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Abstract

The shape of phylogenetic trees can be used to gain evolutionary insights. A tree’s shape

specifies the connectivity of a tree, while its branch lengths reflect either the time or genetic

distance between branching events; well-known measures of tree shape include the Colless

and Sackin imbalance, which describe the asymmetry of a tree. In other contexts, network

science has become an important paradigm for describing structural features of networks

and using them to understand complex systems, ranging from protein interactions to social

systems. Network science is thus a potential source of many novel ways to characterize

tree shape, as trees are also networks. Here, we tailor tools from network science, including

diameter, average path length, and betweenness, closeness, and eigenvector centrality, to

summarize phylogenetic tree shapes. We thereby propose tree shape summaries that are

complementary to both asymmetry and the frequencies of small configurations. These new

statistics can be computed in linear time and scale well to describe the shapes of large

trees. We apply these statistics, alongside some conventional tree statistics, to phylogenetic

trees from three very different viruses (HIV, dengue fever and measles), from the same

virus in different epidemiological scenarios (influenza A and HIV) and from simulation mod-

els known to produce trees with different shapes. Using mutual information and supervised

learning algorithms, we find that the statistics adapted from network science perform as well

as or better than conventional statistics. We describe their distributions and prove some

basic results about their extreme values in a tree. We conclude that network science-based

tree shape summaries are a promising addition to the toolkit of tree shape features. All our

shape summaries, as well as functions to select the most discriminating ones for two sets of

trees, are freely available as an R package at http://github.com/Leonardini/treeCentrality.

1 Introduction

Molecular data describing the evolution, variation and diversity of organisms over time is

more widely available than ever before due to rapid improvements in sequencing technology.

Using these data to infer the underlying evolutionary process is a key ongoing challenge in

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0259877 December 23, 2021 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Chindelevitch L, Hayati M, Poon AFY,

Colijn C (2021) Network science inspires novel tree

shape statistics. PLoS ONE 16(12): e0259877.

https://doi.org/10.1371/journal.pone.0259877

Editor: Ivan Kryven, Utrecht University,

NETHERLANDS

Received: January 11, 2021

Accepted: October 28, 2021

Published: December 23, 2021

Copyright: © 2021 Chindelevitch et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Most relevant data

are within the manuscript and its Supporting

information files. The code is available on GitHub,

https://github.com/Leonardini/treeCentrality.

Additional data files are available on GitHub, https://

github.com/Leonardini/treeCentralityData.

Funding: This work was in part supported by the

AWS Cloud Credits for Research program (https://

aws.amazon.com/research-credits/). LC was

supported by an NSERC Discovery Grant (RGPIN/

04622-2016, https://www.nserc-crsng.gc.ca/

Professors-Professeurs/Grants-Subs/DGIGP-

PSIGP_eng.asp) as well as an Alfred P. Sloan

https://orcid.org/0000-0002-6619-6013
http://github.com/Leonardini/treeCentrality
https://doi.org/10.1371/journal.pone.0259877
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259877&domain=pdf&date_stamp=2021-12-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259877&domain=pdf&date_stamp=2021-12-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259877&domain=pdf&date_stamp=2021-12-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259877&domain=pdf&date_stamp=2021-12-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259877&domain=pdf&date_stamp=2021-12-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259877&domain=pdf&date_stamp=2021-12-23
https://doi.org/10.1371/journal.pone.0259877
http://creativecommons.org/licenses/by/4.0/
https://github.com/Leonardini/treeCentrality
https://github.com/Leonardini/treeCentralityData
https://github.com/Leonardini/treeCentralityData
https://aws.amazon.com/research-credits/
https://aws.amazon.com/research-credits/
https://www.nserc-crsng.gc.ca/Professors-Professeurs/Grants-Subs/DGIGP-PSIGP_eng.asp
https://www.nserc-crsng.gc.ca/Professors-Professeurs/Grants-Subs/DGIGP-PSIGP_eng.asp
https://www.nserc-crsng.gc.ca/Professors-Professeurs/Grants-Subs/DGIGP-PSIGP_eng.asp


many areas of biology. In particular, in infectious disease, it is crucial to understand pathogen

adaptation: despite improvements in sanitation and vaccination and the development of anti-

biotics, infectious pathogens continue to emerge from zoonotic infections and to adapt to

human immune responses, vaccines, and antimicrobials. Next-generation sequencing has

afforded unprecedented opportunities to generate pathogen genome sequences in a highly

scalable manner, and theoretical tools have been developed to interrogate these data, largely

through reconstructed phylogenetic trees.

There has been considerable interest over the years in comparing the shapes of phylogenetic

trees in order to understand evolutionary processes [1–8]. A tree’s shape specifies its connec-

tivity structure. The lengths of its branches typically reflect either the time or genetic distance

between branching events. Following the observation that reconstructed evolutionary trees are

more asymmetric than random models predict [9], there have been efforts to summarise tree

asymmetry in trees reconstructed from data and relate it to predicted asymmetry in evolution-

ary and ecological models [4–7, 10–15]. There is also interest in establishing whether taxa

from two phylogenies might correspond to each other, for example in the context of parasites

and hosts or fossils of different origins [16], and in comparing simulated trees with trees from

data in epidemiology, for example using Approximate Bayesian Computation [17–19]. These

applications require quantitative tools to compare phylogenetic trees with different taxa, and

they require summary features that are informative of the evolution or epidemiology being

studied.

Summaries of tree topology have often focused on either asymmetry, or the frequency of

various configurations such as cherries or ladders [20]. Well-known measures of asymmetry

include the Colless and Sackin imbalance [21, 22]. Asymmetry measures tend to be correlated

with each other, and do not fully capture the shape of a tree [16, 23], leading to an interest in

exploring other statistics, comparisons tools and metrics for this task [16, 18, 19, 24–27]. Some

metric approaches directly find a distance (or similarity) measure between unlabelled phyloge-

nies; others seek an optimal labelling for two unlabelled trees and use metrics for labelled trees,

but this is not feasible for large trees.

