]. To eliminate erroneous mislabeling, the resulting OTU tables
were checked for mislabeling sequences [56]. Overall, quality-filtered reads clustered into
238 OTUs across samples. Representative sequences were further aligned using PyNAST
with the Greengenes core-set alignment template [57]. Construction of the phylogenetic
tree was performed using the default (FASTTREE) method in QIIME [58]. Samples were
rarefied to an even sampling depth of 12,000 quality-filtered reads and OTU richness was
evaluated via rarefaction curves showing similar coverage across treatments (Figure S1) and
sample community completeness was evaluated via Good’s coverage estimating that 99.8%
of the bacterial diversity was characterized across samples. Alpha diversity metrics for
richness, diversity, and evenness at the phylum-, genus-, and OTU-levels were determined
in QIIME using the observed features, Shannon diversity index, and Pielou’s evenness
index, respectively. Bray–Curtis dissimilarities were used to evaluate beta diversity and to
conduct the principal coordinate analysis (PCoA). For predicted functional composition,
OTUs were normalized by the predicted 16S copy number, and functions were determined
using the GreenGenes 13_5 database for KEGG orthologs. The phylogenetic investigation
of communities by reconstruction of unobserved states (PICRUSt) algorithm was used to
identify differences in the predictive functional composition [59]. Relative frequencies from
predicted pathways were visualized via a heatmap constructed using ClustVis [60].
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4.4. Untargeted Metabolomics

Metabolomic sample preparation—Serum metabolome (100 µL) was extracted in cold
methanol (400 µL). Instrumental pooled quality control (QC) samples were prepared by
pooling equal volumes of each sample extract (20 µL). Samples and QC extracts were
dried on a SpeedVac, reconstituted in 100 µL of 5% methanol spiked with a 1 ppm internal
standard (Lorazepam; Sigma Aldrich, St. Louis, MO, USA) and subjected to LC-MS analysis.
Cecal samples (75 mg) were dried overnight in a SpeedVac with an average dried cecal
content of ~21 mg. Samples were homogenized in 600 µL 80% methanol using a Precellys 24
homogenizer (Bertin Corp.; Rockville, MD, USA) at 6500 rpm for two 30-s cycles. Samples
were chilled on the dry ice for 8 min in between cycles. Experimental pools, samples, and
QC extracts were then prepared as described for serum samples.

Chromatography—The Dionex Ultimate 3000 UHPLC was used with a XSelect CSH C18
reversed phase column (2.1 × 100 mm, 2.5 µm) kept at 49 ◦C, as previously described [61].
Metabolites were eluted by use of the following step gradient at a flow rate of 0.4 mL/min:
0–2 min, 0–1% solvent B; 2–6.5 min, 1–20% solvent B; 6.5–11.5 min, 20–95% solvent B;
11.5–13.5 min, 95–99% solvent B; 13.5–16.5 min, 99–100% solvent B; 16.5–20 min, 1% sol-
vent B. Solvent A is 0.1% formic acid in water and solvent B is 0.1% formic acid in acetonitrile.
A 5 µL of each sample extract was injected in a randomized sequence with one QC injection
in every 5 samples. Metabololomic features were quantified using a Q Exactive Orbitrap mass
spectrometer with both positive and negative electrospray ionization (ESI+/−) in full scan
MS mode executed with Xcalibur 4.0 software. The ESI+/− data dependent MS2 spectra
were acquired using QC samples for metabolite identification. The instrumentation detail was
described previously [62].

Acquired data (full MS and data dependent MS2) were processed by Compound
Discoverer 3.0 using an untargeted metabolomics workflow. In-depth details of parameters
associated with this workflow have been published previously [62]. Metabolites were
identified by using our in-house library containing MS1 spectra of 420 standard compounds
with 5 ppm mass accuracy ± 15 s of retention time, mzVault (inhouse ddMS2 database),
and mzCloud (online MS2 database) and given the following confidence levels: Level 1,
identification if accurate mass, retention time, and MS2 spectra matching to our in-house
(mzVault) library; and Level 2, identification if accurate mass, MS2 matching to known
standard from our in-house library (score > 70) or mzCloud library (score > 80), and no
retention time information.

4.5. Statistical Analyses

Statistical analyses were performed in R version 4.0.5 [63]. α-diversity metrics were
evaluated for normality using the Shapiro–Wilk test and were analyzed using a two-
way analysis of variance (ANOVA) to determine the main effects of maternal diet and
CL challenge and their interaction or the unpaired t-test were appropriate. To evaluate
differences in the relative abundance of taxonomic groups among treatments, specified
nonparametric multiple comparisons using the “nparcomp” package [64] or the Wilcoxon
rank sum test were conducted were appropriate. Differences in β-diversity were deter-
mined with Bray–Curtis dissimilarities and evaluated using the multivariate analysis of
variance (PERMANOVA) with 999 permutations using the “vegan” package [65]. Bray–
Curtis dissimilarities were inputted to construct a dendrogram using the Ward’s method
for hierarchical clustering.

For metabolites detected in both ionization modes in serum and cecum, the ones
with the greater intensity and lower %RSD were selected. Cecum data were normalized
by sample weight and both cecum and serum data were log transformed (base 10) and
auto scaled (mean-centered and divided by the standard deviation of each variable). To
evaluate metabolome differences between temperatures, a principal component analysis
was performed on all the data (identified and unidentified metabolites). Further quanti-
tative enrichment analysis was performed only including the identified metabolites data
in MetaboAnalyst v5.0 (https://www.metaboanalyst.ca/home.xhtml, accessed on 1 May

https://www.metaboanalyst.ca/home.xhtml
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2022) using the Small Molecule Pathway Database (SMPDB) [66,67]. Statistical significance
was determined at p < 0.05.

5. Conclusions

In summary, we showed that both HFD-induced maternal obesity and administration
of the β3-adrenergic agonist CL altered the bacterial community and predicted functional
profiles in offspring. Furthermore, offspring born to HFD fed dams were more responsive
to bacterial profile changes compared to their counterparts when treated with CL. We also
demonstrated that β-adrenergic stimulation via cold exposure alone can modulate the
metabolomic profiles of the cecum and serum in male mice in the absence of maternal
HFD feeding. Given that the gut microbiota plays an important role in the host metabolic
homeostasis, changes in microbially derived metabolites can influence cross-talking with
individual tissues such as WAT and BAT and can be considered as a proposed mechanism.
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