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Abstract: Satellite navigation has become ubiquitous to plan and track travelling. Having access to
a vehicle’s position enables the prediction of its destination. This opens the possibility to various
benefits, such as early warnings of potential hazards, route diversions to pass traffic congestion, and
optimizing fuel consumption for hybrid vehicles. Thus, reliably predicting destinations can bring
benefits to the transportation industry. This paper investigates using deep learning methods for
predicting a vehicle’s destination based on its journey history. With this aim, Dense Neural Networks
(DNNs), Long Short-Term Memory (LSTM) networks, Bidirectional LSTM (BiLSTM), and networks
with and without attention mechanisms are tested. Especially, LSTM and BiLSTM models with
attention mechanism are commonly used for natural language processing and text-classification-
related applications. On the other hand, this paper demonstrates the viability of these techniques in
the automotive and associated industrial domain, aimed at generating industrial impact. The results
of using satellite navigation data show that the BiLSTM with an attention mechanism exhibits better
prediction performance destination, achieving an average accuracy of 96% against the test set (4%
higher than the average accuracy of the standard BiLSTM) and consistently outperforming the other
models by maintaining robustness and stability during forecasting.

Keywords: attention mechanism; bidirectional long short-term memory; deep learning; vehicle
destination prediction

1. Introduction

Satellite navigation has become a vital tool for drivers, with the majority of motorists
relying on Global Positioning System (GPS) devices to arrive at their destination [1].
Almost every new vehicle and smart device has access to satellite networks, such as Global
Navigation Satellite System (GNSS) and GPS receivers. This enables the possibility of many
new and improved location-based services, such as points of interest, estimated time of
arrival, live traffic updates, and fastest and alternative routes [2,3].

Having the capability of recording a vehicle’s position also enables predicting a
driver’s destination based on their driving schedule and destination patterns. Such systems
are increasing in popularity due to the many potential advantages they bring forth, without
requiring any explicit input from the driver. One predominant advantage is being able to
provide personalized navigational advice and alerts throughout each journey [2].

Such advice may include warning of potential hazards, route changes to miss traffic
congested areas [4], highlighting useful stopping places along the route, and finding
optimal refueling/recharging stations. Moreover, by knowing the user’s destination, the
vehicle can optimize its energy consumption. This is especially useful with hybrid and
electric vehicles, since they may automatically discharge batteries if a recharging station is
available nearby, to improve battery charging cycles. Research has shown that with prior
destination knowledge hybrid fuel economy can be improved by as much as 7.8% [5].
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Such systems are useful in large cities that are moving toward greener energy alter-
natives, aimed at reducing emissions. For example, London has ultralow emission zones
that were expanded from central London up to the north and south circular roads after
25 October 2021 [6]. Additionally, London has begun introducing zero emission zones to
reach their City Corporation’s draft transport strategy targets [7]. If a driver’s destination
is known to be within these zones, a hybrid vehicle travelling from outside of London
can automatically optimize fuel usage when outside, saving its battery energy for when
travelling within these low emission zones.

Though it is true that a driver could be asked to input a destination prior to departure,
it is more convenient that they will not be required to input this information, especially for
their frequently travelled routes [8].

This paper develops a reliable method for destination prediction using deep learning
models, which includes the investigation of Long Short-Term Memory (LSTM) networks
with the addition of an attention mechanism. Accordingly, the main contributions of this
paper follow:

• Explore the viability of advanced deep learning methods in the automotive and
associated industrial domain;

• Develop a reliable vehicle destination prediction method using the GeoLife GPS
Trajectory [9–11] dataset;

• Study LSTM networks compared to conventional neural networks;
• Investigate the effect of adding bidirectionality to an LSTM network on the robustness

of the destination predictions.
• Include novel techniques such as attention mechanisms to further improve net-

work performance.

The rest of the paper is organized as follows. Section 2 reviews the state-of-the-art
related to this research. Section 3 describes the data sources and the data preparation, while
Section 4 provides details of the applied deep learning architectures. Section 5 presents the
analysis results and comparisons, and, finally, Section 6 concludes the paper.