In one particularly important application of tree shape statistics, namely, Approximate

Bayesian Computation, one seeks simulation parameters that produce trees that are similar

enough to data-derived trees [28]. This leaves a need for new statistics to quickly provide a

good summary of tree topology. Matsen used optimization over binary recursive tree shape

statistics to find statistics that distinguish between sets of trees [29]. This set the stage for

broadening the set of quantities used to describe trees, and gives rise to natural questions like

why a particular recursive statistic separates two groups, whether it only happens to separate

those specific trees or acts as a good way to distinguish between trees that are meaningfully

similar to those in the two groups. The binary recursive class may furthermore exclude features

that capture global information about a tree, such as features derived from its eigenvalues

when viewed as a graph, known as spectral features. As the size of datasets and range of appli-

cations increases, it is reasonable to assume that inference will be improved by expanding

upon the tools available to summarize tree topologies [18, 29]. In applications like Approxi-

mate Bayesian Computation, as well as other related attempts at summarizing tree shapes, one

does not necessarily seek to relate summaries to evolutionary mechanisms. Rather, the key

objective is to distinguish between trees in different categories or scenarios in an efficient way

by computing simple statistics.

Network science has become an important paradigm for describing structural (topological)

features of networks and using them to understand complex systems, ranging from protein

interactions to social systems [30, 31]. Network science is thus a potential source of many

novel ways to characterize tree topology. A phylogeny can be interpreted as a simple type of
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network or graph—specifically, a connected acyclic undirected graph. Thinking of a tree as a

graph can lead to a matrix representation (such as the adjacency matrix) in which both rows

and columns correspond to its internal and terminal nodes. This makes available the large

assortment of techniques for studying the properties of graphs based on their matrix represen-

tation [32]. The spectra of graph matrices have recently been used to compare tree topologies

[26]. However, the use of classical spectra is not likely to uniquely define trees [33, 34], the

computation does not scale well with tree size, and describing the relationship between evolu-

tionary or epidemiological parameters and graph spectra may be extremely difficult due to the

algebraic rather than combinatorial nature of the latter.

Network science offers many other network features that can be adapted to describe shape.

Here, we tailor tools from network science to summarize phylogenetic tree topologies. We

thereby develop tree topology summaries that are complementary to both asymmetry and the

frequencies of small configurations. These new statistics are fast to compute and will scale well

to describe the topologies of large trees. They can additionally be easily adapted to take branch

lengths into account. We illustrate how these statistics vary, alongside some conventional tree

statistics, over three very different viruses (HIV, dengue fever and measles), and over the same

virus in different epidemiological scenarios (influenza A over a 2-year period in the USA, over

a 5-year period globally, and over a longer period globally; HIV in three epidemiological con-

texts, namely a concentrated epidemic in men who have sex with men, a generalised African

HIV epidemic in a village setting and HIV-1 from a national-level survey (see Methods)). We

also use the statistics to compare simulated trees from different models. Finally, we use classifi-

cation with and without the network-based statistics to distinguish trees in different settings.

We find that the network-science statistics improve the classification performance and are

consistently assigned a high importance measure in classification algorithms.

2 Methods

2.1 Definitions related to graphs

In this subsection we introduce some definitions from graph theory, used below. They are

based on the textbooks by Bollobás [35] as well as Godsil and Royle [36].

A network or graph G consists of a finite set of nodes V and a finite set of edges E whose ele-

ments are unordered pairs of distinct nodes. The edge {u, v}, denoted uv for simplicity, joins
nodes u and v, and if uv 2 E, the nodes u and v are adjacent, which we denote by u* v.

A graph is weighted if there is a function w : E! R that assigns a weight w(uv) to each edge

uv 2 E. The weight function extends to all of V × V by setting w(uv) = 0 if u = v or uv =2 E.

A path P in a graph is a sequence of nodes v0, v1, . . ., vk such that vi vi+ 1 2 E for each 0� i
� k − 1. The nodes v0 and vk are the endvertices. In the unweighted case, k is the length of P. In

the weighted case, the weighted length of the path P is measured by the sum of the weights of

the edges it contains, i.e.
Pk� 1

i¼0
wðviviþ1Þ.

In both the unweighted and the weighted cases, the minimum (weighted) length of a path

with endvertices u and v is called the (weighted) distance between u and v and denoted d(u, v).

The (weighted) diameter of the graph is the largest distance between two distinct nodes.

The neighborhood Γ(u) of a node u 2 G is the set of nodes adjacent to it in G. The degree of

u is d(u) = |Γ(u)|. The degree sequence of G is the vector d = (d(v1). . .d(vn)) containing the

degree of all its nodes in some order. In a weighted graph, the weighted degree of u is dw(u) =

∑v w(uv), and the weighted degree sequence is the vector dw = (dw(v1). . .dw(vn)). The assortativ-
ity coefficient of G is the Pearson correlation coefficient of degree between pairs of adjacent

nodes.
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Given a numbering of the nodes, V = {1, 2, . . ., n}, a graph can be represented by its adja-
cency matrix A 2 Rn�n

, where Aij = 1 if ij 2 E and Aij = 0 otherwise. If the graph is weighted, its

weighted adjacency matrix has entries Aij = w(ij).
A graph can also be represented by its Laplacian matrix L 2 Rn�n, defined by Lii = d(i) for

all i, Lij = −1 if ij 2 E and Lij = 0 otherwise. The weighted Laplacian matrix has entries Lii =

dw(i) for all i and Lij = −w(ij) if i 6¼ j. Thus, in both cases we have L = D − A, where D is the

diagonal matrix with the (weighted) degree sequence on the diagonal.

