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Abstract

Humanscarryamuch largerpercentageofbody fat thanotherprimates.Despite thecentral roleofadipose tissue inmetabolism, little

is known about the evolution of white adipose tissue in primates. Phenotypic divergence is often caused by genetic divergence in cis-

regulatory regions. We examined the cis-regulatory landscape of fat during human origins by performing comparative analyses of

chromatin accessibility in human and chimpanzee adipose tissue using rhesus macaque as an outgroup. We find that many regions

that have decreased accessibility in humans are enriched for promoter and enhancer sequences, are depleted for signatures of

negative selection, are located near genes involved with lipid metabolism, and contain a short sequence motif involved in the

beigeing of fat, the process in which lipid-storing white adipocytes are transdifferentiated into thermogenic beige adipocytes. The

collective closingofmanyputative regulatory regionsassociatedwithbeigeingof fat suggests amechanismthat increasesbody fat in

humans.
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Introduction

Humans have a remarkable amount of body fat. While other

primates have<9% subcutaneous fat in the wild, the derived

state in healthy humans is to maintain 14–31% body fat

(Zihlman and Bolter 2015; Pontzer et al. 2016). Although little

is known about white adipose tissue (WAT) evolution in pri-

mates, a growing body of evidence suggests that humans

have uniquely adapted WAT to support the high energy needs

of our brains (Haygood et al. 2007; Babbitt et al. 2011;

Pfefferle et al. 2011; Bozek et al. 2014, 2015; Bauernfeind

et al. 2015; Blekhman et al. 2015; Pontzer et al. 2016). To

better understand the evolution of increased body fat in

humans, a direct comparison between human and nonhu-

man primate adipose tissue is needed.

Here, we present a comparative analysis of the chromatin

landscape in human and chimpanzee WAT. We mapped

open chromatin regions (OCRs), which are highly enriched

for enhancers, promoters, and other transcriptional regulatory

elements. We used rhesus macaque WAT to polarize specific

open chromatin changes to either the human or chimpanzee

branch. We detected 2,992 regions that are differentially ac-

cessible between human and chimpanzee. Notably, we find

that OCRs that are less accessible in humans relative to chim-

panzee and rhesus macaque are enriched for cis-regulatory

elements, depleted for signatures of adaptive constraint, and

are specifically near genes involved with lipid metabolism.

These regions are also enriched for a sequence motif that

binds a transcription factor involved in the browning and

beigeing of fat, the differentiation of mesenchymal stem cells

into brown adipocytes and the transdifferentiation of lipid-

storing white adipocytes into thermogenic beige adipocytes,

respectively. The data suggest that shutting down beigeing
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pathways through chromatin regulation drove increased WAT

accumulation in humans.

Results

Open Chromatin Region Profiles Are Unique to Species

We generated Assay for Transposase-Accessible Chromatin

sequencing (ATAC-seq) data on white adipose samples

from humans, chimpanzees (Pan troglodytes), and rhesus ma-

caque (Macaca mulatta) (supplementary table 1,

Supplementary Material online) (Buenrostro et al. 2015). We

mapped reads from each technical replicate to the sample’s

native reference genome assembly. For nonhuman primates,

we only retained reads that could be reciprocally converted

between the human genome hg19 and the native genome

using the genome conversion tool liftOver (Kent et al. 2002).

To prevent mapping biases, we performed a reciprocal

liftOver from hg19 to panTro4 (chimpanzee) and back to

hg19 for human samples. We called OCRs for each biological

replicate using MACS2 (Zhang et al. 2008) and generated a

union set of OCRs from all three species. OCRs that contained

zero reads for any sample, which is an indication of mapping

problems, were removed from the analysis. Our final OCR set

contained 160,625 OCRs (supplementary table 2,

Supplementary Material online). We used adipose

ChromHMM predictions to characterize the function of

OCRs (supplementary fig. 1 and table 3, Supplementary

Material online) (Ernst and Kellis 2012). Eighty-seven percent

of OCRs are located>5 kb from the closest transcription start

site, which indicates that our ATAC-seq protocol can identify

distal regulatory regions in WAT (supplementary fig. 1A and

B, Supplementary Material online).

To understand general patterns of OCRs, we performed

principal component analysis (PCA) on normalized count data

(fig. 1B). The first eigenvector explains 67% of the variance

and separates rhesus macaque samples from chimpanzee and

human samples. The second eigenvector explains 23% of the

variance and separates human and chimpanzee samples.

Technical replicates correlate highly (Pearson > 0.85) and

are more similar to one another than biological replicates

within a species (supplementary fig. 1C and E,

Supplementary Material online). Like most genetically driven

phenotypes, OCR profiles reflect the known primate phylog-

eny, which indicates ATAC-seq data can be used to analyze

adipose evolution in primates.

We next used DESeq2 to identify OCR regions that are

quantitatively differentially accessible between species. We

quantified OCR accessibility rather than simply annotating

the presence or absence of an OCR in a species. Since ac-

cessibility is a continuous trait, setting an appropriate thresh-

old for presence or absence of a OCR can be difficult. Rather

than set an arbitrary threshold, our approach exploits the

dynamic range of the continuous data to increase the num-

ber of species-specific OCRs observed and increase the

power for downstream analyses (supplementary fig. 1D,

Supplementary Material online).