2. Related Work

In the field of route and destination prediction, a substantial amount of research
has been conducted—testing different types of techniques and systems to improve pre-
dictions [12]. These techniques are simplified to two categories, route matching algo-
rithms [3,13–15] and probabilistic modelling systems [2,12,16–19]. Froehlich et al. [3]
introduced an algorithm that matches the current route to a past route by using a similarity
score. The route with the highest similarity score would then be the predicted route. On
the other hand, common probabilistic methods include the use of a Markov chain model
and its Hidden Markov Model (HMM) variant [12,19]. Markov processes are essentially
without memory, as they predict based on a current state. In comparison, there exist
explicit memory networks, such as LSTMs, which use a history of past locations, times,
and patterns to forecast the future.

For any data-driven model, data preparation has a significant effect on the model
performance; related work inputs require significant effort in cleaning, filtering, and
improving the training data [3,20]. Tanaka et al. [20] included common contexts of daily
driving with their trajectories, such as the time and day of the week, showing promising
results. For destination prediction, the method of clustering destinations has proven
to perform well [2,16,17]. Destination clustering involves grouping destinations that
are relatively close to each other as they likely pertain to the same destination since a
driver will not park in the same spot every time. This also converts the destinations
from points with longitude and latitude positions to a single integer, thus allowing for
destination classification.

State-of-the-art methods for predicting vehicle destinations include random forests
and deep neural networks [2,17,19]. Random forests have been used in destination predic-
tion problems with relative success [2,19]. While they tend to train faster and require less
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computational power than deep learning models [21], their weakness becomes apparent
as a user completes more journeys. To train and retrain a random forest model, all of the
training data must be present in system memory. Thus, as more journeys are completed,
more storage and computational power are required. In contrast, deep learning models
can process the training data in batches, and sometimes forget previous training samples.
Their weights can be updated with new journeys, allowing the system to automatically
delete previous ones and save storage. Such a setup would also reduce the required com-
putational power compared to having to train a model from scratch every time with an
endlessly increasing dataset size. Additionally, drivers may change their habits through
time. Thus, deep neural networks will better adapt to these changes by emphasizing its
training more on recently recorded travel paths.

In recent years, the utilization of deep learning methods for any type of time series
forecasting has greatly expanded since the introduction of Recurrent Neural Networks
(RNNs), including Gated Recurrent Units (GRUs) and the LSTM model [19]. RNNs have
demonstrated superior results in sequential time series learning tasks due to their explicit
memory tracking, providing context on the previous states of a time series [22]. However,
basic RNNs are limited in dealing with longer sequence data due to the exploding and
gradient vanishing phenomena [17,23]. The introduction of gate structures, found in
LSTMs, has shown to partially mitigate these problems, and has become widely adopted
in both trajectory [24–26] and destination prediction problems [17,19,27–29], achieving
promising outcomes. Brébisson et al. [17] concluded that using a Bidirectional LSTM
(BiLSTM) improved prediction performance as compared to unidirectional LSTM, due
to the inputs being accessed in both directions. The benefit of this setup compared to a
unidirectional LSTM is that the output of the BiLSTM holds information about the past and
future states, whereas the unidirectional LSTM only preserves information of the past [17].

LSTMs have, however, shown to suffer from a constraint originating from their
encoder–decoder architecture; all their input sequences are forcibly encoded into a fixed-
length vector representation [30], which is believed to limit the LSTMs performance,
especially with long input sequences [31]. By introducing an attention mechanism over
the output of the LSTM network, the encoder–decoder architecture is freed from the
fixed-length vector representation, leading to a higher performing model [31]. Attention
mechanisms have recently demonstrated success in many tasks due to their ability to
selectively focus on and extract the important features of the input data, thus improving
model performance [32,33]. However, these tasks are mainly related to natural language
processing and text-classification-related applications. Hence, this paper investigates
the viability of these techniques in the industrial domain. Specifically, it uses attention
mechanisms applied to the outputs of LSTM networks to conclude if this improves model
performance from the standard LSTM when used for destination prediction.

