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Special Issue Article

Integrating greenhouse gas capture and C1
biotechnology: a key challenge for circular economy.

Introduction

Life is supported by a small number of elements of the peri-
odic table, i.e. between 25 and 28 elements according to
different criteria. While all of them are relevant, carbon is
the key element that explains life in our planet, even though
elemental carbon cannot be used directly as a carbon
source by any organism. Carbon must be previously bound
to other elements, forming small or very large molecules to
become metabolizable by the living beings. In fact, life
arose from the combination of small molecules such as
hydrogen (H2), water (H2O), ammonia (NH3), hydrogen sul-
fide (H2S), carbon monoxide (CO), carbon dioxide (CO2),
methane (CH4), formaldehyde (H2CO) or hydrocyanic acid
(HCN), within others. Several of them contain a single car-
bon atom and form part of a group of molecules named as
C1 compounds. Interestingly, all these prebiotic small
molecules still remain in the biosphere, and some of them
are quite abundant and useful to support life, remaining
many micro- and macroorganisms able to use them as car-
bon and/or energy sources. The aim of this editorial is to
analyse the present and future prospects and the valoriza-
tion of C1 carbon sources obtained either from natural or
anthropogenic origin through microbial biotechnology as a
key challenge for the ‘Green Deal’ and the circular econ-
omy.
To focus this analysis, it is important to define the

scope of C1 compounds. Although C1 compounds are
usually defined as substances that contains a single car-
bon atom, some authors extend this scope to those
compounds that contain carbon atoms without C-C
bonds. Among the first, we can consider CO, CO2, CH4,
H2CO, methanol (CH3OH), formic acid (HCOOH), methy-
lamine (CH3NH2), methanethiol (CH3SH), different halo-
methanes (e.g. CHCl3) and others. Among the latter, we
can list, for instance, dimethyl or trimethyl amines,
dimethylsufides, dimethylsulfoxide, dimethylsulfone,
dimethylformamide and others. Special mention should
be made of soluble or insoluble mineral carbonates that
can be converted into CO2 under specific environmental

conditions and then used by some organisms as a car-
bon source (Kral et al., 2014).
On the other hand, we should consider that not all C1

compounds are equally applicable as potential feedstock
for industrial scale biomanufacturing mainly due to their
limited availability. The most relevant C1 compounds for
biotech purposes include CO2, CO, CH4, HCOOH and
CH3OH. Significantly, CO2 and CH4 are greenhouse
gases that are increasing their concentration in the atmo-
sphere due to the large current anthropogenic activity,
and consequently, developing biotechnology processes
aimed at their sequestration and transformation is essen-
tial for planet survival. Additionally, other anthropogenic
gases such as power plant flue gas, steel mill gas,
anaerobic digestion-derived biogas, synthesis gas (syn-
gas) and others produced by gasification of organic
waste are abundant, rich in C1 substrates (i.e. CO, CO2,
CH4) and, therefore, useful to develop different biopro-
cesses. Finally, HCOOH or CH3OH derived from cat-
alytic processing of CO2 or from other sources are liquid
substances more amenable than C1 gases to transporta-
tion and more affordable for a microbial utilization, due
to their higher water solubility.
Except CO2, the other relevant C1 compounds men-

tioned above can be used both as carbon and energy
sources. Therefore, metabolizing CO2 requires an addi-
tional energy source that can be provided by light, H2,
CO, electricity or some organic and inorganic com-
pounds. Although some of these C1 compounds can be
metabolized by plants and animals, this analysis will be
focussed only in the biotech processes based on C1-
utilizing microbes including bacteria, fungi, microalgae
and archaea. Native and synthetic C1 assimilation path-
ways have been used to validate the transformation of
C1 compounds to biofuels, and biobased chemicals or
even to food and feed (single cell protein) as industrially
promising manufacturing procedures, but a deeper
understanding of the governing mechanisms of C1 meta-
bolic pathways is needed to develop most efficient C1-
based biotech processes (Jiang et al., 2021).
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Finally, we have to consider that a circular bioecon-
omy based on C1 compounds has the potential to sus-
tainably produce a large number of compounds, at the
same time that can contribute to reduce accumulation of
C1 greenhouse and waste gases responsible of climate
change, such as CO2 and CH4. Moreover, technologies
that facilitate treatments of all kind of organic waste by
gasification followed by carbon capture and conversion
of gases into useful products will help also to mitigate cli-
mate change by enabling a circular carbon economy
(Fackler et al., 2021a; Wood et al., 2021). Figure 1
shows a scheme of the most relevant biomanufacturing
processes that can be carried out using C1 compounds
and that will be briefly reviewed hereinafter.

