
ARTICLE

Predicting materials properties without crystal
structure: deep representation learning from
stoichiometry
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Machine learning has the potential to accelerate materials discovery by accurately predicting

materials properties at a low computational cost. However, the model inputs remain a key

stumbling block. Current methods typically use descriptors constructed from knowledge of

either the full crystal structure — therefore only applicable to materials with already char-

acterised structures — or structure-agnostic fixed-length representations hand-engineered

from the stoichiometry. We develop a machine learning approach that takes only the stoi-

chiometry as input and automatically learns appropriate and systematically improvable

descriptors from data. Our key insight is to treat the stoichiometric formula as a dense

weighted graph between elements. Compared to the state of the art for structure-agnostic

methods, our approach achieves lower errors with less data.
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The discovery of new materials is key to making technolo-
gies cheaper, more functional, and more sustainable.
However, the vastness of material space renders materials

discovery via exhaustive experimentation infeasible. To address
this shortcoming, significant effort has been directed towards
calculating materials properties via high-throughput ab initio
simulations1–4. However, ab initio simulations require atomic
coordinates as input. These are typically only accessible for
materials that have already been synthesised and characterised –
only O(105) crystal structures have been published5, constituting
a very limited region of the potential materials space6. A critical
challenge exists for materials discovery in that expanding these ab
initio efforts to look at novel compounds requires one to first
predict the likely crystal structure for each compound. Ab-initio
crystal structure prediction7–9 is a computationally costly global
optimisation problem which presents a significant challenge for
high-throughput workflows. Whilst alternative strategies such as
prototyping from known crystal structures2,10 have been
employed to manoeuvre around this bottleneck, identifying new
stable compounds in a timely manner remains an important goal
for computational material science.

One avenue that has shown promise for accelerating materials
discovery workflows is materials informatics and machine
learning. Here the aim is to use available experimental and ab
inito data to construct accurate and computationally cheap sta-
tistical models that can be used to predict the properties of pre-
viously unseen materials and direct search efforts11–13. However,
a key stumbling block to widespread application remains in
defining suitable model inputs—so-called “descriptors”. So far
most applications of machine learning within material science
have used descriptors based on knowledge of the crystal struc-
ture14–20. The use of structure-based descriptions means that the
resulting models are therefore limited by the same structure
bottlenecks as ab initio approaches when searching for novel
compounds.

To circumvent the structure bottleneck, one approach is to
develop descriptors from stoichiometry alone. In doing so we give
up the ability to handle polymorphs for the ability to enumerate
over a design space of novel compounds. This exchange
empowers a new stage in materials discovery workflows where
desirable and computationally cheap pre-processing models can
be used, without knowledge of the crystal structure, to triage more
time consuming and expensive calculations or experiments in a
statistically principled manner.

Focusing on materials with a small and fixed number of ele-
ments, pioneering works21–23 constructed descriptors by
exhaustively searching through analytical expressions comprising
combinations of atomic descriptors. However, the computational
complexity of this approach scales exponentially with the number
of constituting elements and is not applicable to materials with
different numbers of elements or dopants. To address this
shortcoming, general-purpose material descriptors, hand-curated
from the weighted statistics of chosen atomic properties for the
elements in a material, have been proposed24–26. However, the
power of these general-purpose descriptors is circumscribed by
the intuitions behind their construction.

In this paper, we develop a novel machine learning framework
that learns the stoichiometry-to-descriptor map directly from
data. Our key insight is to reformulate the stoichiometric formula
of a material as a dense weighted graph between its elements. A
message-passing neural network is then used to directly learn
material descriptors. The advantage of this approach is that the
descriptor becomes systematically improvable as more data
becomes available. Our approach is inspired by breakthrough
methods in chemistry that directly take a molecular graph as

input and learn the optimal molecule-to-descriptor map from
data27,28.

We show that our model achieves lower errors and higher
sample efficiency than commonly used models. Moreover, its
learnt descriptors are transferable, allowing us to use data-
abundant tasks to extract descriptors that can be used in data-
poor tasks. We highlight the important role of uncertainty esti-
mation to applications in material science and show how via the
use of a Deep Ensemble29 our model can produce useful uncer-
tainty estimates.