3. Data Preparation

In this paper, the GeoLife GPS Trajectories [9–11] dataset is used. While this dataset
contains trajectory information for many different forms of transportation (e.g., walking,
flying, boating, taxiing), mainly around the city of Beijing, China, only the car trajectories
were used (depicted in Figure 1). The raw datafile has multidimensional information,
such as date and time, latitude and longitude positions, and user number. The first
preprocessing step was to separate distinct journeys by using the time stamps. The raw
datafile contains assembled ordered trajectories, and as the “trajectories were recorded
in a dense representation of every 1–5 s”, the end of one journey is determined when
the following timestamp occurred more than 300 s later. In other words, if data are not
collected for more than 5 min, it is deemed a sufficiently long stoppage time for considering
it a new journey.

Here, any journey that lasts less than 10 min is discarded due to it having negligible
information. The destinations of each remaining journey are then converted from longitude
and latitude locations to clusters, as in [2,16,17]. This is done since it is unlikely that a driver
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always parks in the same location when reaching the same destination. Instead, they may
park within a certain radius. In this case, the radius was set to 500 m empirically. Having
destinations as clusters makes the destination prediction task a classification problem.

Figure 1. Car trajectories around the capitol of China, Beijing.

To allow for the predictability of a destination, any cluster that is only visited once or
twice is removed, eventually reducing the number of possible destinations to 49 clusters.
Figure 2 shows the data split with the number of times a destination is visited. D40 (D
stands for Destination) was the most frequent, followed by D46 and D47, which have in
comparison almost 100 less visits each.

Figure 2. Number of journeys reaching each specific destination cluster. A destination where one
journey was removed prior to model training (yellow) is used as an unseen full journey test.

One full journey, leading to D22, is arbitrarily removed from the dataset prior to the
train–validation–test split for model training and testing. This allows the models to be
tested independently on a whole journey that is not part of the training process. This
destination is not visited frequently, which can demonstrate how the model performs
against a journey unlikely to have been seen previously. Additionally, several frequent and
infrequent journeys are used to test the models on routes they have seen. Test journeys are
used to demonstrate the performance of a model for an entire journey, as opposed to its
performance against a randomized test set of shuffled points from different destinations.

The final dataset is organized with feature inputs, including (1) current latitude,
(2) current longitude, (3) user ID, (4) time, (5) date, (6) day of the week, (7) change of
distance in latitude, (8) change of distance in longitude, and the target output as (9), the
destination cluster number.

4. Methodology

The methodology is implemented using Python 3.6. The packages utilized include
scikit-learn 0.24.2 [34], TensorFlow 2.6.0 [35], and Attention 4.0 [36]. Scikit-learn is used
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to split the training dataset into training, validation, and test sets. TensorFlow is used to
build and train the deep neural networks, and the Attention package is used to include the
attention mechanism in the models.

4.1. Static and Dynamic Dataset Setup

Prior to model training, the data are organized into two arrays. The first array contains
the features and the second contains the targets, i.e., destinations. The static setup simply
relates one row of features to one destination. However, the dynamic setup contains a third
dimension, related to time. A moving window is applied to the timesteps by connecting
twenty rows of features to one output destination. In theory, changing the data setup
from static to dynamic should improve performance since the model will be given more
information, such as the direction of travel. Brébisson et al. [17] input five successive GPS
points as the dynamic setting, however, after empirical experimenting, here it is found
that inputting twenty rows of features shows better results while still being an acceptable
amount of time to wait before the models start predicting. With the dataset used, GPS
points are every 1–5 s, indicating that the longest time before the models can start predicting
is 100 s into a journey.

4.2. Model Training

Before training, the dataset is split into three subsets: training, validation, and testing.
The testing set is only used at the end of training, whereas the training and validation sets
are used throughout training.