The normalized Laplacian [37] is a variant of the Laplacian which is normalized by the

degree of each node, and is defined as L ¼ D� 1=2LD� 1=2. Its entries are Lii ¼ 1 for all i and

Lij ¼ �
wðijÞffiffiffiffiffi
didj
p for i 6¼ j in the weighted case or Lij ¼ �

1ffiffiffiffiffi
didj
p in the regular case.

In addition, a graph can also be represented by its distance matrix Q 2 Rn�n, with Qij = d(i,
j), the (weighted or unweighted) graph distance between i and j, and in particular, Qii = 0. As

proposed in [26], it is also possible to apply the (regular or normalized) Laplacian transforma-

tion to the distance matrix (by treating the distance matrix as a weighted adjacency matrix) to

obtain alternative matrix representations of a graph.

Widely studied graph properties fall into two broad classes. The first are shape properties,
concerned with various connectivity measures of the graph, such as the numbers of distinct

paths connecting pairs of nodes and the average or longest distance between a pair of nodes.

Some of these properties do not depend on the edge weights of the graph, in which case we

refer to them as topology properties; we use the term shape property as a broad term that

includes both topology properties and properties that take edge weights into account. The sec-

ond are spectral properties, concerned with the eigenvalues (and occasionally eigenvectors) of

matrices representing the graph, such as the adjacency, Laplacian, and normalized Laplacian.

2.2 Definitions related to trees

A tree is a connected acyclic graph. It can be shown that a tree with n nodes has n − 1 edges,

and that there is a unique simple path between any two nodes in a tree. The nodes of degree

one are called tips (or leaves); the remaining nodes are called internal. The weight w(e) of an

edge e of a tree is also called its branch length; we assume that a tree has all positive branch

lengths.

A tree T is rooted if it contains a distinguished node r, called the root. If v is any node other

than the root r in a rooted tree, the node u immediately preceding v on the unique simple path

from v to r is called the parent of v in T, and any node z on this unique simple path is called an

ancestor of v in T. In particular, the root r is an ancestor of every node in T other than itself.

The number of edges on the unique shortest path from a node v to the root r is called its depth.

Conversely, in this situation, v is called a child of u and a descendant of z. A rooted tree T is

binary if every internal node has exactly two children. In a rooted tree T, the set of all descen-

dants of a node u including u itself forms a clade; we say that u subtends this clade. The subtree
rooted at u, denoted Tu, is the clade that u subtends together with all the edges of T connecting

its elements. If a node u has two children v and w, we may arbitrarily refer to them as the left

and right child of u, and call Tv and Tw the left and right subtree of u, respectively.

A tree T with root node r can be rerooted at an internal node s 6¼ r, by simply designating s
rather than r as the root. This changes only the ancestor-descendant relationships, but not the

topology of the tree. Note that if T is a binary tree with root r, T rerooted at s 6¼ r will not be

binary because s will have three children while r will have only one child after rerooting. How-

ever, this situation is often resolved by specifying a branching order, i.e. creating a new node

t that is the parent of two children of the new root s, and adding an s − t edge of length 0. An

analogous procedure, called “multichotomy resolution”, may be iteratively applied to any

PLOS ONE Network science inspires novel tree shape statistics

PLOS ONE | https://doi.org/10.1371/journal.pone.0259877 December 23, 2021 4 / 21

https://doi.org/10.1371/journal.pone.0259877


other internal nodes with a degree greater than 2 to turn any non-binary tree into a binary

tree.

A molecular phylogeny, or phylogenetic tree, is a binary rooted tree whose tips correspond to

genetic or genomic sequences, and whose internal nodes represent their inferred common

ancestors. A phylogeny therefore represents the ancestral relationships among a set of

genomes. The shape of a phylogeny tells the story of an evolutionary history going back

through time to the most recent common ancestor at the root of the tree (see Fig 1(a)).

2.3 Data and simulations

2.3.1 HIV/Dengue/Measles

We obtained Newick tree strings corresponding to phylogenies inferred from human and zoo-

notic RNA viruses from a previous study. Specifically, we retrieved tree strings reconstructed

from genetic sequences of HIV-1 subtype B, Measles virus, and Dengue virus serotype 4. The

HIV sequence data (corresponding to the gene encoding the Nef protein) were obtained from

the LANL HIV Sequence database [38], through the web site at http://www.hiv.lanl.gov, and

screened for recombinants using the SCUEAL algorithm [39]. The remaining virus sequences

were obtained from GenBank [40].

Phylogenies were reconstructed from random samples of 100 sequences by maximum like-

lihood using RAxML [41] under a general time-reversible model of nucleotide substitution

and rate variation among sites approximated by the GTRCAT model. HIV-1 subtype B phy-

logenies were rooted using a subtype D sequence as an outgroup. Dengue virus serotype 4 phy-

logenies were rooted on an outgroup sequence isolated in the Philippines in 1956. Finally,

measles virus phylogenies were rooted using a genotype D6 sequence as the outgroup. The

GenBank [40] accession numbers for all outgroups can be found S1 Table in S1 File.

2.3.2 HIV in three settings

We obtained HIV-1 sequence data from three published studies. The Wolf et al. [42] data set

corresponds to samples from a concentrated epidemic of HIV-1 subtype B in populations of

predominantly men who have sex with men in Seattle, USA. The Novitsky et al. [43] data set

Fig 1. (a) An example tree. In the epidemiological context, tips (a − g) would correspond to pathogen sequences and internal nodes (A − F) to their

inferred common ancestors. Node D subtends a “cherry” configuration, and node C subtends two cherries (a “double cherry”). The heights of the

internal nodes are 1 (E, F), 2 (C, D), 4 (B) and 8 (A), so the diameter is 16 and the Wiener index is 484, for a mean path length of 6.21. (b) Same tree with

betweenness centrality values at each node (note that branch lengths do not change them). The tree has betwenness centrality 45. (c) Same tree with

farness (reciprocal of closeness centrality) values at each node. The tree has closeness centrality 1/48. (d) Same tree with eigenvector centrality values

(scaled to have a minimum of 1) at each node, rounded to 3 significant figures. Here, the leading eigenvalue is λ = 9.05. By our definition, the tree has

eigenvector centrality 714/1023 = 0.698 (here, 10232 is the sum of the squared values).

https://doi.org/10.1371/journal.pone.0259877.g001
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corresponds to samples from a generalized epidemic of HIV-1 subtype C infections in

Mochudi, Botswana, a village with an estimated HIV-1 prevalence of about 20% in the adult

population. Similarly, the Hunt et al. [44] data set represents samples from a national survey of

the generalized epidemic of HIV-1 subtype C in South Africa. Thus, these studies represent a

range of geographic scales and epidemiological contexts.