Using rhesus macaque as an outgroup to assign OCR state

changes to either the human or chimpanzee branch (Love

et al. 2014), we defined four groups of species-specific state

changes (fig. 1 and table 1). Human-increased states

(n¼ 732) are OCRs that display similar accessibility between

the chimpanzee and the inferred ancestral state (i.e., rhesus

macaque) but show increased accessibility specifically on the

human branch. Human-decreased states (n¼ 782) consist of

OCRs that display similar accessibility between chimpanzee

and rhesus macaque but decreased accessibility specifically

on the human branch. Chimpanzee-increased (n¼ 1,012)

or decreased (n¼ 466) state changes are analogous to those

in humans. Species-specific OCRs are increased or decreased

by at least 2-fold in comparison to OCRs that are not classified

as different between the three species. The number of

species-specific OCRs are comparable to species-specific ac-

cessibility and cis-regulatory regions found in other human

comparative studies (Shibata et al. 2012; Villar et al. 2015).

Our analysis resulted in 98% of OCRs as being classified as

similar between humans, chimpanzees, and rhesus macaque

(i.e., 98% of OCRs are equally accessible in the three primate

species). The complete group of “Common” OCRs displayed

a wide range of accessibility intensities that included but are

broader than the intensities of species-specific OCRs. To en-

sure our downstream analyses used a control group that mir-

rored the intensity of the species-specific OCRs, we created a

subset of matched Common OCRs that had ATAC-seq read

counts between the 20th and 80th percentiles of the species-

specific ATAC-seq read counts (supplementary fig. 1F,

Supplementary Material online) (Shibata et al. 2012).

We compared the results of our analysis using continuous

OCR data to analysis using a binary model to call presence or

absence of OCRs with MACS2. The majority of Human-

increased OCRs are not identified in other species’ genomes

and are considered complete gains (89.5%). Over half of the

Human-decreased OCRs are not identified as human OCRs

(55.1%) and are considered complete losses. The rest of

OCRs with decreased accessibility in humans are identified

as human OCRs and are considered partial losses. Similarly,

the majority of OCRs with increased accessibility in chimpan-

zees are not identified in other species and are complete gains

(77.2%). The majority of OCRs with decreased accessibility in

chimpanzees are not identified as chimpanzee OCRs (95.5%).

To ascertain any differences between partial and complete

losses in humans, we analyzed the height features of humans

and chimpanzees for these groups. The distributions of com-

plete and partial log2-fold changes overlap. The average log2-

fold change between humans and chimpanzees in complete

losses is greater in magnitude than in partial losses (supple-

mentary fig. 2A, Supplementary Material online). While the

log2-fold change is greater in magnitude in complete losses,

the absolute change in peak height between chimpanzees
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and humans is greater in partial losses (supplementary fig. 2B

and C, Supplementary Material online). This may be because

the average height of partial losses is higher than those of

complete losses regardless of species. As it is difficult to de-

termine whether log2-fold change or absolute change is more

biologically relevant, we use both complete and partial losses

in the Human-decreased analyses.

Species-Specific OCR States Correlate with Cis-Regulatory
Divergence

To understand the relationship between OCR state and cis-

regulation, we assigned putative function to each OCR using

publicly available human adipose ChromHMM predictions

(supplementary table 3, Supplementary Material online)

(Ernst and Kellis 2012). Approximately 14% of Common

OCRs are predicted to be promoters (fig. 2A). OCRs classified

as Human-decreased or Chimpanzee-decreased are highly

enriched for promoter regions (28.3% and 22.1%, respec-

tively, Fisher’s exact test, P< 0.001). In contrast, OCRs classi-

fied as a Human-increased or Chimpanzee-increased are

significantly depleted for promoters (5.2% and 7.5%, respec-

tively, Fisher’s exact test, P< 0.001).

We next compared enhancer ChIP-seq predictions among

OCR groups (fig. 2B). About 17% of Common OCRs are

FIG. 1.—Detection of species-specific OCR state changes. (A) Principal component analysis of OCRs in human, chimpanzee, and rhesus macaque

adipose. Note that intraspecific variation is much smaller than interspecific variation. A common OCR state is depicted in (B), where the x-axis represents

chromosome coordinates and the y-axis represents OCR intensity from MACS2. Human-specific OCR state changes (red dash) to increased accessibility

(C) and to decreased accessibility (D) from ancestral state (i.e., rhesus macaque accessibility). Chimpanzee-specific OCR state changes (red dash) to increased

accessibility (E) and to decreased accessibility (F) from ancestral state. Genomic coordinates of the OCR of interest are listed.
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predicted to be enhancers. Similar to promoters, Human-

decreased and Chimpanzee-decreased OCRs are highly enriched

for enhancers (28.3% and 28.5%, respectively, Fisher’s exact

test, FDR< 0.001). In addition, similar to promoters, Human-

increased and Chimpanzee-increased OCRs are not as highly

enriched for enhancers. However, Chimpanzee-increased

OCRs displayed a higher overlap with enhancers (22.5%,

Fisher’s exact test, P¼ 0.008) compared with Human-

increased OCRs (11.5%, Fisher’s exact test, P< 0.001).

FIG. 2.—Species-specific OCR groups are enriched for cis-regulatory functions. Species-specific OCR groups enrichment (Fisher’s exact, **P<0.01,

***P<0.001) for promoters (A) enhancers (B), and adipose eQTLs (C). GREAT enrichment bubble plot (D) with labeled GO terms for bubbles containing at

least 25 genes.

Table 1

OCR Groups

OCRs N

Total 160,625

Common matched 3,194

Human-increased 732

Human-decreased 782

Chimpanzee-increased 1,012

Chimpanzee-decreased 466
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These observations of promoter and enhancer enrichment

and depletion reflect expected differences in the pleiotropic

effects of OCR state changes in cis-regulatory elements.