Through empirical tuning, the optimizer “Adam” is used with a learning rate set to
0.001, and a small batch size of 32 is used. To limit the likelihood of a model overfitting to the
training dataset, early stopping and model checkpoints are used to save the model with the
lowest validation loss score. If after 10 consecutive epochs the validation loss score does not
reduce, training stops, as shown by the training curve in Figure 3. This loss was calculated
by TensorFlow using the loss function sparse categorical cross-entropy. The validation loss
score is calculated at the end of each epoch and used to adjust network weights.

Figure 3. Training curve of a BiLSTM with an attention mechanism. The lowest validation loss occurs
at epoch 63 and this model is saved.

4.3. Deep Learning Models

To keep model performance comparison consistent and to allow for an adequate
analysis of the impact of adding a layer, all the tested models had the same dense layers as
the Dense Neural Networks (DNNs), with only an additional layer at the start to implement
the LSTM or LSTM with Attention.

4.3.1. Dense Neural Network

As a baseline for comparison, a simple three-layer sequential DNN was optimized
and trained with the static and dynamic data setup (Table 1). In artificial neural networks,
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a dense layer is regarded as a fully connected layer, which performs a linear operation
on inputs or the previous layers’ outputs. In static set up, the inputs are an array of
features, while in dynamic setup the inputs are multiple rows of features representing a
time moving window. This experiment is to confirm that a dynamic setup does improve
model performance. It also allows a comparison for when the LSTM and attention layers
are added. To allow for the model to accept the dynamic data input, a one-dimensional
global average pooling layer is added prior to feeding the inputs to the first dense layer.
This is shown by the greyed row in Table 1, which is not present for the static data setup.

Table 1. DNN model architecture.

Layer Type # of Neurons Activation
Global Average Pooling 1D * - - -

Dense 256 - ReLU
Dropout rate - 0.1 -

Dense 128 - ReLU
Dropout rate - 0.1 -

Dense (Output) 49 - Softmax
* Grey row is only needed when the dynamic data setup is used.

DNNs simply work with the neurons in a dense layer receiving as inputs the outputs
from all the neurons in the previous dense layer, using matrix-vector multiplications, where
the values in the matrix are the parameters which are updated through backpropagation
during training. Therefore, DNNs have no memory elements, and each sequential layer
only relies on the outputs of the previous layer.

4.3.2. LSTM and Bidirectional LSTM Models

All RNNs have feedback loops in their recurrent layer that allow them to maintain
information over time. However, LSTMs include memory cells, which are a set of gates
used to control when information is input, output, and forgotten in memory [37]. These
memory cells allow information to be maintained in memory for longer periods of time
compared to feedback loops.

Thus, LSTMs have become widely adopted in trajectory and destination prediction
methods. Since Brébisson et al. [17] found that adding bidirectionality to the LSTM model
improved the model’s performance, this paper also aims to investigate if BiLSTM models
improve performance for destination prediction.

Conventional LSTM is unidirectional, which only preserves information from the past
states. In contrast, BiLSTM is bidirectional, where the information is passed on from both
the past and the future states at a point in time. It should be more suited when both past
and future contexts are relevant in the prediction task. Table 2 shows the architecture used,
where the first layer is changed to a bidirectional LSTM layer.

Table 2. LSTM and BiLSTM model architecture.

Layer Type Memory Units # of Neurons Activation

(Bidirectional) LSTM * 32 - - -

Global Average Pooling 1D - - - -

Dense - 256 - ReLU
Dropout rate - - 0.1 -

Dense - 128 - ReLU
Dropout rate - - 0.1 -

Dense (Output) - 49 - Softmax
* The first layer changes according to whether LSTM is used (not bidirectional) or BiLSTM is used.
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4.3.3. LSTM with Attention and BiLSTM with Attention

With traditional sequence-to-sequence models, all the intermediate steps of the en-
coder are disregarded and only the final states, summarized into a vector, are used to
initialize the decoder. While this method works for small sequences, when using larger
sequences, the single vector bottlenecks model performance. The main benefit of attention
mechanisms is that the intermediate encoder states can be used, providing improved
context vectors for the decoder [31].