2.3.3 Influenza in three settings

We compared the topologies of a single virus (human influenza A) sampled to reflect different

epidemiology: (1) samples over a five-year period; (2) global samples over a 12-year period and

(3) samples from 2012–2013 from the USA only. We downloaded full-length hemagglutinin

(HA) sequences of human H3N2 flu from NCBI and aligned sequences from each group with

MAFFT [45]. For each sample, we chose 120 sequences uniformly at random from the align-

ment, and inferred a tree with these sequences as tips using IQtree [46] with the pll (phyloge-

netic likelihood library) option [47] and the GTR+ G model. Using the date information from

NCBI, we rooted the trees using the root to tip (rtt) function in the ape package [48] in R
[49].

2.3.4 Simulated tree models

We simulated trees from four random processes: a Yule process (pure birth trees), a “biased”

model of Kirkpatric and Slatkin [5] in which speciation rates are unevenly assigned to a node’s

descendants with a bias (here 0.3), and two constant rate birth-death processes, with the basic

reproduction number (mean of the offspring distribution) equal to 1.5 and 3. We created sets

of 100 trees with 100 tips and separately with 300 tips. The apTreeshape package [50] was

used to simulate the Yule and biased models; tree shapes were converted to phylogenetic trees

using the as.phylo function. We used the TreeSim package [51] for the birth-death mod-

els. Because in sim.bd.taxa (in TreeSim) the simulations are conditioned on having a

fixed number of extant tips, we created trees with 300 or 600 extant tips and randomly pruned

taxa to leave a tree of 100 or 300 tips, modelling partial sampling over time.

As some scenarios can be distinguished simply by comparing the branch lengths of the corre-

sponding trees, we normalized the time scales so that each of our trees has a mean branch length

of 1. This ensures that any differences we observe between the summary statistics in different

classes are not simply due to scaling. We did not, however, modify the variances of the branch

length distribution, as those may contain some of the signal picked up by summary statistics.

In total, there are 5 scenarios in which we compare trees: HIV/Dengue/Measles (HDM),

influenza (2-year USA, 5-year global, 12-year global), HIV contexts (labeled WNH after the

first author names of the corresponding publications), simulated trees with 100 tips (’Simu-

lated’) and simulated trees with 300 tips (’Simulated300’). Within each set, we performed clas-

sification with generalized linear models and random forests, using the tree shape statistics as

features. We computed a measure of each feature’s importance for each classification. All

reconstructed trees, including accession numbers (in the tip labels), have been deposited to

http://github.com/Leonardini/treeCentralityData.

2.4 Shape features

We computed a range of topological and spectral summary features of the viral phylogenies (see

Table 1 for the definitions and references for each one). Our focus here is on some of the novel

tree topology summary statistics, but we also include a number of standard statistics for compar-

ison. All input trees were binary and rooted, and all branch lengths were non-negative, although

many of the trees had zero-length branches. All comparisons involved trees on the same
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number of tips. In order to enable comparisons between trees with different numbers of tips,

we also provide, in the S1 File, some partial results on the order of magnitude of the maximum

and minimum possible values of each newly introduced statistic over all trees of a certain size.

For the node properties derived from network science, we focus our discussion on the max-

imum value of each type of centrality a node can have within a tree, but using other derived

statistics (the minimum, mean, median or variance) could also have been an option. However,

one advantage of using the maximum (the minimum tends to be less informative as it is 0 for

many of the measures we consider) instead of the other possible options is that it takes on inte-

ger values for unweighted trees, which is not usually the case of the mean, the variance, or the

median when there is an even number of nodes. For the spectral properties, which also pro-

duce a value for each node, we focus on the maximum value as well as the minimum strictly

positive value. Lastly, for the distance Laplacian spectral properties we use the four derived sta-

tistics proposed by Lewitus and Morlon [26].

Table 1. Summary measures for phylogenetic trees. Here, ni is the number of nodes at depth i.

Name Description Short form Ref.

Numbers of small configurations

Cherry number # of nodes with 2 tip children cherries [52]

Pitchforks # of nodes with 3 tip descendants pitchforks [20]

Double cherries # of nodes with 2 cherry children doubcherries new

4-caterpillar # of caterpillars with 4 tips fourprong [20]

Clades of size x # of nodes with x tip descendants numx [20]

Tree-wide summaries

Colless imbalance Colless imbalance colless [21]

Sackin imbalance Mean path length from tip to root sackin [22]

Maximum height Max # of steps from the root maxheight [53]

Maximum width Max # of nodes at the same depth maxwidth [53]

Stairs Proportion of imbalanced subtrees stairs [54]

Max difference in widths maxi(ni+1 − ni) delW [53]

Node properties from network science

Betweenness centrality # of shortest paths through node between [55]

Weighted betweenness as above, but with weighted edges betweenW [56]

Closeness centrality total distance to all other nodes closeness [55]

Weighted closeness as above, but with weighted edges closenessW [56]

Eigenvector centrality value in Perron-Frobenius vector eigen [55]