Promoters are necessary and sufficient for basal gene expres-

sion, and while enhancers can be necessary for higher expres-

sion of some genes, they are not required for low levels of

expression. Furthermore, promoters tend to be pleiotropic

and function in many cell types, while enhancers are mostly

cell type-specific (Consortium et al. 2017). Finally, sequence

and function are more conserved in promoters than in

enhancers (Villar et al. 2015). The hierarchical importance,

pleiotropy, and conservation of promoters compared with

enhancers implies that gaining accessibility in promoters is

less likely than in enhancers. We observed the number of

cell types and tissues in which an OCR is open and found

that species-decrease OCRs are open in more cell types and

tissues and therefore more pleiotropic than Common OCRs

(supplementary fig. 3, Supplementary Material online, Fisher’s

exact test, P�0.001). As expected, Human-decreased and

Chimpanzee-decreased state changes are more likely to be

annotated as promoters than species-increased groups, as

well as being significantly more pleiotropic.

The enrichment of species-specific OCR states for cis-reg-

ulatory regions suggests that species-specific OCR state may

be associated with functional expression changes. An associ-

ation with species-specific OCRs and expression changes

would support that the state changes are biologically relevant.

To measure association with expression changes, we com-

pared our species-specific OCRs to known human adipose

expression quantitative trait loci (eQTL) (Brown et al. 2017).

To determine whether expression changes were enriched

in species-specific OCRs, we mapped eQTLs to OCRs (fig. 2C

and supplementary table 5, Supplementary Material online)

(Brown et al. 2017). Interestingly, Human-decreased and

Chimpanzee-increased and decrease OCRs are enriched for

adipose eQTLs in comparison to Common OCRs (fig. 2A,

Fisher’s exact test, FDR ¼ change). Human-increased OCRs

are not enriched for adipose eQTLs. eQTLs have thus far only

been identified in humans, and so we cannot determine

whether the same eQTL exists in the chimpanzee population.

We asked whether the increase in Human-decreased OCRs

could be due to changes in minor allele frequency or differ-

ences in the ancestral allele being present in the human pop-

ulation (supplementary fig. 4A and B, Supplementary Material

online). The minor allele frequency is the same across

Common and species-specific OCR groups and the ancestral

allele is present in the majority of OCRs, indicating recent

population dynamics are not influencing groups differently.

Therefore, observed species-specific OCR groups are a reflec-

tion of divergence between humans and chimpanzees. We

also note that eQTL cover a broader range than an OCR, and

the “openness” of OCRs is on a continuum. Therefore, an

OCR can be labeled as “decreased” while still containing

functional eQTLs.

Since species-specific OCRs are enriched for eQTLs, we

posited that they could also be enriched for differential

gene expression between human and chimpanzee. To test

this, we assigned each OCR to the closest transcription start

site and compared with published RNA-seq data of WAT from

human and chimpanzee (supplementary fig. 4C and table 4,

Supplementary Material online) (Babbitt et al. 2017). About

5% of Common OCRs are near genes associated with differ-

ential gene expression between humans and chimpanzees.

Although species-specific OCRs are associated with higher

levels of differential gene expression, this increase is not sta-

tistically significant.

We next asked whether species-specific OCR states were

associated with biological functions. We used GREAT to per-

form gene ontology enrichment analyses for each OCR cate-

gory, using the full set of OCRs as a background set

(supplementary tables 5–8, Supplementary Material online)

(McLean et al. 2010). Similar to the eQTL analyses, Human-

decreased and Chimpanzee-increased OCRs are enriched for

adipose-relevant gene ontology functions. In particular, they

reflect the different diets of the two species: Human-

decreased OCRs are located near genes associated with lipid

metabolism, while Chimpanzee-increased OCRs are located

near genes associated with simple sugar metabolism (fig. 2D

and supplementary tables 6 and 7, Supplementary Material

online). We asked whether completely or partially closed

OCRs were driving the signal in Human-decreased OCRs.

When we split the data into two groups, there is not enough

power to observe enrichment in any biological process.

However, this does suggest that completely and partially

closed OCRs share similar biological processes.

To further explore potential biological functions of species-

specific OCR states, we identified regions under positive

selection. We utilized two branch-specific tests of positive se-

lection, phyloP and a framework we developed (see Materials

and Methods and supplementary tables 9–12 and fig. 5A and

B, Supplementary Material online) (Pond et al. 2005; Haygood

et al. 2007). Both methods compute P values of acceleration

for a given OCR alignment (21–22). We see a high correlation

between the P values from phyloP and our method (R¼ 0.78

for humans and R¼ 0.80 for chimpanzees). Additionally,

there is a large overlap of regions under positive selection

between the two methods (supplementary fig. 5C and D,

Supplementary Material online). We compared human-

branch specific positive selection in human-specific OCRs to

that in Common OCRs and chimpanzee-branch specific pos-

itive selection for chimpanzee-specific OCRs to that in

Common OCRs. Species-specific OCRs are not enriched for

more positive selection in comparison to Common OCRs

(2–4% of OCRs using phyloP, fig. 3A and B—top panels;

3–4% of OCRs using our tool, supplementary fig. 5E and

F, Supplementary Material online).

Many species-specific OCRs under positive selection, re-

gardless of species or state-change, are closest to genes
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involved with biologically plausible functions for adipose tis-

sue, including browning of fat, cell differentiation, leptin reg-

ulation, and obesity and related diseases (supplementary

tables 9–12, Supplementary Material online). Although each

OCR group has equal amounts of human and chimpanzee

branch-specific positive selection, there is little overlap in the

genes that are evolving under positive selection on the human

and chimpanzee branches. This indicates that humans and

chimpanzees are possibly undergoing positive selection for

different phenotypes.