Results
Representation learning of inorganic materials. To eschew the
hand engineering required by current structure-agnostic
descriptor generation techniques, we represent each material’s
composition as a dense weighted graph. The nodes in this graph
represent the different elements present in the composition and
each node is weighted by the fractional abundance of the corre-
sponding element. This novel representation for the stoichio-
metries of inorganic materials allows us to leverage neural
message passing28. The message passing operations are used to
update the representations of each of the element nodes such that
they are contextually aware of the types and quantities of other
elements present in the material. This process allows the model to
learn material-specific representations for each of its constituent
elements and pick up on physically relevant effects such as co-
doping30 that would otherwise be obscured within the con-
struction of hand-engineered materials descriptors. We refer to
this approach as Roost (Representation Learning from Stoichio-
metry). In the following paragraphs we introduce a specific model
based on this idea.

To begin, each element in the model’s input domain is
represented by a vector. Whilst the only requirement is that each
element has a unique vector, it can improve performance,
particularly when training data is scarce, to embed elements into
a vector space that captures some prior knowledge about
correlations between elements31,32. These initial representations
are then multiplied by a n by d − 1 learnable weight matrix where
n is the size of the initial vector and d is the size of the internal
representations of elements used in the model. The final entry in
the initial internal representation is the fractional weight of the
element. A message-passing operation is then used to update
these internal representations by propagating contextual informa-
tion about the different elements present in the material between
the nodes in the graph, Fig. 1 shows a schematic representation of
this process. The mathematical form of the update process is

htþ1
i ¼ U ðhÞ

t ðhti ; νtiÞ; ð1Þ
where hti is the feature vector for the ith element after t updates,
νti ¼ fhtα; htβ; htγ; :::g is the set of other elements in the material’s

composition, and U ðhÞ
t is the element update function for the

t + 1th update. For this work, we use a weighted soft-attention
mechanism for our element update functions. In general,
attention mechanisms are used to tell models how important
different features are for their given tasks. Soft-attention builds
upon this concept by allowing the function that produces the
attention coefficients to be learnt directly from the data. The soft-
attention mechanism is the crux behind many state-of-the-art
sequence-to-sequence models used in machine translation and
language processing33,34 and it has recently shown good results
on graphs35 and in some material science applications36,37. In this
domain, the attention mechanism allows us to capture important
materials concepts beyond the expressive power of older
approaches e.g. that the properties and thus the representation
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of metallic atoms in a metal oxide should depend much more on
the fact that oxygen is present than other metallic dopants being
present.

The first stage of the attention mechanism is to compute
unnormalised scalar coefficients, eij, across pairs of elements in
the material,

etij ¼ f tðhti jjhtjÞ; ð2Þ

where ft(. . .) is a single-hidden-layer neural network for the
t + 1th update, the j index runs over all the elements in νti , and ∣∣
is the concatenation operation. The coefficients eij are directional
depending on the concatenation order of hi and hj. These
coefficients are then normalised using a weighted softmax
function where the weights, wj, are the fractional weights of the
elements in the composition,

atij ¼
wj expðetijÞP
kwk expðetikÞ

; ð3Þ

where j is a given element from νti and the k index runs over all
the elements in νti . The elemental representations are then
updated in a residual manner38 with learnt pair-dependent
perturbations weighted by these soft-attention coefficients,

htþ1
i ¼ hti þ

X
m;j

at;mij gt;mðhti jjhtjÞ; ð4Þ

where gt(. . .) is a single-hidden-layer neural network for the
t + 1th update and the j index again runs over all the elements in
νti . We make use of multiple attention heads, indexed m, to
stabilise the training and improve performance. The number of
times the element update operation is repeated, T, as well as the
number of attention heads, M, are hyperparameters of the model
that must be set before training.

A fixed-length representation for each material is determined
via another weighted soft-attention-based pooling operation that
considers each element in the material in turn and decides, given
its learnt representation, how much attention to pay to its
presence when constructing the material’s overall representation.
Finally, these material representations are taken as the input to a
feed-forward output neural network that makes target property
predictions. Using neural networks for all the building blocks of
the model ensures the whole model is end-to-end differentiable.
This allows for its parameters to be trained via stochastic
gradient-based optimisation methods. Whilst the rest of this
paper focuses on regression tasks the model can be used for both
regression and classification tasks by adapting the loss function
and the architecture of the final output network as required.