Weighted eigenvector as above, but with weighted edges eigenW [56]

Summaries from network science

Diameter largest distance between 2 nodes diameter [35]

Mean pairwise distance average distance between 2 nodes meanpath [57]

Spectral properties

Min adjacency min adjacency matrix eigenvalue >0 minAdj [36]

Max adjacency max adjacency matrix eigenvalue maxAdj [36]

Min Laplacian min Laplacian matrix eigenvalue >0 minLap [36]

Max Laplacian max Laplacian matrix eigenvalue maxLap [36]

Distance Laplacian spectral properties

Max eigenvalue largest eigenvalue in the spectrum dLapLambdaMax [26]

Max density location of largest spectral density dLapDensityMax [26]

Asymmetry skewness of the spectral density dLapAsymmetry [26]

Kurtosis peakedness of the spectral density dLapKurtosis [26]

https://doi.org/10.1371/journal.pone.0259877.t001
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2.4.1 Tree topology summaries based on network science. Network science, broadly

defined as the study of complex networks, has produced a number of tools that have been

applied in a variety of contexts [30, 31], including degree sequence, degree assortativity, den-

sity, diameter, and a number of node centrality measures. Only some of these apply naturally

and informatively to phylogenies. For instance, the degree sequence, the degree centrality, the

density and the clustering coefficients do not vary between phylogenetic trees on n tips, while

their degree assortativity can take on one of two values which are close to one another for large

n (see section section 4 in S1 File for details).

We now discuss those network science-inspired features that are informative for phyloge-

netic trees.

2.4.2 Diameter, average shortest path and Wiener index. The diameter (the maximum

length of a shortest path) is a useful summary statistic. For general trees with N nodes, it can be

calculated in linear time using a “folklore” dynamic programming algorithm, and its value can

vary between 2 for the star and N − 1 for the path of length N. For phylogenetic trees with

N = 2n − 1 nodes, the range is from� 2log2(n) to n. The exact maximum and minimum val-

ues, as well as the trees attaining them, and the distribution for N = 45(n = 23), are described

in S10 Fig in S1 File.

The average shortest path length of a tree may also be informative. Unlike for general

graphs, it can be calculated in linear time in a tree with N nodes using dynamic programming

[57]. The sum of all shortest path lengths between pairs of nodes in a tree is known as the tree’s

Wiener index, and equals (2n − 1)(n − 1) times the average shortest path length. The Wiener

index for general trees with N nodes is always contained between (N − 1)2 and Nþ1

3

� �
, values

which are attained by the star and the path, respectively [58]. For phylogenetic trees, the range

of the Wiener index is substantially narrower; its distribution for N = 45(n = 23) is described

in S11 Fig in S1 File. Note that both the diameter and Wiener index generalize naturally to

trees with arbitrary positive branch lengths.

Based on their distributions for small phylogenetic trees, shown in S12 Fig in S1 File we can

think of trees that have a diameter or a Wiener index much smaller than the mean as being

similar to complete binary trees, and of those that have a diameter or a Wiener index much

larger than the mean as being similar to caterpillars or double caterpillars, respectively. This is

not too different from the corresponding situation for imbalance statistics such as Colless or

Sackin index. However, the situation changes dramatically when we look at node centrality

measures defined in network science. A number of such centrality measures exist that can be

defined for each node of a graph.

In particular, betweenness centrality, closeness centrality and eigenvector centrality are

quantities derived from network science that can be computed in linear time for a tree with N
nodes and can capture aspects of tree topology not captured by mere asymmetry.

2.4.3 Betweenness centrality. Betweenness centrality associates to each node v in a graph

the number of pairs u, w 2 V − {v} such that the shortest u − w path passes through v; in other

words,

CBðvÞ ≔ jfðu;wÞ 2 V � fvg j dðu;wÞ ¼ dðu; vÞ þ dðv;wÞgj:

Betweenness centrality can be normalized by the number N� 1

2

� �
of all pairs u, w 2 V − {v}, but

we choose not to use this normalization here. In a tree T, there is a unique shortest path between

every pair of nodes, and the shortest u − w path passes through v if and only if u and w are in

clades subtended by different children of v when T is rerooted at v. Hence, the betweenness cen-

trality of an internal node v is simplyPi < j ni nj, where n1, . . ., nk are the sizes of the clades sub-

tended by the k children of v when T is rerooted at v, and k is the degree of v in T. This implies
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that the betweenness centrality of all the nodes in a tree can be computed in linear time, a result

that, while not surprising, does not seem to have been mentioned in the literature until now,

although an algorithm to perform this computation in a distributed fashion has been published

[59]. This contrasts with the situation for a general graph, where the best algorithm takes O
(NM) time, where M is the number of edges, making it quadratic time for trees [60].

In a phylogenetic tree, the degree is 1 for a tip, 2 for the root and 3 for internal nodes, so the

betweenness centrality is respectively 0, n1 n2 or n0 n1+ n0 n2+ n1 n2 in those cases, where n1

and n2 are the sizes of the left and right subtrees of the node and n0 is the number of nodes out-

side the subtree rooted at this node. This can easily seen to be maximal when n0 = n1 = n2, a sit-

uation that does not occur in every tree, but is only possible in those with N� n� 1 mod 3.

The betweenness centralities are shown for all the nodes of an example tree in Fig 1(b). Trees

with high maximum betweenness centrality are those which have a node whose left subtree,

right subtree, and “outside subtree” (what remains of the tree after removing the subtree

rooted at the node), are all close in size—a kind of three-way symmetry, as opposed to the two-

way (left-right) symmetry measured by classical statistics. The distribution of this quantity,

maximum betweenness centrality, for N = 45(n = 23), is described in S13 Fig in S1 File. We

also note that the betweenness centrality values of a tree do not change if the tree has variable

branch lengths, since each pair of nodes is connected by a unique shortest path. However, this

observation is not true for more complicated graphs.