Fermentations of C1 gases

Syngas fermentation

We currently have at our disposal a collection of more
than 100 isolated anaerobic bacteria named acetogens
that synthesize acetyl-CoA from CO or from CO2 plus H2

(Bengelsdorf et al., 2016; Takors et al., 2018; M€uller,
2019; Jin et al., 2020; Katsyv and M€uller, 2020; Lemaire
et al., 2020; Bourgade et al., 2021). These organisms
use CO and CO2 as substrates for the methyl or car-
bonyl branches of the Wood–Ljungdahl pathway that
produce acetyl-CoA as metabolic precursor. Acetogens
can grow using syngas that is mainly composed of CO2,
CO and H2, a mixture of CO2 and H2 or only CO. These

microorganisms have been used to produce acetate,
ethanol, 2,3-butanediol or butyrate as the most relevant
products although others such as acetone or butanol
can also be produced from syngas by genetic modifica-
tions (Minton et al., 2016; Jin et al., 2020; Bourgade
et al., 2021). In this sense, several industrially useful
acetogenic bacteria have been already modified using
synthetic biology tools, such as Clostridium ljungdahlii
(K€opke et al., 2010; Molitor et al., 2016; Zhang et al.,
2020a), Clostridium autoethanogenum (Liew et al., 2016;
Fackler et al., 2021b), Acetobacterium woodii (Straub
et al., 2014) or Moorella thermoacetica (Kita et al., 2013;
Kato et al., 2021).
Acetogenic bacteria can be used not only to capture

CO2 or CO produced as contaminants by anthropogenic
activities, but also as a biological alternative to transform
syngas into valuable products within the gasification
stream of a chemical refinery. To reduce the volume of
organic waste (or biomass) generated in cities or indus-
tries, it is possible to construct biorefineries that trans-
form organic waste into syngas through different
gasification processes (Chan et al., 2021; Fackler et al.,
2021b). Up to now, syngas has been further transformed
into different chemicals and fuels of industrial interest by
using Fischer–Tropsch catalytic procedures. However,
more recently, several research approaches from the
academia and the industry (e.g. LanzaTech, IneosBio,
Coskata) have demonstrated that syngas can be alterna-
tively transformed into valuable products by using

Fig. 1. Main biomanufacturing processes that can be carried out using C1 compounds.
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bacterial syngas fermentations (Molitor et al., 2017; Ben-
gelsdorf et al., 2018; De Tissera et al., 2019). However,
the efficiency of syngas fermentation is still low and
needs to be improved to compete with chemical cataly-
sis (Phillips et al., 2017; Sun et al., 2019; Geinitz et al.,
2020).

CO metabolism

CO, one component of syngas, is a highly toxic com-
pound for most living beings, but there are many
microbes which can deal with its toxicity and use it as a
carbon and energy source (Robb and Techtmann, 2018;
Cordero et al., 2019; Duan et al., 2021). Curiously, CO
occurs at relatively high concentration in Mars’ atmo-
sphere, and it represents a focal point for astrobiological
research (King, 2015). CO oxidation coupled to the gen-
eration of energy for growth is achieved by aerobic and
anaerobic bacteria, and archaea, belonging to the physi-
ological groups of aerobic carboxydotrophic, facultatively
anaerobic phototrophic, and anaerobic acetogenic,
methanogenic or sulfate-reducing bacteria. However, not
all microbes that metabolize CO are able to grow only
using 100% CO. Within the aerobic CO-oxidizing
microorganisms, we can categorize two major groups,
the carboxydotrophs and the carboxydovores (Cordero
et al., 2019). While carboxydotrophs grow chemolithoau-
totrophically with CO as the sole energy and carbon
source when present at elevated concentrations, car-
boxydovores represent a broader group of bacteria and
archaea which oxidize CO at low concentrations, and in
contrast to carboxydotrophs require organic carbon to
grow. The possibility that CO can be used by some bac-
teria to convert it into a variety of chemicals and to gen-
erate bio-H2 is also promoting a new field of research
(Revelles et al., 2016, 2017; Robb and Techtmann,
2018; Rodr�ıguez et al., 2021).