A many-to-one attention mechanism for Keras is used [36]. The context vectors are
calculated by the multiplication of the encoder hidden states and their attention weights,
where the attention weights are obtained by performing the softmax operation on the
alignment scores of the hidden states. This attention mechanism is applied to the outputs
of the LSTM layer (Table 3), taking in a three-dimensional tensor with shape (batch size,
timesteps, input dimension), and returning a two-dimensional tensor with shape (batch
size, 128). The attention mechanism is applied to both the LSTM and BiLSTM models to
investigate the model performance.

Table 3. LSTM and BiLSTM with Attention models.

Layer Type Memory Units # of Neurons Activation

(Bidirectional) LSTM * 32 - - -

Attention - 32 - -

Dense - 256 - ReLU
Dropout rate - - 0.1 -

Dense - 128 - ReLU
Dropout rate - - 0.1 -

Dense (Output) - 49 - Softmax
* The first layer changes according to whether LSTM is used (no bidirectional) or BiLSTM is used.

5. Results

To evaluate the performance of each model, two test scenarios were carried out.
One involves using the test set taken from the train–validation–test split at the start of
model training, which is made up of many different journey destinations shuffled. The
other scenario uses a full unseen journey, which is manually removed from the training
dataset prior to model training, to compare when each model starts to predict the correct
destination. In addition, seen journeys are also used for checking the models against
past journeys.

5.1. Model Performance against Test Set

Figure 4 shows the accuracy scores for all the models studied (Section 4.3), and
the average performance scores are summarized in Table 4. In Figure 4, each boxplot
corresponds to the results obtained from the model indicated in the Y-axis. The X-axis
represents the accuracy in percentage. Both mean and median are demonstrated in the
boxplots. The length of the whiskers is computed by using the lowest and highest model
performance results. The notches represent the 95% confidence intervals. Each model result
includes ten individual training–testing runs. The exclusive method has been used for the
calculation of the interquartile range.

A notable performance improvement is shown between the static and dynamic DNN
models. Since the two DNN models are identical, with the only difference being the
addition of a one-dimensional global average pooling operation to allow training with the
dynamic data, the results show that a slight performance improvement is already achieved
by converting the training data from a static to a dynamic setup. Confidence intervals
overlapping indicate that the performance improvement is not statistically significant
to conclude if one model outperforms the other entirely. However, because there is not
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a complete overlap between the two models, it is suggested that the dynamic DNN
outperforms the static DNN.

Figure 4. Model accuracy evaluations for ten training and testing runs shown by boxplots and ×
indicating the mean.

Table 4. Average performance scores of the models against test set.

Average Performance Scores (%)

Accuracy Precision Recall F-Score

DNN Static 82.127 82.405 82.127 81.935
DNN Dynamic 83.272 83.552 83.272 83.136

LSTM 89.860 90.165 89.860 89.820
BiLSTM 92.291 92.489 92.291 92.274

LSTM + Attention 96.431 96.561 96.431 96.431
BiLSTM + Attention 96.330 96.434 96.330 96.328

On the other hand, it can be confidently claimed that the LSTM models show statis-
tically significant performance improvements over the DNNs. Adding an LSTM layer,
as hypothesized, significantly improves model performance. Although changing this to
a BiLSTM layer shows a further increase in performance, confirming the findings from
Brébisson et al. [17], the confidence intervals of the two boxplots only slightly overlap.
Therefore, although it cannot be statistically concluded that BiLSTM outperforms LSTM, it
can be stated with sufficient certainty that introducing bidirectionality improves destination
prediction performance since the confidence interval overlapping is minimal. However,
this can be confirmed by the full journey tests to be discussed in Section 5.2.