2.4.4 Closeness centrality. Closeness centrality associates to each node v in a graph the

inverse of the sum of its distances to all the other nodes in the graph. In other words,

CCðvÞ ≔
1

P
udðu; vÞ

:

The definition means that closeness centrality is inversely proportional to farness, the sum

of distances from a node to all the other nodes in the graph; hence, it will be small for centrally

located nodes and large for remote ones. While this quantity generally requires at least O(NM)

time to be computed for a graph with N nodes and M edges [61], this can be reduced to linear

time for a tree, an observation that does not seem to have been published previously, although

a distributed algorithm for performing this computation has been proposed [62].

Indeed, if we consider an internal node u with a child v, we have d(v, x) = d(u, x) − 1 for

every node x in the clade of T that v subtends, and d(v, y) = d(u, y) + 1 for every node y outside

this clade. Hence, by computing the height (distance to the root) of each node and the sizes of

the left and right subtrees of each node in a bottom-up traversal of the tree, we can also find

the closeness centrality in linear time for all the nodes in the tree. This is illustrated on our

example tree in Fig 1(c). It can also be shown—as we do in Section 7 in S1 File in the S1 File—

that the largest value of closeness centrality in a phylogenetic tree is achieved by its unique cen-

troid (the node v such that, if the tree is rerooted at it, no child of v subtends a clade with more

than half of all the nodes), while the smallest value is achieved by one of the tips (in fact, this

result also holds for trees with arbitrary positive branch lengths). The distribution of this quan-

tity, maximum closeness centrality, for N = 45(n = 23), is described in S14 Fig in S1 File.

2.4.5 Eigenvector centrality. Eigenvector centrality associates to each node v in a con-

nected weighted graph the positive value e(v) such that

X

u�v

wðuvÞeðuÞ ¼ leðvÞ

holds for all nodes simultaneously with the largest possible λ. In other words,~e is the Perron-

Frobenius eigenvector of the graph’s adjacency matrix. Since this vector is only defined up to a
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constant, we use the default normalization, which takes it to be a unit vector in the Euclidean

norm. We show an alternative normalization, which makes the minimum entry 1, in Fig 1(d).

Eigenvector centrality is closely related to the adjacency matrix-based spectral methods we

discuss below. Since the adjacency matrix of a phylogenetic tree with n tips has exactly 4n − 4

non-zero entries, it follows that eigenvector centrality can also be computed to a fixed preci-

sion � in linear time, with a constant proportional to log(1/�). It can also be shown—as we do

in Section 7 in S1 File—that the largest value of eigenvector centrality in a phylogenetic tree is

achieved by an internal node, though it will not necessarily be the root (this result holds for

trees with arbitrary positive branch lengths). The distribution of this quantity, maximum

eigenvector centrality, for unweighted (unit branch length) phylogenetic trees with N = 45

(n = 23), is shown in S15 Fig in S1 File.

2.4.6 Spectral properties of trees. Spectral properties are properties of the eigenvalues of

matrices associated with graphs, such as the adjacency, Laplacian or normalized Laplacian

matrices [36]. Since spectral methods are a key tool of algebraic graph theory, it is natural to

ask whether they can capture important features of pathogen phylogenies. Some of the eigen-

values are interpretable in a limited number of cases [36]. For instance, the eigenvalues of the

Laplacian of a graph reveal the minimal energy of its balanced orthogonal representation in

Rm. The second smallest eigenvalue provides a bound on the conductance of the graph, the

minimum ratio of the number of edges crossing a cut to the size of the cut. The eigenvalues of

the normalized Laplacian also provide information on the conductance of a graph as well as its

diameter, number of bipartite components and properties of random walks defined on it [37].

Since trees are bipartite graphs, the spectra of their adjacency matrices are symmetric around

0 [36] and the spectra of their normalized Laplacians are symmetric around 1 [37]. The full set

of eigenvalues of a tree’s adjacency matrix reveals the number of matchings (node-disjoint col-

lections of edges); namely, the characteristic polynomial, which has these eigenvalues as its

roots, has coefficients whose absolute values equal the number of matchings of each size [34].

2.4.7 Spectral properties derived from the distance Laplacian matrix. In a recent paper,

Lewitus and Morlon [26] used the spectra of the distance Laplacian matrix, obtained by sub-

tracting the distance matrix from a diagonal matrix formed by its row sums, to characterize

and compare trees. They found promising results and tentatively stated that these spectra were

likely to distinguish trees from one another. In Section 8 in S1 File, on the negative side, we

exhibit a pair of trees on n = 3 tips with different branch lengths that nevertheless have identi-

cal distance Laplacian spectra. On the positive side, we verified that no pair of different phylo-

genetic trees with at most 32 tips and unit branch lengths has this property; however, we

suspect that, as has been shown for most other spectra [34], the fraction of trees on n tips

uniquely defined by their distance Laplacian spectra tends to 0 for large n.

We use the four summary statistics proposed by the authors [26]—namely, the maximum

eigenvalue, and the asymmetry, kurtosis, and maximum density of the eigenvalue distribution

(obtained via smoothing with a Gaussian kernel), as implemented in the RPANDA [63] package

in R [49]. We note that, unlike the rest of the statistics in this paper, these ones require a num-

ber of operations proportional to n3, where n is the number of tips, and thus take substantially

longer to compute.

3 Results

3.1 Tree topology differentiates viruses and epidemiological scenarios

We find that tree topology carries considerable information and differs both between viruses

and between different epidemiological scenarios for the same virus, on real as well as simulated

data. While degree sequence, clustering coefficients and other measures based in network
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science are not informative for binary trees, a number of non-standard topological features dif-

fer. Furthermore, there are several features that distinguish well between groups of trees with

the same overall level of asymmetry, highlighting the need to move beyond asymmetry when

using trees to infer evolutionary and epidemiological parameters or to test hypotheses [64].