CO2 capture

Since CO2 cannot be used as the sole carbon and
energy source, all organisms that capture CO2 require
an additional source of energy (Claassens et al., 2016;
Claassens, 2017; Hu et al., 2018; Kumar et al., 2018;
Liang et al., 2020). In the case of acetogenic bacteria,
CO2 is captured by reduction using the energy provided
by CO or H2. Nevertheless, some acetogenic bacteria
can also use electric energy from a cathode to fix CO2

by a process called microbial electrosynthesis (MES)
(Dess�ı et al., 2021) (see below).
On the other hand, chemolithoautotrophic bacteria can

use H2 or inorganic compounds as electron donors for
energy requirement and growth using CO2 as a carbon
source. One example of such bacteria is Cupriavidus

necator that is able to grow and produce different indus-
trial products using CO2 and H2 under aerobic conditions
(Li et al., 2020; Nangle et al., 2020; Panich et al., 2021).
Methanotrophs can also sequester CO2 and transform it
into CH3OH using H2 or an organic compound as energy
source. Therefore, methanotrophs are used as cell facto-
ries for the production of a wide range of high-value
products (Sahoo et al., 2021).
In addition to H2, there are other compounds used by

microbes as electron donors (Gargaud, 2011). In this
sense, the most common sulfur compounds utilized as
electron donors by denitrifying bacteria (e.g. Thiobacillus,
Thiomicrospira) are hydrogen sulfide (H2S), elemental
sulfur (S0), sulfite (SO3

�2) and thiosulfate (S2O3
2�). The

aerobic oxidation of ferrous iron (Fe2+) to ferric iron
(Fe3+) is an energy-yielding reaction, used by some
prokaryotes to conserve energy (e.g. Ferroglobus). The
most common nitrogen compounds used as electron
donors for energy conservation are NH3 (e.g. Nitro-
somonas, Nitrosospira, Nitrosococcus and Nitrosolubus)
and nitrite (NO2�) (e.g. Nitrobacter, Nitrospira and Nitro-
coccus). A special case of nitrogen-oxidizing microorgan-
isms corresponds to those capable of carrying out the
anoxic oxidation of NH3, a process known as anamox. In
this case, the electron acceptor is NO2�, and the product
of the metabolic reaction in addition to proton motive
force is the generation of N2. This metabolic reaction is
carried out by a special type of microorganisms belong-
ing to the Planctomycetes phylum of bacteria.
Phototrophic bacteria utilize light as energy source to

capture CO2 (Choi et al., 2019; Naduthodi et al., 2021).
It is well known that oxygenic phototrophic cyanobacteria
as well as the eukaryotic microalgae, algae and plants
use CO2 as a carbon source and many reviews have
been devoted to show the utility of these bacteria for
biotechnological purposes (Singh et al., 2018; Veaudor
et al., 2020; Leong et al., 2021; Sarma et al., 2021). In
addition, anoxygenic phototrophic bacteria can also use
CO2 to grow and have been utilized for biotech purposes
(George et al., 2020).
Geologic sequestration of CO2, i.e. carbon capture

and storage (CCS), is one strategy to reduce the emis-
sion of greenhouse gases. Mineralization of CO2 into
CaCO3 is possible if the equilibrium of the reaction of
Ca2+ with CO3