We next tested whether species-specific OCRs are under

negative selection using the phyloP to compute P values for

conservation for OCR alignments (fig. 3, bottom panels, see

Materials and Methods, and supplementary tables 13 and 14,

Supplementary Material online). We compared human-

branch specific negative selection in human-specific OCRs

to that in Common OCRs and chimpanzee-branch specific

negative selection for chimpanzee-specific OCRs to that in

Common OCRs (fig. 3A and B, bottom panels). While

Common OCRs and species-specific increased OCRs have a

similar percentage of regions under constraint, species-

specific decreased OCRs are significantly depleted for regions

under constraint.

Transcription Factor Binding Motifs Characterize
Species-Specific OCR States as Being Related to Brown
Adipogenesis

Finally, we characterized categories of species-specific OCRs

for enrichment of DNA sequence motifs. To control for local

sequence features and shared genes, we created a nearest

null set of common OCRs for each species-specific OCR state

FIG. 3.—Branch-specific positive selection as detected by phyloP. Percentage of OCRs under (A) human and (B) chimpanzee branch-specific positive

selection (top panels). Percentage of OCRs under (A) human and (B) chimpanzee branch-specific negative selection (bottom panels, Fisher’s exact test,

***P<0.001).
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(i.e., for each species-specific OCR, the closest common OCR

was used for a null comparison, supplementary fig. 6,

Supplementary Material online). To ensure the matched null

set was representative of the rest of the genome, we used a

machine learning algorithm in the R package gkm-SVM to

test whether k-mers could predict the closest common

OCRs as from the rest of the genome (Ghandi et al. 2014).

We measured the average performance of gkm-SVM to clas-

sify a positive set of matched null OCRs from�1,100 random

sequences from random genomic OCRs from the background

(not including any matched null sequences). The matched null

sets are indistinguishable from the rest of the genome, which

indicates that the matched null sets are good proxies for ge-

nomic background sets (supplementary fig. 7, Supplementary

Material online).

To identify motif enrichment between species-specific

OCRs and their matched null set, we used MEME-ChIP

(fig. 4A and supplementary tables 15–18, Supplementary

Material online) (Machanick and Bailey 2011). MEME-ChIP

identifies the NFIA motif as enriched in Human-Decreased

OCRs (fig. 4A and supplementary table 16, Supplementary

Material online, P� 0.001). These results are intriguing since

NFIA and the master adipogenesis transcription factor PPARG

colocalize to regulate adipogenesis in brown adipocytes as

well as in white adipocytes transdifferentiating into beige adi-

pocytes (Hiraike et al. 2017; Pradhan et al. 2017). MEME-ChIP

also identifies complete losses as the driver of the NFIA signal

in human-decrease regions (i.e., complete losses are enriched

for NFIA [P�0.001] while partial losses are not). This indi-

cates that although partial and complete losses share some

similarities as seen by the GREAT analysis, there are sequence

differences that differentiate the groups. MEME-ChIP also

identifies short nucleotide motifs in the other species-

specific groups, although they are different motifs than the

gkm-SVM, shorter than 6 bp, or have no known function in

adipose.

In parallel to MEME-ChIP, we compared each species-

specific category to its closest null set again using gkm-

SVM. We measured the weights of nonredundant 6-mers

and find that each species-specific group is distinguishable

from its closest null (fig. 4B and supplementary fig. 8 and

tables 19–22, Supplementary Material online). Interestingly,

we find a small set of 6-mers with higher weights that classify

human-decrease OCRs, which correspond to NFIA binding

motifs (supplementary table 20, Supplementary Material on-

line). Since colocalization of NFIA and PPARG motifs is corre-

lated with an increase in brown adipocyte gene expression,

we could measure how often NFIA and PPARG binding motifs

occur in the same OCR.

To confirm that human-decrease and chimpanzee-increase

OCR sequences are enriched for NFI motifs, we expanded the

6-mer motifs to the full NFIA motif and scanned all sequences

for the NFIA motif (fig. 4C) (Weirauch et al. 2014). Human-

decreased OCR has a significantly higher percentage of OCRs

(11.2%) with the longer NFIA motif than Common OCRs

(8.8%, Fisher’s exact test, P¼ 0.038). To further investigate

whether the NFIA motif could have function in adipose tissue,

we took advantage of NFIA’s colocalization with PPARG, the

master regulator of adipogenesis.

We scanned sequences for a PPARG motif (fig. 4D) and

found that over 80% of NFIA motifs occur with a PPARG

motif (Weirauch et al. 2014). Because the PPARG motif is

abundant across the genome, we wanted to ensure these

observations are not an artifact and are specific to adipose

OCRs. We therefore performed the same scans NFIA and

PPARG motifs in Common and species-specific OCRs identi-

fied in a previous study in fibroblasts, which is the only study

to our knowledge to also compare primate OCRs (Shibata

et al. 2012). We find that fibroblast OCRs have half the

amount of NFIA motifs present in adipose OCRs (fig. 4E and

F). Additionally, only half of the fibroblast OCRs that contain

NFIA motifs also contain PPARG motifs (fig. 4G and H). These

findings suggest that co-occurring NFIA and PPARG motifs

reflect differences in biological function specific to adipose

OCRs.