Figs 2 and 3 illustrate the distributions of all tree statistics considered in this paper. In addition,

we perform a (two-sided) Mann-Whitney U test, also known as a Wilcoxon rank-sum test

[65], between each pair of scenarios or viruses in a given group, for every statistic we consider,

and report the p-values in S2 and S3 in S1 File. We then apply a Bonferroni correction [66] to

account for the multiple hypotheses being tested, and highlight in bold those values which

remain significant at the α = 0.05 level after this correction.

Fig 2. Tree summaries for the HIV/Dengue/Measles, influenza and simulations of size 100.

https://doi.org/10.1371/journal.pone.0259877.g002
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Most of the statistics do not vary much between the three viruses in Fig 2 (red boxplots).

Distinguishing the topologies in these groups of trees requires tools going beyond the tradi-

tional symmetry or imbalance metrics; in this case, the only ones that produce statistically sig-

nificant differences between all three pairs of viruses are the number of cherries, maximum

height, maximum width, and the proportion of imbalanced subtrees (stairs); all of these cap-

ture differences that are not apparent in the imbalance. In contrast, while two of the spectral

statistics (maximum adjacency and maximum Laplacian eigenvalues) show statistically signifi-

cant differences among the groups, the vertical scale is very small, and these differences are a

small percentage of the overall value (2% for the maximum adjacency and 1% for the maxi-

mum Laplacian). Furthermore, one of the network statistics—namely, the weighted closeness

centrality—also distinguishes the three viruses, as do three of the four statistics based on the

distance Laplacian.

Fig 3. Tree summaries for HIV in three settings and simulations of size 300.

https://doi.org/10.1371/journal.pone.0259877.g003
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The green boxplots in Fig 2 show the tree summaries for influenza in three scenarios. It is

well-known that global influenza patterns give rise to highly imbalanced trees, an observation

which in part motivated the growing field of phylodynamics [64]. In our data, the global five-year

and (2-year) USA flu trees have similar, lower, levels of asymmetry. The only statistics which are

able to differentiate all three groups at a statistically significant level after multiple testing correc-

tion are betweenness centrality and the maximum Laplacian eigenvalue. As with the three

viruses, the differences in the latter are not pronounced, and are very small in relative magni-

tude. In addition, although the LM spectral statistics visually appear to differ between the types

of flu, none of these differences is statistically significant. Fig 4 shows a random tree from each

group, and differences between the shapes of the flu trees are not immediately apparent by eye.

The blue boxplots in Fig 2 show the summaries for small trees (100 tips) in the four simu-

lated settings. This time, only the closeness centrality, the diameter, and the mean path, as well

as the number of cherries, the Sackin and Colless imbalances, the maximum height, the stairs

Fig 4. A randomly sampled tree from each scenario (except HIV in the 3-virus comparison because HIV is represented in three other trees). To

allow for focus on tree shape rather than on branch lengths, trees have been visualized with branch lengths set to 1.

https://doi.org/10.1371/journal.pone.0259877.g004
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statistic and the lambdaMax statistic based on the distance Laplacian spectrum, are able to dif-

ferentiate every pair of these scenarios in a statistically significant way.

In contrast, the cyan boxplots in Fig 3 show that large trees in the same simulated settings

can be discriminated by all of these statistics, but also by several other ones, including the adja-

cency and Laplacian eigenvalues as well as the maximum width and the maximum difference

in width (delW). This suggests that it is strictly easier to discriminate larger trees than it is to

discriminate smaller trees.

Lastly, the three epidemiological scenarios (concentrated epidemic, generalized epidemic in

a village, and generalized epidemic in a country) for HIV, shown in the red boxplots in Fig 3,

appear to be quite difficult to distinguish. Only the weighted and unweighted closeness, as well

as the Sackin and Colless imbalance, the maximum eigenvalues of the adjacency and the Lapla-

cian, and the asymmetry and kurtosis of the distance Laplacian spectrum, are able to do so in a

statistically significant manner.

Fig 5 shows the mutual information between the virus or epidemiological scenario and the

value of each statistic, for the 5 settings we tested. We have computed these values by discretiz-

ing the range of each tree shape statistic into 20 equally-sized bins. The first panel shows that

the highest mutual information with the virus (HIV, Dengue or Measles) is obtained by a net-

work science-based statistic in Fig 5, namely, the weighted closeness, with the densityMax

coming close second, while the second panel shows that the highest mutual information with

the type of flu (global, US or 5-year) is obtained by the minimum Laplacian eigenvalue, with

the betweenness (which is the same whether it is weighted or unweighted) and densityMax

coming close behind. In the remaining three scenarios (third, fourth and fifth panels), close-

ness centrality is the only statistic consistently in the top 3 highest mutual information with

the model category or scenario.

3.2 The addition of network statistics improves classification

In some scenarios, the trees are markedly different and only a few features are necessary to dis-

tinguish them. For example, in the influenza scenario it is clear from Fig 3 that the Colless,

Sackin, betweenness and maximum heights statistics all distinguish between global influenza

and the other two groups, whereas the closeness measures, the diameter, the mean path and

the maximum width distinguish the five year trees from the other two groups. Asymmetry

measures alone do not distinguish the three groups.