2� is moved to the formation of CaCO3

under a saturation state. This is achieved in the pres-
ence of sufficient dissolved Ca2+ at alkaline pH and in
the presence of a nucleation substrate. Microbes have
been shown to enhance CaCO3 precipitation (microbio-
logically induced calcium carbonate precipitation, MICP)
via cation adsorption to negatively charged functional
groups on microbe surfaces and by metabolically driven
changes in the solution chemistry, which increase min-
eral saturation and induce nucleation (Castro-Alonso
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et al., 2019). In general, two metabolic pathways are
involved in this biomineralization, i.e. the autotrophic and
the heterotrophic pathways (G€orgen et al., 2020). Auto-
trophic precipitation of carbonates includes oxygenic and
anoxygenic photosynthesis, and non-methylotrophic
methanogenesis. In the heterotrophic pathway, two pro-
cesses are reported involving sulfur and nitrogen cycles
respectively. The microbial induced carbonate precipita-
tion has been biotechnologically used for biocementation
of materials (Reddy and Sumit, 2018). Moreover, MICP
was investigated for crack repair and the surface treat-
ment of various types of construction materials (Joshi
et al., 2017; Lee and Park, 2018; Seifan and Berenjian,
2018). Fungi and bacteria can be used in these pro-
cesses (Menon et al., 2019).
However, most interestingly, a number of researches

are currently focussed on the creation of new synthetic
organisms able to capture CO2 using HCOOH or light,
opening new frontiers in this field (Woo, 2017; Franc�ois
et al., 2020; Liang et al., 2020; Satanowski and Bar-
Even, 2020; Satanowski et al., 2020). Rewiring Escheri-
chia coli for CO2 fixation to convert it into sugar may
enable diverse biotechnological applications (Antonovsky
et al., 2017; Flamholz et al., 2020). An E. coli recombi-
nant strain was created to use CO2 and HCOOH, and
although it still required glucose to grow, authors antici-
pated that with some additional modifications, it could
grow only using CO2 and HCOOH (Bang and Lee, 2018;
Bang et al., 2021). A similar approach had been also
carried out using a different metabolic strategy to capture
CO2 in combination with a complex organic energy
source (e.g. glycerol and xylose) (Antonovsky et al.,
2016; Kerfeld, 2016). Interestingly, the hypothesis was
demonstrated, and very recently, a new E. coli auto-
trophic recombinant was constructed by laboratory evo-
lution able to capture CO2 using HCOOH as the only
source of energy (Gleizer et al., 2019).
On the other hand, light-driven CO2 sequestration has

been achieved in E. coli by using self-assembled cad-
mium sulfide nanoparticles (Hu et al., 2021). Biohybrids
had been also investigated in other organisms (Nichols
et al., 2015; Zhang and Tremblay, 2017; Guo et al.,
2018; Ding et al., 2019; Dogutan and Nocera, 2019;
Kumar et al., 2019; Sahoo et al., 2020) (see below).
Finally, as a proof of concept, a complex in vitro sys-

tem with 17 enzymes was generated to sequester CO2

(Schwander et al., 2016). An example of how protein
engineering and synthetic biology could assist in this
mission is the new-to-nature glycolyl-CoA carboxylase
created by combining rational design, high-throughput
microfluidics and microplate screens that improved its
catalytic efficiency by three orders of magnitude to
match the properties of natural CO2-fixing enzymes
(Scheffen et al., 2021). Moreover, enzymes can also be

used in combination with electrochemistry for CO2 cap-
ture (see below).

Methane fermentation

CH4 can be obtained from natural sources, such as wet-
lands or animal digestion, along with many anthro-
pogenic activities such as the use of anaerobic digesters
(methanogens and biogas) or by thermogenic processes.
However, the largest reservoir of CH4 is under the sea-
floor in the form of CH4 clathrates. Natural gas is approx-
imately 90% CH4. Therefore, it is normal to found many
organisms capable of oxidizing CH4 in the biosphere that
are known as methanotrophs utilizing CH4 as the source
of carbon and energy. All aerobic methanotrophs oxidize
CH4 to CO2 through a common enzymatic cascade. This
oxidation process produces CH3OH, CH2O and HCOOH
as reaction intermediates. Methanotrophs are therefore
excellent candidates for CH4 sequestration (Sahoo et al.,
2021). These capabilities enable them as cell factories
for a wide range of high-value products (Nguyen et al.,
2021). In this sense, methanotrophs have been used to
synthesize polyhydroxyalkanoates for plastic sector, sin-
gle cell proteins for feeding animals and lipids for biofuel
production (Wang et al., 2020).