We asked whether the underlying sequence of NFIA and

PPARG motifs have changed between humans and chimpan-

zees. We scanned the human and chimpanzee orthologous

sequence of each OCR for NFIA and PPARG motifs (fig. 4B

and C). Each observed motif received a relative score scaled

from 0 (no motif) to 1 (perfect motif). We calculated the sum

of relative scores for each orthologous OCR and compared

the scores of the motifs between orthologous OCRs. In short,

we find OCRs where scores of motifs vary but find no patterns

in species-specific OCR groups compared with the Common

OCRs. The NFIA and PPARG motifs are not changing faster or

slower than expected in the species-specific OCRs, which

suggests that either epigenetic factors, cis-regulatory changes

outside the OCR, transfactors, or a mixture of all three control

OCR differentiation between species (supplementary fig. 9

and table 23, Supplementary Material online).

Discussion

Divergent Evolutionary Patterns in Human and
Chimpanzee Adipose Tissue

To better understand the evolution of increased body fat in

humans, we performed comparative analyses on the adipose

chromatin landscape in humans, chimpanzees, and rhesus

macaques. Interestingly, there seem to be two modes of

change in the regulatory landscape within human and chim-

panzee adipose tissue. In general, Human-decreased OCRs

are enriched for promoters and enhancers compared with

Human-increased OCRs (figs. 2 and 3). Human-decreased

OCRs are also more enriched for adipose eQTLs, relevant

gene ontology, and NFIA motifs related to adipogenesis and

beigeing of fat (figs. 2–4). We also find that Chimpanzee-

increased OCRs are more closely associated with functional
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enrichment of promoters, enhancers, relevant gene ontology,

and NFIA motifs than Chimpanzee-decreased OCRs (figs. 2D

and E and 3). Many Human-decreased OCRs are located near

genes associated with lipid metabolism while Chimpanzee-

decreased OCRs are located near genes associated with sim-

ple sugar metabolism. These differences in gene ontology

association may reflect the differences in the adapted diets

of these two species. Taken together, these results suggest

that humans shut down regions of the genome to accommo-

date a high fat diet while chimpanzees open regions of the

genome to accommodate a high sugar diet.

Humans May Have Lower Beigeing Potential than
Chimpanzees

Our results further suggest a mechanism that may have

contributed to the evolution of increased WAT in humans.

The body contains two kinds of adipose tissue. The vast ma-

jority is WAT, which is composed primarily of white adipocytes

and acts as an endocrine and lipid storage organ. In addition,

the body contains brown adipose tissue (BAT), which is com-

prised primarily of brown adipocytes and whose main role is

thermoregulation. Brown and white adipocytes differentiate

from distinct mesenchymal cell lineages (Wu et al. 2012;

Sepa-Kishi and Ceddia 2018). White adipocytes derive from

preadipocyte precursors while brown adipocytes derive from

myoblasts, which can also differentiate into muscle cells.

Furthermore, brown adipocytes are characterized by many

small lipid droplets and a large number of mitochondria, while

white adipocytes contain one large lipid droplet and fewer

mitochondria.

While WAT derives from a distinct cell lineage and is pre-

dominantly made up of white adipocytes, it also contains

FIG. 4.—Human-decreased OCRs are associated with NFIA. We used MEME-ChIP to identify motifs that are enriched in human-decreased OCRS (A) and

gkm-SVM to distinguish species-specific OCRs from null common OCRS. Shown are the receiver/operating curve for human-decrease (B). We scanned OCRs for

expanded NFIA (C) and PPARG (D) motifs. We compared NFIA motifs in adipose (E) and fibroblasts (F) OCRs and PPARG motifs in adipose (G), and fibroblasts (H).
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brown-like cells, called beige or brite adipocytes (Wu et al.

2012; Vargas-Castillo et al. 2017; Hildebrand et al. 2018;

Kuda et al. 2018; Sepa-Kishi and Ceddia 2018). Beige adipo-

cytes are a distinct thermogenic fat cell type from brown

adipocytes; they derive from the same lineage as white adi-

pocytes and form sporadic pockets within WAT (Wu et al.

2012; Vargas-Castillo et al. 2017; Hildebrand et al. 2018;

Kuda et al. 2018; Sepa-Kishi and Ceddia 2018). Beige adipo-

genesis is induced under a variety of conditions such as cold,

caloric restriction, and exercise (Wu et al. 2012; Hildebrand

et al. 2018; Sepa-Kishi and Ceddia 2018). Although beige

adipocytes stem from the same lineage as white adipocytes,

beige cells share characteristics of classical brown fat, such as

higher numbers of mitochondria and smaller, more numerous

lipid droplets (Wu et al. 2012). Likewise, the transcriptional

profile during beige adipogenesis is unique although it shares

characteristics with both white and brown adipogenesis (Wu

et al. 2012).

In principle, increased WAT in humans could have evolved

by shifting differentiation pathways towards white rather

than beige adipocytes. Although histology on frozen adipose

samples is challenging and do not have a percentage of beige

adipocytes in primate fat, we can still observe evidence of

browning from the chromatin landscape. The NFIA motif

has been implicated in adipogenesis and differences between

BAT and WAT (Hiraike et al. 2017; Pradhan et al. 2017). A

recent systems biology comparison of murine brown and

white adipose found that OCRs enriched in brown adipose

contain the NFIA motif and a high enrichment for GO terms

involved with browning of fat (Hiraike et al. 2017).

Consistent with these findings, we find the NFIA motif

enriched in regions that are specifically closed in human

WAT and open in chimpanzee WAT. Human and chimpanzee

expression of NFIA is similar, and the NFIA motif in the ob-

served OCRs is conserved between humans, chimpanzees,

and rhesus macaque. The underlying NFIA motif sequence is

not evolving slower or faster than expected in species-specific

OCRs (supplementary fig. 9, Supplementary Material online),

and decreased OCRs are not under the same level of con-

straint as Common and increased OCRs (fig. 3). Interestingly,

collectively closing cis-regulatory regions could be a response

to divergence in the diets of humans and chimpanzees, as

suggested by the GREAT analyses. Human-decreased regions

may be released from the constraints on the NFIA motif due

to adaptive dietary changes.