The LSTM and BiLSTM models produce results with a larger interquartile range
compared to the DNN models, which means their performance results are more variable,
but nevertheless superior. The larger variability in performance is likely caused by the
model’s constraint of having its input sequences forcibly encoded into a fixed-length vector
representation [30], resulting in lower performance for the runs in which the constraint
limits training.

Introducing an attention mechanism over the output of the LSTM network should
free the architecture from the constraining fixed-length vector representation, leading to
higher performance. When applied, the attention layer results in a significant performance
improvement to both the LSTM and BiLSTM models (with no confidence interval overlap),
while also significantly reducing the interquartile range, showing even more stability in
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performance scores than the DNN models. Therefore, attention mechanisms applied to the
outputs of LSTM networks do improve model performance from the standard LSTM when
used for destination prediction.

In a similar way, the confidence intervals overlap between the BiLSTM with Attention
and the LSTM with Attention results significantly. Therefore, even though the LSTM with
Attention achieves a slightly higher peak in accuracy score, the difference between the
overall performance of the two models is not statistically significant.

Training time is another important factor to consider, as more complex models may
not be viable if their training times are too long, even if they have improved performance
scores. Python codes are executed using Google Colaboratory Pro+ [38] with specifications:
2 Intel(R) Xeon(R) CPU @ 2.20 GHz, 12 GB RAM, 180 GB HDD available. Table 5 summa-
rizes the average time to train for each model used in this paper. While there is a significant
increase in training time between the DNN and LSTM models, it is justifiable due to the
major gain in performance score—with an average accuracy improvement of about 6.6%
from the dynamic DNN to the LSTM model. Remarkably, Table 5 also shows that the addi-
tion of the attention mechanism leads to a lower averaged training time compared to the
exact same model without the attention layer (for example, LSTM vs. LSTM + Attention).
The attention models also have the highest performance, improving from the DNN models
by more than 13% and achieving a very high average accuracy of more than 96%, further
justifying the increased training time.

Table 5. Model average training time from ten runs vs. increase of accuracy.

Time (hrs:mins:secs) Increase of Accuracy (%)

DNN Static 00:32:05 baseline
DNN Dynamic 00:21:50 1.145

LSTM 01:36:34 7.733
BiLSTM 01:49:44 10.164

LSTM + Attention 01:31:42 14.304
BiLSTM + Attention 01:49:17 14.203

5.2. Full Journey Tests

Although the LSTM with Attention model shows the highest average accuracy with
shorter training time, it cannot be confirmed as the best model due to the performance
difference being not statistically significant against the BiLSTM with Attention model.
Therefore, the models are tested for entire journeys. Factors such as how quickly a model
starts predicting the correct destination, and how stable the model is with its predictions
are important. Additionally, it is useful to deduce why a model may predict a wrong desti-
nation to ensure, at least, that the incorrect prediction could still be a plausible destination
based on the part of the route the vehicle is on.

The dense models are omitted from the full journey tests for simplicity since they have
been significantly outperformed against the previous testing dataset.

One unseen journey is used for testing, as explained in Section 3. Frequently and
infrequently seen journeys are also used to test the performance of the models against
journeys it has seen in the past—as would more likely be the case in real-world applications.

5.2.1. Frequent Destination Tests

For this test, the models are fed one journey from each destination that is visited more
frequently (as visualized from Figure 2). Since these destinations are visited much more
than the other destinations in the training dataset, it should be straightforward for all the
models to predict the destination quickly and confidently.

Table 6 details the percentage of journey that is correctly predicted by each model
for the selected frequent journey. These tests confirm that all four models are working
extremely reliably when tested against frequent destinations, making them successful
for the average commuter. Since there is little performance separation between these
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models based on these results, the next sections explore the models’ performance on three
more infrequent destinations, one of which is unseen and extracted from the dataset prior
to training.

Table 6. Results from testing each model on a frequent destination journey.