Fermentation of C1 liquids

Common challenges associated with C1 gas fermenta-
tion systems are gas-to-liquid mass transfer limitations
and lower solubility of the gaseous substrates. This
problem does not exist when using C1 liquids, such as
CH3OH or HCOOH. Therefore, CH3OH is considered a
promising C1 feedstock adding its great availability from
different sources (Pirola et al., 2018; Simon Araya et al.,
2020). However, CH3OH can inhibit the growth of
microorganisms under aerobic conditions, mainly
because of the high reactivity of its toxic downstream
metabolite H2CO. Methylotrophs, including bacteria, such
as Bacillus methanolicus, and yeasts, such as Pichia
pastoris, can use CH3OH as a carbon and energy
source. With some exceptions such as P. pastoris, the
use of native methylotrophic microorganisms suffers from
the drawbacks of poor genetic availability and low meta-
bolic yield, and therefore, engineering non-native methy-
lotrophic microbes has been used to convert methanol
into value-added products (Zhang et al., 2019; Zhan
et al., 2021). Different bioengineering efforts have shown
that these recombinant organisms can be engineered to
convert CH3OH into biofuels and other commodity chem-
icals (Bennett et al., 2018; Chistoserdova, 2018; Anto-
niewicz, 2019; Zhu et al., 2020). Engineering CH3OH
metabolic pathways have been mainly carried out in
E. coli, Saccharomyces cerevisiae and Corynebacterium

ª 2021 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd., Microbial
Biotechnology, 15, 228–239

Editorial 231



glutamicum. However, to date, none of engineered
strains can grow on CH3OH as the sole carbon source.
On the other hand, HCOOH can be efficiently pro-

duced via electrochemical or photochemical catalytic
conversion of CO2, and it can be directly used as an
organic carbon source by microorganisms (Yishai et al.,
2016; Cotton et al., 2020). HCOOH has recently been
suggested as an industrial feedstock, although bio-
production based on this carbon source is still not com-
mercially mature (Satanowski and Bar-Even, 2020). Con-
sequently, the construction of efficient HCOOH-
assimilation pathways in microorganisms is essential for
the utilization of cheap, renewable C1 compounds (Mao
et al., 2020; Tuyishime and Sinumvayo, 2020; Bang
et al., 2021). Natural microorganisms that possess
HCOOH utilization pathways mainly use two strategies
to grow on HCOOH as the sole carbon source. In the
first one, HCOOH is completely oxidized to generate
CO2 and reducing equivalents, being Calvin–Benson–
Bassham (CBB) cycle an example of this type. In the
second one, not all HCOOH is oxidized into CO2, while
some is directly assimilated via the central metabolism.
CBB cycle (reductive pentose-phosphate cycle) discov-
ered in C. necator is the only natural pathway for auto-
trophic growth on HCOOH, and thus, initial metabolic
engineering of HCOOH utilization was mainly concen-
trated in this pathway. However, new synthetic alterna-
tive HCOOH utilization pathways have been recently
investigated (Claassens et al., 2020; Mao et al., 2020).
Currently, only some engineered strains of E. coli have
been able to grow on HCOOH as the sole carbon source
although the low cell density and specific growth rate
need further improvement (Yishai et al., 2018; Bang
et al., 2020; Kim et al., 2020).