Uncertainty estimation. A major strength of structure-agnostic
models is that they can be used to screen large data sets of
combinatorially generated candidates. However, most machine
learning models are designed for interpolation tasks, thus pre-
dictions for materials that are out of the training distribution are
often unreliable. During a combinatorial screening of novel
compositions, we cannot assume that the distribution of new
materials matches that of our training data. Therefore, in such
applications, it becomes necessary to attempt to quantify the
uncertainty of the predictions.

In statistical modelling there are two sources of uncertainty
that are necessary to consider: First, the aleatoric uncertainty,
which is the variability due to the natural randomness of the
process (i.e. the measurement noise). Second, the epistemic
uncertainty, which is related to the variance between the
predictions of plausible models that could explain the data. This
uncertainty arises due to having an insufficient or sparse
sampling of the underlying process such that many distinct but
equivalently good models exist for explaining the available data.
Here we make use of a Deep Ensemble approach29 that considers
both forms of uncertainty.

Within a Deep Ensemble individual models require a proper
scoring rule39 to be used as the training criterion. To define a
proper scoring rule for regression we consider the aleatoric
uncertainty as part of a heteroskedastic problem formulation
where the measurement noise depends on the position in the
input space. The model is made to predict two outputs
corresponding to the predictive mean, μ̂θðxiÞ, and the aleatoric
variance, σ̂a;θðxiÞ240,41. By assuming a probability distribution for
the measurement noise we can obtain maximum likelihood
estimates for the parameters of individual models by minimising
a loss function proportional to the negative log-likelihood of the
chosen distribution. Here we use a Laplace distribution which
gives the loss function

L ¼
X
i

ffiffiffi
2

p

σ̂a;θðxiÞ
k yi � μ̂θðxiÞk1 þ log ðσ̂a;θðxiÞÞ ð5Þ

Such loss functions are occasionally referred to as robust as they
allow the model to learn to attenuate the importance of
potentially anomalous training points.

To get an estimate for the epistemic uncertainty within the
Deep Ensemble we generate a set of W plausible sets of model
parameters, fθ̂1; :::; θ̂Wg, by training an ensemble of independent
randomly-initialised models using the robust loss function (5).
Due to the non-convex nature of the loss landscape, different
initialisations typically end up in different local basins of
attraction within the parameter space that have approximately
equal losses42. We use these as samples of plausible sets of model
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Fig. 1 Schematic representation of stoichiometry graph and update rule. a An example stoichiometry graph for La2CuO4. b A graphical representation of
the the update function for the La representation. The pair dependent perturbations, shown as the cyan and purple nodes, are weighted according to their
attention coefficients before being used to update the La representation.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19964-7 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:6280 | https://doi.org/10.1038/s41467-020-19964-7 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


parameters to make Monte Carlo estimates for the expectation of
the model, ŷðxiÞ, and the epistemic contribution to its variance,
σ̂2eðxiÞ,

ŷðxiÞ ¼
Z

Pðθ̂jx; yÞμ̂θðxiÞ dθ̂

’ 1
W

XW
w

μ̂θwðxiÞ
ð6Þ

σ̂2eðxiÞ ¼
Z

Pðθ̂jx; yÞðŷðxiÞ � μ̂θðxiÞÞ2 dθ̂

’ 1
W

XW
w

ðŷðxiÞ � μ̂θwðxiÞÞ
2

ð7Þ

where Pðθ̂jx; yÞ is the hypothetical distribution of models that
could explain the data. The effective marginalisation of Pðθ̂jx; yÞ
from using an ensemble of models not only provides a way to
estimate the epistemic uncertainty but also invariably leads to
lower average errors. The total uncertainty of the ensemble
expectation is simply the sum of the epistemic contribution and
the average of the aleatoric contributions from each model in the
ensemble.

σ̂2ðxiÞ ¼ σ̂2eðxiÞ þ
1
W

XW
w

σ̂2a;θwðxiÞ ð8Þ

Baseline model. A common workhorse for the application of
machine learning to both cheminformatics and materials science
is Random Forests plus fixed-length descriptors43,44.

Random Forests are a decision tree-based model that use an
ensemble of multiple weak regressors known as trees45. Each of
the trees is constructed to find a series of decision boundaries that
split the data to minimise the squared deviations between the
samples and the sample mean in each branch or leaf of the tree.
Predictions are made by averaging over the outputs of the
different trees when applied to new data. To overcome issues of
over-fitting common to decision tree methods, Random Forests
use bagging and random subspace projection to reduce the
correlation between the trees improving their generalisation
performance.