Percentage of Journey Correctly Predicted (%)

Destination Cluster 25 29 40 46 47

LSTM 100 100 100 100 96.477
BiLSTM 100 98.180 100 100 98.660

LSTM + Attention 100 98.608 100 96.970 94.128
BiLSTM + Attention 100 98.394 100 100 96.980

5.2.2. Unseen Journey with D22

Figure 5 shows how each model’s prediction probability changes for the unseen
journey to D22.

Figure 5. (a) Correct destination prediction versus percentage complete for the unseen journey to Destination 22. (b) BiLSTM
with Attention destination predictions visualized along the same route. The red pin is the starting point. Map data © 2021.

The LSTM model is the most stable once it predicts the correct destination around
50% of the journey, remaining fixed with that prediction for the remainder of the travel.
The BiLSTM also predicts the correct destination around the same time; however, its
predictions are much more unstable, as is shown by the yellow curve oscillating past
the 50% probability mark until it stabilizes at 70% completion of the journey (Figure 5a).
The LSTM with Attention model is the last to predict the correct destination; however,
it is much more stable than the BiLSTM model, predicting the incorrect destination for
only three timesteps after it predicts the correct destination, and remaining stable for the
remainder of the journey. Noticeably, the BiLSTM with Attention model shows the most
reliability, predicting D22 around 5% of the journey earlier than the LSTM model and only
losing prediction accuracy for a small section of the journey around the 50% journey mark.
Better performance is also reinforced by Table 7, showing that the BiLSTM with Attention
predicts the most percentage of the journey with correct destination.
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Table 7. Percent of journey correctly predicted for all models tested against the unseen journey to
Destination 22.

Percentage of Journey Correctly Predicted (%)

LSTM 51.590
BiLSTM 46.463

LSTM + Attention 44.756
BiLSTM + Attention 55.370

Although the BiLSTM with Attention performed the best for this test, it is important to
check that the incorrect predictions it makes are logical. In other words, it should be assured
that the model is not predicting a destination that is unreachable from the road in which
the car is travelling. Such a prediction would indicate a problem with the trained model.
This investigation is done as shown in Figure 5b, which includes the whole test journey to
D22. The starting point is visualized by the red pin and the correct destination is shown by
the orange circle. The different coloured sections along the route indicate what destination
the BiLSTM with Attention model is predicting at that position. Each route colour fits
with its respective destination colour (these are previously clustered destinations). The
destination cluster area is shown by the transparent circles, whereas the solid outer circles
are for easier visualization of their locations.

Predicting a destination from a journey is difficult due to the many routes that could
be taken to reach the same, or even slightly different, destination. Figure 5b illustrates this
on a few occasions. For example, at the junction highlighted by J1, if the car had turned
to the left, it would be on a direct route to the green destination. However, as soon as the
vehicle makes a right turn, the model recognizes that the driver is not heading toward
the green destination and predicts red instead, which is still reachable by different road
intersections. These predictions, while incorrect, are reasonable.

As the vehicle continues along the route, predictions change as roads that lead to the
incorrect destinations are passed. This is credible because it shows that the destinations the
BiLSTM with Attention model is predicting are logical.

Another interesting prediction change occurs straight after a highway intersection,
highlighted by J2. The model has started predicting the correct destination, until it changes
back to grey for a few timesteps. This means that this section of the journey is likely very
similar between the grey and the orange destination, causing uncertainties of the model in
its prediction. Nonetheless, once the car’s position is updated past the highway junction,
the model predicts the correct destination for the remainder of the test journey.

Against a journey which is not part of the training dataset, the model showed success-
ful generalization and made logical predictions throughout the unseen test journey.

5.2.3. Seen Journey with D5

Figure 6 shows how each model’s prediction probability changes for the seen journey
to D5.

All models perform perfectly with this seen journey (Table 8), with only the LSTM
and BiLSTM models giving incorrect predictions at the very end of the journey, as shown
by the rapid drop in probability from 90% journey onwards in Figure 6a. This drop occurs
for all tested models; however, the models with attention mechanism have probabilities
that remain above 50%. Throughout the journey, the models with attention mechanism
show higher probability levels for most of the time, indicating that they have more stability
in their predictions.