Electrocatalysis

As remarked above, MES is emerging as a promising
technology to improve the microbial utilization of C1
compounds (Chu et al., 2020; Dess�ı et al., 2021). The
first proof-of-concept experiment of MES was conducted
in 2010 showing that homoacetogens can produce extra-
cellular acetate and 2-oxobutyrate from CO2 with elec-
trons delivered from a graphite electrode (Nevin et al.,
2010). Since then, many hybrid electro-biochemical sys-
tems have been developed (Li et al., 2012; Hwang et al.,
2015; Bajracharya et al., 2017; Gimkiewicz et al., 2017;
Jang et al., 2018; Le et al., 2018; Tashiro et al., 2018;
Yuan et al., 2019; Hegner et al., 2020).
Nevertheless, electric energy can be also used to syn-

thesize C1 by chemical catalysis and upgraded via
microbial fermentation to produce biobased chemicals.
In this sense, electrocatalysis represents an attractive
strategy with a huge potential in the field of

biomanufacturing. The high efficiencies and rates of
electrochemical catalysis can be combined with the high
selectivity and access to complex end products of micro-
bial catalysis. The electrochemical CO2 reduction ren-
ders HCOOH or CO that, as stated above, can be used
as carbon and energy sources from many microorgan-
isms (Jin et al., 2021; Park et al., 2021). On the other
hand, H2 can be generated by electrolysis of H2O and
used as an energy source to grow. Moreover, the co-
electrolysis of CO2 and H2O can render at the same time
CO and H2, this is, a syngas equivalent (Lu et al., 2020).
Syngas can also be catalytically transformed into metha-
nol suitable for methylotrophs.
Finally, enzyme based electro-catalysed production of

HCOOH from CO2 has received great attention (Srikanth
et al., 2014, 2017; Zhang et al., 2016; Schlager et al.,
2017; Jayathilake et al., 2019). Effective oxygen tolerant
biocatalysts capable of utilizing electrons supplied from a
cathode are being sought to render biocatalytic HCOOH
production from CO2 feasible. Bioelectrochemical CO2

reduction with enzymes or whole-cell biocatalysts is gen-
erally characterized by a high selectivity of products and
a high energy efficiency with a small overpotential to
drive the desired reaction.

Future prospects

The utilization of C1 raw materials is crucial for estab-
lishing a sustainable circular carbon economy. C1 com-
pounds are envisioned as ideal resources for both the
chemical industry and the biotechnological sector. Prob-
ably, the truly sustainable feedstock for a circular carbon
economy is CO2 not only because its conversion to
chemicals and fuels represents a sustainable solution for
reducing greenhouse gas emissions, but also because it
is abundant and can be obtained from different sources.
Although direct CO2 capture from air will result in a net
removal from the atmosphere, this process possesses
technical and economic problems because it is highly
dilute, only about 400 ppm, i.e. 100–300 times more
dilute than in gas- and coal-fired power plants. The esti-
mated cost of capturing CO2 from air ranged from $300
to $1000 per ton. Thus, alternatively, the industrial pro-
duction of chemicals from CO2 should consider the use
of CO2 high-volume waste as raw material (Bui et al.,
2018).
Solar energy is envisioned as the most suitable

renewable energy source to reduce CO2 and provide a
sustainable system. Besides the firstly discovered
Calvin–Benson–Bassham (CBB) cycle, other five natural
CO2 fixation pathways have been described, i.e. the
Wood-Ljungdahl pathway, the reductive TCA cycle, the
dicarboxylate/4-hydroxybutyrate cycle, the 3-
hydroxypropionate bicycle and the 3-hydroxypropionate/
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4-hydroxybutyrate cycle. Refining the efficiencies of the
native pathways as well as the design of synthetic path-
ways will provide new opportunities to improve the
assimilation efficiencies of CO2. Developing new artificial
autotrophic microorganisms, and especially phototrophic
ones, for reinforcing carbon capture utilization (CCU)
should be consider a key target in the next years. How-
ever, the use of artificial autotrophic cell factories still
requires additional improvements in the CO2 fixation
pathways, in order to solve compartmentalization, and to
decide the best host as well as to reduce the cost of
power supply. The increasing number of genomic and
metagenomic sequences can help in this task, since it
will allow finding by data mining better enzymes and
pathways to improve the efficiency. In the same way,
solar-powered electrochemical reduction in CO2 and
H2O to syngas, coupled to bacterial fermentation, can be
also considered as an alternative to the sustainable pro-
duction of useful chemicals (Haas et al., 2018).
Although it has been demonstrated that syngas, CO or