Conclusions

The data presented here point to a specific molecular mech-

anism in beige adipogenesis that may have contributed to the

derived state of high body fat mass in humans relative to other

primates. The ancestral state in nonhuman primates could be

maintained by directing white adipose to produce more beige

adipocytes. Selective pressure in humans to increase lipid

storage for our metabolically demanding brains (Haygood

et al. 2007; Babbitt et al. 2011; Pfefferle et al. 2011; Bozek

et al. 2014, 2015; Bauernfeind et al. 2015; Blekhman et al.

2015; Pontzer et al. 2016) may have shaped the regulatory

landscape to shut down beige pathways and redirect more

adipose precursor cells towards white adipocyte identity. The

extent to which diet and genetics play a role in accumulating

white versus beige adipocytes among primate species remains

unexplored. The availability of primate induced pluripotent

stem cells means that future studies can begin to disentangle

the effects of environment and genetic divergence during

adipogenesis (Gallego Romero et al. 2015).

Materials and Methods

Tissue Samples and ATAC-Seq

The adipose tissue samples used in this study are listed in

supplementary table 1, Supplementary Material online. We

obtained reproducible data from three human biological rep-

licates (one to three technical replicates each), two chimpan-

zee (Pan troglodytes) biological replicates (two to three

technical replicates each), and one rhesus macaque (Macaca

mulatta, two technical replicates). Samples were dissected

from deceased individuals and sent to us as frozen samples

(Babbitt et al. 2017). The low number of biological replicates

reflects the difficulty of obtaining nonhuman primate tissue

samples.

We homogenized 20 mg of frozen pulverized adipose tis-

sue in nuclei isolation buffer (20 nM Tris–HCl, 50 mM EDTA,

5 mM spermidine, 0.15 mM spermine, 0.1% beta meracptoe-

thanol, 40% glycerol, 1% NP40, pH 7.5) with a dounce ho-

mogenizer. The homogenate was centrifuged at 1,100 g for

10 min at 4 �C and the pellets resuspended in resuspension

buffer (10 mM Tris–HCl, 10 mM NaCl, 3 mM MgCl2, pH 7.4).

We ran tagmentation reactions at 37 �C for 30 min, purified

samples with Qiagen MinElute kits, and amplified libraries

with NEB NextPCR. Duke University’s Sequencing and

Genomic Technologies sequenced the libraries with the

Illumina 4000 producing 150 bp paired-end reads (supple-

mentary table 1, Supplementary Material online).

Data Processing, OCR Calling, and Quality Control

We used bowtie2 (Langmead and Salzberg 2012) to map

reads from each technical replicate to the sample’s native

genome (panTro4 for chimpanzee, hg19 for humans, and

rheMac2 for rhesus macaque). For chimpanzee and rhesus

macaque samples, we used reciprocal liftOver with human

genome hg19 to identify homologous regions between spe-

cies (Kent et al. 2002). To control for mapping biases due to

disparity in genome quality, we used reciprocal liftOver with

panTro4 for humans. In other words, we mapped human

reads to hg19, used liftOver to convert reads to the panTro4

genome, and used liftOveragain to reciprocally convert reads
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back to the hg19 genome. Unless stated elsewhere, we used

hg19 coordinates to analyze the homologous regions.

For each species, we pooled mapped reads from all tech-

nical replicates, and used MACS2 to identify OCRs (Zhang

et al. 2008). We specified a shift of 100 bp and an extension

of 200 bp with an FDR of 0.01. We compiled OCRs from all

biological samples and removed any OCR that had 0 read

counts from any technical replicate, yielding a final set of

160,625 OCRs with confident 1:1:1 homology among the

three species.

Quantitative Analyses of Differential OCR State

To increase the number of observed state changes in OCRs,

we quantified the OCRs based on count data rather than

presence or absence of a OCR. We did not use a fold-

change threshold to filter out OCRs, because chromosome

accessibility is a continuum and setting a threshold can be

arbitrary. Additionally, noisy OCRs would drop out of our dif-

ferential analyses either because one or more technical repli-

cates had 0 read counts or because a differential OCR signal

would not be larger than surrounding noise.

DESeq2 (Love et al. 2014) was used to normalize the count

data and calculated the Pearson correlation between technical

replicates. We retained replicates that correlated well with

other technical or biological replicates (R> 0.85) for our dif-

ferential analyses. To determine whether species had an effect

on OCRs accessibility, we compared a linear model with a

species component (OCR � species) to a null model (OCR

� 1) in DESeq2. We assumed the known species tree and

used pairwise contrasts between species and rhesus macaque

as an outgroup to determine derived OCR state changes in

human and chimpanzee (FDR < 0.05). OCRs without a sig-

nificant species effect (FDR> 0.05) were labeled as Common

OCRs. Additionally, we required that the magnitude of differ-

ence between humans and chimpanzees be at least a 2-fold

difference. Furthermore, we wanted to ensure that the set of

common OCRs were similar in read intensities and size as

species-specific OCRs. Therefore, we created a matched com-

mon set of OCRs that fell in 20–80th percentile of species-

specific normalized read count and size.