Figure 6b shows the entire journey, with the initial black points of output being the
first 20 timesteps that the model cannot make predictions on due to the moving time
window. On the 21st timestep, the BiLSTM with Attention model immediately predicts
the correct destination and remains with this prediction for the entire journey. The drop in
probability by the end of the journey indicates that the vehicle is starting to head on routes
leading to other destinations.
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Figure 6. (a) Correct destination prediction certainty versus percentage complete for the seen journey to Destination 5.
(b) BiLSTM with Attention destination predictions visualized along the same route. The red pin is the starting point. Map
data © 2021.

Table 8. Percent of journey correct for all models tested against the seen journey to Destination 5.

Percentage of Journey Correctly Predicted (%)

LSTM 99.608
BiLSTM 97.416

LSTM + Attention 100
BiLSTM + Attention 100

5.2.4. Seen Journey with D15

Figure 7 shows how each model’s prediction probability changes for the seen journey
to D15.

Figure 7. (a) Correct destination prediction certainty versus percentage complete for the seen journey to Destination 15.
(b) BiLSTM with Attention destination predictions visualized along the same route. The red pin is the starting point. Map
data © 2021.
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In this test, as detailed in Table 9, the models with attention mechanism significantly
outperform the models without it. Figure 7a,b shows that all the models achieve 100%
probability once the vehicle passes the first two highway intersections and is on a direct
route to the destination. However, the models without attention have relatively low
prediction probabilities for the first half of the journey, whilst the models with attention
mechanism maintain more stable and high prediction probabilities throughout, stabilizing
close to 100% probability after the mid-journey mark.

Table 9. Percent of journey correct for all models tested against the seen journey to Destination 15.

Percentage of Journey Correctly Predicted (%)

LSTM 63.238
BiLSTM 67.285

LSTM + Attention 100
BiLSTM + Attention 100

Based on all the results of each test, the BiLSTM with Attention model consistently
shows the highest performance against the test set, demonstrating high accuracy and
prediction stability against the test journeys. Although the BiLSTM achieves higher perfor-
mance scores than the LSTM model against the shuffled test set, the independent journey
tests show that their performance is very similar. While there is no significant performance
difference between the two models with the attention mechanism against the shuffled test
set (Figure 4), the higher certainty, prediction stability, and the earlier correct destination
prediction from the unseen journey test (Figure 5a and Table 7) suffice to demonstrate that
the BiLSTM with Attention model is most adequate in this case for destination prediction.

6. Conclusions

This paper presented a reliable methodology for vehicle destination prediction. It
demonstrated the effectiveness of applying an attention mechanism over the output of a
BiLSTM network for predicting the destination of a vehicle based on its journey history,
achieving classification accuracy higher than 96% from the test set, based on the GeoLife
GPS Trajectory [9–11] dataset.

While the models with attention have outperformed the standard LSTM and BiLSTM
models, the performance difference against the test set between the two models with
attention is found not statistically significant. However, further investigating the models
against test journeys provided more insights. Against the unseen test journey, consistently
outperforming the other models, earlier prediction, and maintaining strong prediction
stability throughout the journey, the BiLSTM with Attention is proved to be the most ade-
quate model in this case for predicting vehicle destinations. The performance improvement
shown by attention makes sense because attention mechanisms work better with larger se-
quences as they use intermediate encoder states as the inputs into the decoder, as opposed
to traditional sequence-to-sequence models that can only store the final encoder states in a
single vector, causing performance bottlenecks when sequences become larger [31].

Future work could involve testing these models in a real-world scenario with a dataset
that continuously expands as a user completes more trips, to achieve a more in-depth study
on how the models perform when there are less or more data available. Additionally, it will
be useful to introduce an uncertainty measure, e.g., entropy, to the predicted probabilities
of the destinations [2]. This will help identify the reliability of the prediction model, which
will then account for the cases that comprise more than one common destination.
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