For our baseline inputs we use the general-purpose fixed-length
Magpie feature vectors24. The Magpie feature set contains 145
features and is highly engineered to include as much prior
scientific knowledge about the elements, stoichiometry, and
electronic properties as possible.

Data sets. For this work, we consider a selection of experimental
and ab initio data sets. The Open Quantum Materials Database
(OQMD) data set contains the average formation enthalpy per
atom calculated via density functional theory1. For comparison
purposes we take the subset of 256,620 materials from46, this
subset contains only the lowest energy polymorph for each stoi-
chiometry. The Materials Project (MP) data set we look at con-
tains the band gaps for 43,921 non-metals present in the
Materials Project catalogue3. As before we take only the lowest
energy polymorph for each stoichiometry to ensure that the
stoichiometry-to-property map is well defined. Finally, we con-
sider a much smaller experimental data set consisting of 3895
non-metals for which the band gap has been measured experi-
mentally (EX) as used in25.

Evaluation of sample efficiency. Materials discovery workflows
are often data limited. As a result, the sample efficiency of models
is of critical importance. The sample efficiency can be investigated

by looking at how the performance of the model on a fixed test set
changes as the model is exposed to more training data. From
statistical learning theory, one can show that the average error for
a model approximately follows an inverse power law relationship
with the amount of training data in the large data limit16,47. As
such the gradient and intercept on a log-log plot of the training
set size against the model error indicate the sample efficiency of
the model.

Figure 2 shows such learning curves for the OQMD data set
and Table 1 records the benchmark results for when all the
training data is used. In this case, 10% of the available data was
held back from the training process as the test set. As well as our
baseline model we also compare against ElemNet, an alternative
neural network-based model that also takes the atomic fractions
of each element as input46. The comparison shows that the
inductive biases captured by the representation learning approach
lead to a much higher sample efficiency. Indeed the crossover
where Roost begins to outperform the traditional machine
learning baseline occurs for O(102) data points—a size typical
of experimental databases collated for novel material classes48,49

—as opposed to O(103) for ElemNet.

Evaluation of uncertainty estimates. While the utility of
stoichiometry-to-property models is primarily based on the
amortisation of more time-consuming and expensive calculations
or experiments, their approximate nature raises legitimate ques-
tions about when they can be used with confidence. Beyond
simply building more sample-efficient models (e.g., by designing
improved architectures or leveraging techniques such as transfer

0.30

0.20

0.14

0.10

M
A

E
/e

V

0.07

RF + magpie

ElemNet
Roost (single)

Roost (ensemble)

0.05

0.03

1000 10,000
Number of training points

100,000

Fig. 2 Sample efficiency learning curve on OQMD. The figure shows
learning curves for the OQMD data set as the amount of training data is
varied for a fixed out-of-sample test set. Plotted on log-log scales the trends
follow inverse power law as expected from statistical learning theory.
Results for ElemNet taken from46.

Table 1 Performance Benchmarks on OQMD. The table
shows the mean absolute error (MAE), and root mean
squared error (RMSE) for the baseline and proposed models
on 10% of the data that was randomly sampled and withheld
as a test set. The bracketed numbers show the standard
deviation in the last significant figure.

MAE/eV RMSE/eV

RF + Magpie 0.067 0.121
ElemNet46 0.055
Roost (Single) 0.0297(7) 0.0995(16)
Roost (Ensemble) 0.0241 0.0871
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learning), well-behaved uncertainty estimates can allow for such
models to be used with greater confidence (See Supplementary
Note 1 for a discussion on the need for calibrated uncertainty
estimates). Figure 3 highlights this idea on the OQMD data set.
The plot shows how the test set error varies as a function of the
confidence percentile. The error for a confidence percentile of X is
determined by re-calculating the average error of the model after
removing the X% of the test set assigned the highest uncertainty
by the model. Additional illustrative curves are included to show
what would happen if the data was restricted in a random order
and if the data was restricted according to the size of the model’s
error.

The added value of any form of uncertainty estimation is
evident in large differences between the random ranking and the
uncertainty-based curves—points with large uncertainties do on
average have larger errors. On the other side, the error-based
ranking curve provides a useful lower bound for comparison
about how good those uncertainty estimates are. However, it
should be noted that optimal uncertainties would not result in
exact coincidence with this error-based ranking curve. This is due
to instances where the model might make accurate predictions
despite those predictions not being well supported by the training
data, in which case the model should have high uncertainty.
These points would be removed early in any uncertainty-based
curve but late in the error-based ranking curve resulting in the
uncertainty-based curve being higher than the error-based
ranking curve.