DESeq was developed for RNA-seq data and ATAC-seq

data is inherently noisier than RNA-seq data. Therefore, we

would expect a high false-negative rate, which may affect

derived OCR groups differently. Short of spiking in true pos-

itive reads, which are thus far unverified, we cannot reliably

calculate the false negative rate. We did take advantage of

the false discovery rate, to plot the percentage of OCRs

called as derived state changes as the false discovery rate

increases (supplementary fig. 1D, Supplementary Material

online). We would expect that the lower the false discovery

rate, the number of false negatives being called as positives

would grow. Decreased OCR groups may be more difficult

to identify as a true positive than Increased OCR groups. This

may be due to the lack of power to identify decreased OCRs.

Further we analyzed the distribution of derived OCR states

across the genome. Based on enrichment tests, no chromo-

some is depauperate for any derived OCR state (P> 0.1).

However, we may not have the power to detect depletion

of OCR states across any given region due to the low num-

ber of derived OCR states.

Gene Expression Analyses

To gain insight into cis-regulatory function of species-specific

OCR state, we measured enrichment of OCR with eQTL and

chromatin annotations (Ernst and Kellis 2012). We used

GREATversion 3.0.0. (http://great.stanford.edu/public/html/,

last accessed April 9, 2019) (McLean et al. 2010) to determine

whether sets of OCRs possibly regulate genes that are

enriched in a biological process. We used species-specific

OCR states as our test regions, and the full set of OCRs for

our background regions.

To associate differential gene expression with OCR state,

we reanalyzed data from Babbitt et al. (2017). We filtered out

genes with 0 reads from any biological replicate and used

DESeq2 to compare a linear model with a species component

(expression � species) to a null model (expression � 1). We

assigned enhancers to their closest transcription start site to

subset the gene expression data for each OCR group, and

used Wilcoxon tests to measure differences in gene expres-

sion between OCR states.

Selection Analyses

We used the SPH method in phyloP to test for branch-specific

positive and negative selection for each OCR alignment

(Siepel et al. 2006). We computed P values for either positive

or negative selection of species-specific OCR states in respect

to a neutral model of evolution for set of genomic regions that

are predicted to be nonfunctional based on functional anno-

tations (Ernst and Kellis 2012).

We also used framework developed by Haygood et al.

(2007) to test for branch-specific positive selection. This

framework measures the likelihood ratio of an alternative

model under positive selection relative to a null model of di-

vergence due to drift and negative selection. This test produ-

ces a P value associated to f, that is analogous to x, in which

f< 1 is indicative of a region under negative selection; f¼ 1 is

indicative of region under neutral evolution; and f> 1 is in-

dicative of a region of positive selection. We compared selec-

tion of species-specific OCR states to the same set of genomic

regions that are predicted to be nonfunctional as in the phyloP

analyses (Ernst and Kellis 2012).

Motif Analyses

To determine if OCR sequences could be differentiated from

the rest of the genome, we used the default settings of the

Swain-Lenz et al. GBE

2006 Genome Biol. Evol. 11(7):1997–2008 doi:10.1093/gbe/evz134 Advance Access publication June 24, 2019

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocy118#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz134#supplementary-data
http://great.stanford.edu/public/html/


machine learning R package, gkm-SVM (Ghandi et al. 2014).

We calculated the average performance of 100 iterations for

each OCR set, using a negative group of 1,100 random

sequences from the total OCR set. We used the default set-

tings of gkm-SVM to predict species-specific OCR sequences

from matched null OCR sequences, which consisted of the

closest common OCR to a species-specific null. The match null

set controls for shared genes and local genomic features such

as GC content (supplementary fig. 5, Supplementary Material

online).

To complement the gkm-SVM analyses, we used MEME-

ChIP’s differential motif enrichment pipeline from MEME

Suite (Machanick and Bailey 2011). http://meme-suite.org/,

last accessed April 7, 2019. We used a first-order model to

adjust for dimer biases and allowed DREME and MEME to

search up to ten motifs. We used CentriMo to search in local

mode to find uncentered motifs.

We used TOMTOM from MEME Suite (Gupta et al. 2007)

to identify transcription factor candidates that bind to pre-

dicted motifs from gkm-SVM and MEME-ChIP. We allowed

incomplete alignment, and the Pearson correlation coefficient

was calculated for human motifs in HOCOMOCO database

(v11 CORE). P values were corrected by a Bonferroni correc-

tion. We used the R package JASPAR TFBSTools (Tan and

Lenhard 2016) to scan sequences for the NFIA

(M3607_1.02) and PPARG (M6434_1.02) motifs from CIS-

BP Database (supplementary table 11, Supplementary

Material online) (Weirauch et al. 2014) . http://cisbp.ccbr.utor-

onto.ca/, last accessed August 17, 2018.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.

Acknowledgments

We thank Sasha Makahon-Moore for her bubbleplot R code,

and members of the Wray lab and Raluca Gordân for helpful

discussions. This work was paid for by the Hargitt Fellowship

from the Biology Department at Duke University.

Literature Cited
Babbitt CC, et al. 2011. Genomic signatures of diet-related shifts during

human origins. Proc Biol Sci. 278(1708):961–969.

Babbitt CC, et al. 2017. Gene expression and adaptive noncoding changes

during human evolution. BMC Genomics 18(1):435.

Bauernfeind AL, et al. 2015. Evolutionary divergence of gene and protein

expression in the brains of humans and chimpanzees. Genome Biol

Evol. 7(8):2276–2288.

Blekhman R, et al. 2015. Comparative metabolomics in primates reveals

the effects of diet and gene regulatory variation on metabolic diver-

gence. Sci Rep. 4(1):5809.

Bozek K, et al. 2014. Exceptional evolutionary divergence of human mus-

cle and brain metabolomes parallels human cognitive and physical

uniqueness. PLoS Biol. 12(5):e1001871.

