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The secrets of success
Imaging sperm as they travel through the female reproductive tract has

revealed new details about fertilization at the molecular level.

KAYLA M KOMONDOR AND ANNE E CARLSON

I
n mammals, sperm cannot fertilize eggs

unless they spend time in the female repro-

ductive tract, where they undergo a series

of processes that are collectively called ‘capaci-

tation’. During these processes, sperm change

their swimming pattern, their cytosol becomes

more basic, and the lipids that make up their

plasma membrane change substantially

(Florman and Fissore, 2015). The final stage of

capacitation is the acrosome reaction, which

involves the release of enzymes from a compart-

ment in the head of the sperm called the acro-

some. It is thought that these enzymes break

down the ‘coating’ surrounding the egg so that

fertilization can take place (Florman and Storey,

1982). It is also known that sperm from mice

that do not produce a sperm-specific ion chan-

nel called CatSper do not undergo capacitation,

so they are infertile (Lishko and Mannowetz,

2018; Ren et al., 2001).

CatSper ion channels allow Ca2+ to cross the

cell membrane. The channels line up in a stripe

pattern that begins in the midpiece of the sperm

and extends down sperm tail (Figure 1;

Chung et al., 2017). The opening and closing of

CatSper channels is controlled by diverse cellular

signals including membrane voltage, pH and the

level of free Ca2+ inside the cell (Lishko and

Mannowetz, 2018). The channel is comprised of

at least ten subunits, including four proteins that

form the central pore through which Ca2+ trav-

els. Nearly all of these subunits are required for

the channel to localize in the membrane and for

male fertility (Hwang et al., 2019). For the most

part, capacitation and CatSper channels have

been studied by performing in vitro experiments

in which mouse sperm are exposed to conditions

that simulate the female reproductive tract.

Now, in eLife, Jean-Ju Chung and colleagues at

Yale University, the Czech Academy of Sciences

and Boston Children’s Hospital – including Lukas

Ded as first author – report on the differences

between in vitro and in vivo capacitation

(Ded et al., 2020).

To better understand how CatSper is regu-

lated, Ded et al. checked whether proteins form-

ing the channel were modified with either

phosphoryl groups (phosphorylation) or carbo-

hydrates (glycosylation). They found that the

molecular weight of one of the CatSper pore-

forming subunits, called CatSper1, increased as

sperm matured in the epididymis (the highly

convoluted tubes on top of the testes that lead

to the duct through which sperm is expelled).

When the protein was treated with deglycosylat-

ing enzymes, which remove carbohydrate modi-

fications, the increase in molecular weight was

reversed. This revealed that CatSper undergoes

glycosylation (Figure 1A), which is thought to

promote the migration and survival of sperm in

the female reproductive tract (Ma et al., 2016).

Next, Ded et al. imaged mouse sperm that

had been treated in vitro to induce capacitation

and found that these sperm exhibited degrada-

tion of CatSper channels over time. This was

unexpected because CatSper channels are

required at the end of capacitation, close to
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fertilization. In sperm where CatSper was

degraded, enzymes inside the sperm called ser-

ine/threonine proteases were cleaving the intra-

cellular N-terminal domain of the CatSper1

subunit. This cleavage required high levels of

Ca2+ inside the sperm cell which, in vivo, occur

during capacitation.

Interestingly, this CatSper degradation was

associated with the phosphorylation of tyrosine

residues in proteins in the sperm tail: over 30

years ago it was proposed that tyrosine phos-

phorylation was an indicator of successful in

vitro capacitation (reviewed in Florman and Fis-

sore, 2015). By imaging sperm in vivo within the

female reproductive tract, Ded et al. showed

that the tails of sperm that had successfully trav-

eled to the ampulla, the site of fertilization, were

not tyrosine phosphorylated (Figure 1B). By con-

trast, sperm stuck in the uterus and unable to

make the journey to the egg exhibited high lev-

els of tyrosine phosphorylation. This supports

recent evidence that tyrosine phosphorylation

may not be required for capacitation

(Alvau et al., 2016; Luño et al., 2013). Together

these findings suggest that the tyrosine phos-

phorylation cascade that leads to CatSper deg-

radation is a signature of sperm unable to

fertilize.

Additional experiments imaging sperm within

the female reproductive tract revealed other sur-

prising findings. For example, sperm at the

ampulla had already lost their acrosome, sug-

gesting that sperm undergo the acrosome reac-

tion prior to meeting the egg. By adapting the

method they used to detect sperm (which

involved making changes to a neural network

that processed output from their imaging

experiments) Ded et al. were able to assess the

integrity of sperm as they navigated through the

female reproductive tract. Sperm that success-

fully completed the journey to the egg in the

ampulla had intact lines of CatSper extending

over the length of their tail, whereas sperm
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Figure 1. Changes in sperm during maturation and capacitation. (A) CatSper channels in the tail of sperm are

glycosylated during maturation in the male epididymis. (B) Differences between sperm visualized in the female

reproductive tract 8 hours post coitus. Sperm visualized near the uterotubal junction (the place where the uterus

and the oviduct tubes meet, left) exhibited an intact acrosome, high levels of tyrosine phosphorylation (pY) in tail

proteins, and degraded CatSper channels. Sperm in the isthmus (the part of the tube through which eggs pass

from an ovary closest to the uterus, center) have already started their acrosome reaction, have intermediate levels

of tyrosine phosphorylation in proteins in their tails, and intermediate levels of CatSper degradation. Finally, sperm

in the ampulla (the part of the tube through which eggs pass closest to the ovary, where fertilization usually takes

place) have reacted acrosomes, intact CatSper channels, and low levels of tyrosine phosphorylation in their tail

proteins.
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undergoing CatSper degradation did not reach

the site of fertilization.

Together these data show that CatSper deg-

radation, the timing of the acrosome reaction,

and tyrosine phosphorylation of proteins in the

sperm tail differ substantially between in vitro

and in vivo capacitation. This demonstrates that

the conditions in the female reproductive tract

are not well mimicked by current methods used

to induce capacitation in vitro. Finding condi-

tions that better mimic the natural environment

of the sperm as it travels to the egg can improve

in vitro capacitation. This can be used in the

clinic to achieve greater success for people try-

ing to get pregnant using assisted reproductive

technologies.
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