To highlight the benefit of using a full framework for estimating
the uncertainty, one that considers both aleatoric and epistemic
uncertainties, we compare against a purely epistemic alternative
based on an ensemble of similar models that only estimate a
predictive mean and are trained using an L1 loss function. We see
that whilst the two ensembles have comparable errors over the
whole data set, the full framework gives more reliable uncertainty
estimates shown by the curve for the full framework (Epistemic &
Aleatoric) decreasing more steeply than the curve for the
epistemic-only alternative. Within the full framework the relative

magnitudes for the epistemic and aleatoric components vary
depending on the data set being investigated and the extent to
which the model is being tested in an interpolative regime (see
Supplementary Figs. 4 and 5). This implies that the different forms
of uncertainty capture different effects in the data and further
supports the use of a full framework.

Transfer learning. For experimental data sets with smaller
numbers of data points traditional machine learning methods
based on decision tree or kernel models have historically tended
to perform comparably if not better than deep neural network-
based models. However, a strength of neural network-based
models over such methods is that they are much more amenable
to transfer learning50. Transfer learning focuses on using
knowledge gained from one problem to achieve faster optimisa-
tion and/or a lower error on another problem.

As a result of substantial efforts, data-sets derived via high-
throughput ab initio workflows can be many times larger than
their experimental cousins, making them ripe for transfer
learning51. To investigate the extent to which transfer learning
helps our model we train three sets of models on the EX data set.
The first set is directly trained on EX, the second is first trained
on OQMD then fine-tuned on EX (OQMD → EX), and the
third is trained on MP before fine-tuning on EX (MP → EX).
Due to the similarity of the MP and EX tasks, to ensure any
changes in performance observed are not artefacts of the
experimental design, we remove all materials from the MP data
set that are also found in the EX data set such that the two are
independent. For all these experiments the same 20% of EX was
withheld as an independent test set.

A benefit of learning material descriptors is that similarity
between the descriptors of different materials learnt for a given
task should be relevant for other tasks, therefore allowing non-
cognate transfer learning. We see this in Fig. 4 where transfer
learning from OQMD leads to faster convergence and slightly
lower errors on the EX data set than direct training despite the
mismatch between the tasks. If the tasks are cognate, as is the case
between MP and EX, the benefits of transfer learning are even
more pronounced. Here, in addition to the benefits of having pre-
trained the message passing sections of the model, the pre-trained
weights of the output network give a strong inductive bias for
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fitting the materials descriptor-to-property mapping resulting in
notably lower predictive errors (Table 2).

Ablation study. The proposed reference model incorporates
many different ideas to build upon previous work in the materials
informatics and machine learning communities. Therefore, we
have conducted an ablation study to show which parts of the
model are most important for its enhanced performance. We
examined the following design choices:

1. The use of an element embedding that captures correlations
between elements versus a OneHot embedding of elements,

2. The use of a robust loss function based on the negative log-
likelihood of a Laplace distribution (5) against the use of a
standard L1 loss function,

3. Whether it is best to include the fractional element weights
as node-level features, within the pooling operation, or in
both places,

4. The use of our weighted soft-attention-based pooling
throughout the architecture versus an alternative mean-
based pooling mechanism,

5. The use of residual architectures for both the message
passing and output neural networks, and

6. The impact on model performance from only using the
message passing section of the model without an output
network.

The combinations of design choices examined are shown in
Table 3. We train 10 randomly-initialised models for each design
choice. We look at both the statistics across these single models to
allow for the significance of different choices to be understood as
well as their ensembled performance. We repeat the ablation
study for both the EX and OQMD data sets to allow us to
understand how different design choices trade-off in the small
and large data limits. The results are shown in Table 4.

The primary conclusion from the ablation study is that whilst
the design choices made in the reference architecture described
do lead to slight improvements in performance, all models from
the ablation study (with exception of Model 3 that does not
include the element weights) still significantly out-perform
alternative models such as ElemNet or the Random Forest plus
Magpie baseline on the OQMD data set. As such, it is apparent
that it is the Roost framework’s approach of reformulating the
problem as one of regression over a multiset and not specific
architectural details that is responsible for the observed
improvements.