Bozek K, et al. 2015. Organization and evolution of brain lipidome

revealed by large-scale analysis of human, chimpanzee, macaque,

and mouse tissues. Neuron 85(4):695–702.

Brown AA, et al. 2017. Predicting causal variants affecting expression by

using whole-genome sequencing and RNA-seq from multiple human

tissues. Nat Genet. 49(12):1747–1751.

Buenrostro JD, et al. 2015. ATAC-seq: a method for assaying chromatin

accessibility genome-wide. Curr Protoc Mol Biol. 109: 21–29.

Consortium GT, et al. 2017. Genetic effects on gene expression across

human tissues. Nature 550:204.

Ernst J, Kellis M. 2012. ChromHMM: automating chromatin-state discov-

ery and characterization. Nat Methods. 9(3):215–216.

Gallego Romero I, et al. 2015. A panel of induced pluripotent stem cells

from chimpanzees: a resource for comparative functional genomics.

eLife 4:e07103.

Ghandi M, et al. 2014. Enhanced regulatory sequence prediction using

gapped k-mer features. PLoS Comput Biol. 10(7):e1003711.

Gupta S, et al. 2007. Quantifying similarity between motifs. Genome Biol.

8(2):R24.

Haygood R, et al. 2007. Promoter regions of many neural- and nutrition-

related genes have experienced positive selection during human evo-

lution. Nat Genet. 39(9):1140–1144.

Hildebrand S, et al. 2018. PVAT and its relation to brown, beige,

and white adipose tissue in development and function. Front

Physiol. 9:70.

Hiraike Y, et al. 2017. NFIA co-localizes with PPARgamma and transcrip-

tionally controls the brown fat gene program. Nat Cell Biol.

19(9):1081–1092.

Kent WJ, et al. 2002. The Human Genome Browser at UCSC. Genome

Res. 12(6):996–1006.

Kuda O, et al. 2018. Omega-3 fatty acids and adipose tissue biology. Mol

Aspects Med. 64:147–160.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie

2. Nat Methods. 9(4):357.

Love MI, et al. 2014. Moderated estimation of fold change and dispersion

for RNA-seq data with DESeq2. Genome Biol. 15(12):550.

Machanick P, Bailey TL. 2011. MEME-ChIP: motif analysis of large DNA

datasets. Bioinformatics 27(12):1696–1697.

McLean CY, et al. 2010. GREAT improves functional interpretation of cis-

regulatory regions. Nat Biotechnol. 28(5):495–501.

Pfefferle AD, et al. 2011. Comparative expression analysis of the phospho-

creatine circuit in extant primates: implications for human brain evo-

lution. J Hum Evol. 60(2):205–212.

Pond SLK, et al. 2005. HyPhy: hypothesis testing using phylogenies.

Bioinformatics 21(5):676–679.

Pontzer H, et al. 2016. Metabolic acceleration and the evolution of human

brain size and life history. Nature 533(7603):390–392.

Pradhan RN, et al. 2017. Dissecting the brown adipogenic regulatory net-

work using integrative genomics. Sci Rep. 7(1):42130.

Sepa-Kishi DM, Ceddia RB. 2018. White and beige adipocytes: are

they metabolically distinct? Horm Mol Biol Clin Investig. 33(2).

pii: /j/hmbci.2018.33.issue-2/hmbci-2018-0003/hmbci-2018-

0003.xml. doi: 10.1515/hmbci-2018-0003.

Shibata Y, et al. 2012. Extensive evolutionary changes in regulatory

element activity during human origins are associated with

altered gene expression and positive selection. PLoS Genet.

8(6):e1002789.

Siepel A, et al. 2006. Proceedings of the 10th Annual International

Conference on Research in Computational Molecular Biology. New

methods for detecting lineage-specific selection. Venice (Italy):

Springer-Verlag. p. 190–205.

Comparative Genomic Analyses of Human and Chimpanzee Adipose GBE

Genome Biol. Evol. 11(7):1997–2008 doi:10.1093/gbe/evz134 Advance Access publication June 24, 2019 2007

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz134#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz134#supplementary-data
http://meme-suite.org/
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz134#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz134#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz134#supplementary-data
http://cisbp.ccbr.utoronto.ca/
http://cisbp.ccbr.utoronto.ca/
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz134#supplementary-data


Tan G, Lenhard B. 2016. TFBSTools: an R/bioconductor package

for transcription factor binding site analysis. Bioinformatics

32(10):1555–1556.

Vargas-Castillo A, et al. 2017. Understanding the biology of thermogenic

fat: is browning a new approach to the treatment of obesity? Arch

Med Res. 48(5):401–413.

Villar D, et al. 2015. Enhancer evolution across 20 mammalian species. Cell

160(3):554–566.

Weirauch MT, et al. 2014. Determination and inference of eukaryotic

transcription factor sequence specificity. Cell 158(6):1431–1443.

Wu J, et al. 2012. Beige adipocytes are a distinct type of thermogenic fat

cell in mouse and human. Cell 150(2):366–376.

Zhang Y, et al. 2008. Model-based analysis of ChIP-Seq (MACS). Genome

Biol. 9(9):R137.

Zihlman AL, Bolter DR. 2015. Body composition in Pan paniscus compared

with Homo sapiens has implications for changes during human evo-

lution. Proc Natl Acad Sci U S A. 112(24):7466–7471.

Associate editor: Emmanuelle Lerat

Swain-Lenz et al. GBE

2008 Genome Biol. Evol. 11(7):1997–2008 doi:10.1093/gbe/evz134 Advance Access publication June 24, 2019