We use a generalised linear model and two flavours of random forests to classify trees

within each scenario. For example, we classified trees as HIV, Dengue or Measles; we classified

influenza trees as five-year, global, and USA; we classified simulated trees as biased, Yule, R0 =

1.5 or 3; and we classified the HIV trees by epidemiological scenario. In each classification

task, we randomly selected 75% of the trees (75 trees from each group) for training and used

the remaining 25 trees from each group for testing, and computed the classification error of

the predictor on the testing set. We report the overall classification error with and without the

features based on network science, as well as with and without the features based on the dis-

tance Laplacian spectrum (abbreviated as “LM” statistics after the authors Lewitus and Mor-

lon). The results are shown in Fig 6(a). It is clear that the standard (“basic”) tree shape statistics

are not able to get close to perfect classification on any of the datasets except for the (relatively

simple) task of distinguishing three different viruses. The addition of the costly LM statistics

improves the performance, but so does the addition of the easily computable new network sci-

ence-based statistics we introduce in this paper, with comparable gains in performance relative

to the baseline (a larger improvement on the flu scenarios, but a smaller one on the HIV sce-

narios and on simulated data). Interestingly, the addition of network statistics actually
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increases the error relative to the baseline on the large simulated trees, an effect that is likely

due to the random nature of the classifier.

Both random forests and the GLM regression additionally provide estimates of the impor-

tance of each feature. For the random forest classifier, the prediction accuracy on the out-of-

Fig 5. Mutual information between tree summaries and the virus type or epidemiological scenario. Labels are as in

Table 1, and the colour indicates the type of statistic as per Table 1, i.e. red: basic statistics; green: distance Laplacian

spectrum statistics; blue: network science-based statistics; purple: spectral statistics.

https://doi.org/10.1371/journal.pone.0259877.g005
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Fig 6. (a) Accuracy of classification with and without network science features, as well as with and without the

distance Laplacian spectral features. (b) Feature importance in multi-class classification across all scenarios, ordered by

the median. Here the importance for each feature is computed based on the mean decrease in node impurity (we use

the varImp function in R, which uses the Gini index as an impurity measure). Each point is the rank of the

corresponding feature in one of the classification tasks. Low ranks correspond to the most important features (i.e. the

top-ranked feature has rank 1, and so on).

https://doi.org/10.1371/journal.pone.0259877.g006
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bag portion of the data is recorded for each tree, and then the same is done after randomly per-

muting each predictor variable. The differences between the two accuracies are then averaged

over all trees, and normalized by the standard error. For the GLM regression, the absolute

value of the t-statistic for each model parameter is used as the importance measure. We used

the caret package [67] in R [49] to compute these for all the classifiers. For each classification

task in each scenario, we then ranked the features by importance. We show the rank data in

Fig 6(b). It is apparent that weighted closeness centrality is the feature with the highest impor-

tance (lowest rank) across all scenarios, on average, with the much costlier to compute distance

Laplacian-based features coming close behind.

4 Conclusions

We have used network science to develop tailored statistics to capture the topologies of phylo-

genetic trees and illustrated how they compare across different viruses and scenarios. The

viruses vary in pathogenesis and their rates and modes of transmission, characteristics which

ideally should be reflected in the tree shape. We find that network-science-derived statistics

are complementary to asymmetry and frequency of small configurations with a tree. We have

also used a tree kernel to compare trees; while it distinguishes well between three different

viruses, the statistics do a better job of distinguishing the three influenza scenarios. However,

no individual statistic is sufficient to consistently capture the diversity of tree topologies. For

this reason, we emphasize that although the statistics we introduced may lead to biological

insights about tree shapes, our main motivation was not to generate such insights, but rather,

to expand the collection of statistics allowing researchers to quantify tree shapes in an efficient

manner.

It is highly likely that investigators will need to use multiple summary measures to resolve

biologically meaningful differences among phylogenies. This is a problem of feature selection.

Indeed, some of the literature on phylogenetic tree topologies has focused on evaluating which

summary measures are the best suited for detecting informative differences in tree topologies

[5, 6, 10]. This effort makes the implicit assumption that there exists a specific subset of fea-

tures that will always be a good choice for all data sets (or data for a given domain), which is

not necessarily the case. There may exist summary measures that have not been formulated

but would confer an optimal fit to a given dataset. Matsen [29] proposed an innovative

approach to this problem, where a generalized and flexible class of tree topology statistics

(which can express many established measures of tree shape) can be adapted to the data using

a genetic algorithm.

A primary motivation to applying summary statistics to the shapes of phylogenetic trees is

to reconstruct past evolutionary dynamics. For instance, the characteristic asymmetry of phy-

logenies relating infections of influenza A virus is connected to extreme variation in the persis-

tence of viral lineages from one season to the next. This linkage between tree shape and

biological processes is the foundation of phylodynamics as a rapidly emerging area of research

at the interface of statistics and biology [68]. An increasing repertoire of tree shape statistics is

playing a significant role in recent advances in phylodynamics. For example, spectral density

profiles were recently used to assess the variation in viral fitness from time-scaled phylogenies

of SARS-CoV-2 [69]. Tree shape statistics have also been employed to quantify the co-diversifi-

cation of host and pathogen species [70].

The underlying evolutionary or epidemiological process may affect tree topologies, but they

are likely also to be affected by sampling density and uniformity [71], geographical constraints

and population structure, ecological dynamics and host contact structure (in the case of patho-

gens). For example, the greater asymmetry in the global IAV phylogeny relative to the other
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trees (as revealed by imbalance statistics such as Colless’ index) may be caused by narrowing

the temporal (e.g., five-year tree) or spatial (e.g., USA tree) scales of sampling. Our results

point to the important role of tree topologies as a vehicle for obtaining information about

some of these underlying processes. Topological summary features are readily interpretable,

easy to compute and scale readily to large trees, even when they do not necessarily provide

direct insights into the underlying evolutionary or diversification processes. The network-

based and spectral statistics we have described also generalize naturally to phylogenetic

networks.

On the other hand, each feature can capture only a narrowly-defined aspect of tree shape,

such as imbalance. This could potentially be overcome by using multiple features, although

correlations among features may lead to diminishing returns with the addition of new features.

Features can also be difficult to compare among trees of different sizes (numbers of tips), and

despite attempts to derive normalized statistics they remain sensitive to size. However, Pompei

and colleagues [13] have proposed a randomization procedure to derive the null distribution

of summary features as a possible resolution of this problem.
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