Comparing the reference model and Model 1 we see that the
choice of an element embedding that captures chemical
correlation leads to improved model performance on the smaller
EX data set but does not result in significant differences for the
larger OQMD data set. This suggests that the models can learn to
compensate for the lack of domain knowledge if sufficiently large

amounts of data are available. This result supports our claim that
end-to-end featurization continuously improves as the model is
exposed to more data.

The robust loss function (5) performs comparably on the EX
data set to a more conventional L1 loss function (Model 2). Given
that they offer similar average errors the use of a robust loss
function is highly compelling even for single models as it also
provides an estimate of the aleatoric uncertainty with minimal
computational overhead. Looking at the OQMD data set the
distinction between the two different loss functions is more
apparent. The attenuation effect of the robust loss, that it can
suppress the need to fit outliers, is observed in how the reference
model achieves a lower MAE but a higher RMSE than Model 2.
When proceeding to ensemble the single models, the validity of
such a mechanism becomes apparent as both the MAE and RMSE
are lower for the reference model in the ensembled case. This can
be attributed to the cancellation of errors amongst predictions on
the outlying (high squared-error) data points when ensembling.

Models 3, 4 and 5 from the ablation study look at how
including the fractional element weights in different ways
influences the model performance. As expected we see that
omitting the element weights entirely in Model 3 leads to an order
of magnitude decrease in performance on the OQMD data set.
However, whilst there is still a significant decrease in performance
for the EX data set the error is still relatively comparable to that
achieved by the standard model. This is due to a lack of diversity
within different chemical sub-spaces in the EX data set. As a
consequence, the EX data set is perhaps a less discriminative
benchmark than OQMD despite the challenges associated with
data scarcity. Including the weights on both the nodes and via the
pooling operation gave the best results being marginally better
than solely including the element weights on the nodes. Only
including the weights via the pooling operation gave slightly
worse results. This can be explained from the relative lack of
information as the weighted soft-attention-based pooling (3) only
includes the weights of the second element in the pairing as
opposed to both elements if the weights are included as node
features.

Whilst we primarily make use of a soft-attention-based pooling
mechanism alternative pooling mechanisms are feasible. In
Model 6 we replace the pooling operations with a mean-
pooling mechanism of the form

htþ1
i ¼ hti þ

1
J

XJ

j¼1

gtðhti jjhtjÞ; ð9Þ

where hti is the internal representation of the ith element after t
updates, gt(. . .) is a single-hidden-layer neural network for the
t + 1th update, ∣∣ is the concatenation operation and the j index
runs from 1 to J over the set νti which contains the other elements
in the material’s composition. This model achieves a lower RMSE
but has a higher MAE when considering individual models.
However, when the models are ensembled the soft-attention-
based pooling mechanism achieves both lower MAE and RMSE.
This suggests that there is scope to tailor the reference model
presented here for different applications by conducting neural
architecture searches. However, this is an extremely computa-
tionally expensive process beyond the scope of this work52.

Comparing Models 7, 8, and 9 we see that using residual
architectures in both the message passing stages and the output
network lead to improved performance. Interestingly we see that
replacing the output network with a single linear transformation
(Model 10) does not significantly impact the performance of
single models on the OQMD data set but does result in worse
performance from the ensembled models. A potential explanation
for this comes from considering the effective prior of the model

Table 2 Transfer Learning Benchmarking on EX. The table
shows the ensemble mean absolute error (MAE), and root
mean squared error (RMSE) for the three transfer learning
scenarios and baselines on 20% of the data that was
randomly sampled and withheld as a test set.

MAE/eV RMSE/eV

Baseline EX 0.277 0.460
SVM EX25 0.45
Roost EX 0.243 0.422
Roost OQMD → EX 0.240 0.404
Roost MP → EX 0.219 0.364
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without an output network. The addition of the output network
changes the form of the prior hypothesis space of the model and
as a result the distribution of distinct local basins of attraction53.
The reduced benefits of model averaging within the ensemble for
models without output networks could potentially be due to
changes in the loss landscape meaning that such models are more
likely to end up in correlated basins of attraction.

Discussion
We propose a novel and physically motivated machine learning
framework for tackling the problem of predicting materials
properties without crystal structures. Our key methodological
insight is to represent the compositions of materials as dense
weighted graphs. We show that this formulation significantly
improves the sample efficiency of the model compared to other
structure-agnostic approaches.

Through modelling both the uncertainty in the physical pro-
cess and in our modelling processes, the model produces useful
estimates of its own uncertainty. We demonstrate this by showing
that as we restrict, according to our uncertainty estimates, the
confidence percentile under consideration, we observe steady
decreases in the average error on the test set. Such behaviour is
important if we wish to use our model to drive an activate
learning cycle.

We show that the representations learnt by the model are
transferable allowing us to leverage data-abundant databases,
such as those obtained by high-throughput ab initio workflows, to
improve model performance when investigating smaller experi-
mental data sets. The ability of the model to transfer its learnt
descriptors suggests that self-supervised learning may be a viable
avenue to bolster model performance54,55.

We have conducted an extensive ablation study to examine the
model. We show that it is the reformulation of the problem such
that both the descriptor and the fit are learnt simultaneously that
results in the improved performance, not the specific details of
the message passing architecture used.

More broadly, the Roost framework’s ability to handle multi-
sets of various sizes makes it applicable to other important pro-
blems in material science such as the prediction of the major
products of inorganic reactions56. We believe that recasting more
problems in material science into this language of set regression,
using the same message passing framework as our Roost
approach or other frameworks57,58, provides an exciting new area
for the development of novel machine learning methods.

Methods
In this work, we adopt the same architecture and hyperparameters for all the
problems investigated. These choices were made based on heuristic ideas from
other graph convolution-based architectures.

We use the Matscholar embedding from32 for which n = 200. We chose an
internal representation size of d = 64 based on the CGCNN model18.

We opted to use 3 message passing layers based on the default configuration of
theMEGNetmodel19. For the choice of neural networks to use within our weighted
soft-attention-based pooling function we drew inspiration from the GAT archi-
tectures presented in35 which led to us choosing single-hidden-layer neural net-
works with 256 hidden units and LeakyReLU activation functions for ft(. . .) and gt

(. . .). For the reference model, we used 3 attention heads in each of message
passing layers.

The output network used for the reference model is a deep neural network with
5 hidden layers and ReLU activation functions. The number of hidden units in
each layer is 1024, 512, 256, 126, and 64 respectively. Skip connections were added
to the output network to help tackle the vanishing gradient problem38.

The sizes of various networks were selected to ensure that our model was
appropriately over-parameterised for the OQMD data set. For modern neural
network architectures over-parameterisation leads to improved model
performance59,60. Our reference model has 2.4 million parameters – approximately
10x the size of the OQMD training set used.

For numerical reasons when estimating the aleatoric uncertainty the model is
made to predict log ðσ̂aðxiÞÞ which is then exponentiated to get σ̂aðxiÞ. In this workT
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we use ensembles ofW = 10 to estimate the epistemic contribution within the Deep
Ensemble.

All transfer learning experiments were conducted as warm-restarts with all of the
model parameters being re-optimised given the new data. This was observed to give
better performance than freezing the message passing layers and only re-optimising
the weights of the output neural network.

The mean-based pooling function in the ablation study used single-hidden-layer
neural networks with 256 hidden units and LeakyReLU activation functions for gt

(. . .).
All the neural network-based models examined in both the main results and the

ablation study were trained using the Adam optimiser and fixed learning rate of
3 × 10−4. A mini-batch size of 128 and weight decay parameter of 10−6 were used
for all the experiments. The models were trained for 250 epochs (cycles through the
training set).

For our baseline models we use the Random Forest implementation from scikit-
learn and use Matminer61 to generate the Magpie features. The max features
and number of estimators for the Random Forest are set to 0.25 and 200
respectively.

Data availability
The OQMD data set used for this work was collated from the openly available Open
Quantum Materials Database at http://oqmd.org1,2. We use the subset of OQMD studied
in ref. 46. The MP data set used for this work was collated using the Materials API62 from
the openly available Materials Project database at https://materialsproject.org3. The EX
data set used is available alongside31. Exact copies of the data sets studied and the results
needed to generate the figures presented in the manuscript are released alongside the
source code at https://doi.org/10.5281/zenodo.4133793.

Code availability
An open-source static implementation of the model, including a list of experiments
required to replicate the main results of this work, is available from https://doi.org/
10.5281/zenodo.4133793.
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