CO2 can be directly transformed at industrial scale by
acetogenic fermentation in useful alcohols (e.g. ethanol,
butanediol), the main product generated by acetogenic
bacteria is acetate. The potential of acetate to become a
next-generation platform substrate for its further fermen-
tation into value-added bioproducts has been underex-
plored so far (Kiefer et al., 2021; Kim et al., 2021).
Attractive platforms involving photomixotrophic metabo-

lism in cyanobacteria can provide unparalleled improve-
ments in yield for the conversion of CO2. Of particular
interest is the ability to combine CO2 with other C1 com-
pounds such as CH4 or chemically produced CH3OH and
HCOOH (Kanno et al., 2017; Singh et al., 2018).
The creation of artificial bacterial consortia to improve

the efficiency of C1 conversion into chemicals is a
promising alternative (Hays et al., 2017). Strategies
involving co-cultivation of methanotrophic and oxygenic
photosynthetic bacteria in biogas have been already
explored (Van der Ha et al., 2012; Hill et al., 2017). An
engineered Synechococcus elongatus able to convert
CO2 into secreted sucrose can be used in co-culture
with other bacteria to generate biotechnological applica-
tions (L€owe et al., 2017; Weiss et al., 2017; Fedeson
et al., 2020; Zhang et al., 2020b).
A proof-of-concept experiment conducted by Cheng

et al. (2009) demonstrated that a biocathode enriched
with the methanogenic archaea Methanobacterium
palustre can store electricity in the form of CH4. In this
CH4-producing bioelectrochemical system (BES), CO2

and electrical energy are converted into CH4, using elec-
trodes that supply either electrons or H2 to the archaea
(Blasco-G�omez et al., 2017). This technology is referred
to as bioelectrochemical power-to-gas (BEP2G) and con-
sidered as a way of storing renewable surplus electricity

(Geppert et al., 2016), i.e. CH4 generated with excess
renewable power that cannot be fed into the electric grid
can be directly stored in the existing gas infrastructures.
The main objective of the so call third-generation-(3G)-

biorefineries is to use cell factories to convert renewable
energies and CO2 into chemicals, searching for routes
for biomanufacturing chemicals in a carbon-neutral man-
ner. However, there are still many trends and key chal-
lenges for future advancement to make them competitive
with the petroleum industry (Liu et al., 2020). Within this
challenge, the design of efficient CO2 reduction systems
by mimicking the mechanism of natural photosynthesis
using semiconducting nanomaterials interfaced with
electroactive bacteria in a photosynthetic microbial
electrosynthesis system opens a revolutionary alternative
(Xu et al., 2020; Gupta et al., 2021).
Finally, although the opportunities offered by the bioe-

conomy linked to the use of C1 compounds are wide
and very promising, today there are still few companies
that have started or are exploring the implementation of
these biotechnological processes to industrial scale
(Teixeira et al., 2018). Table 1 tries to summarize some
examples of the main industrial approaches without pre-
tending to be exhaustive. While CH3OH was explored
years ago at industrial scale to produce single cell protein

Table 1. List of companies that use C1 compounds as raw materi-
als for microbial fermentation. Some industrial alliances are shown
in parentheses.

C1
compound Company Final product

Syngas LanzaTech (Basf, Global
Bioenergies, Evonik,
ArcelorMittal, Aemetis,
IndianOil, Swayana)

Ethanol, butanediol,
chemicals

Syngas Ineos Bio (New Planet
Bioenergy)

Ethanol

Syngas Coskata (Synata Bio) Ethanol
CH4 Newlight Technologies Polyhydroxyalkanoates
CH4 Mango Materials Polyhydroxyalkanoates
CH4 Calysta (BP, Cargill,

NouriTech)
Protein, chemicals

CH4 Unibio Protein
CH4 Industrial Microbes Methanol
CH4 MBP Titan (formerly Intrexon) Protein, chemicals
CH4 NatureWorks (Calysta) Lactic acid
CO2 Deep Branch Protein
CO2 Solar Foods Protein
CO2 Air Protein Protein
CO2 Novo Nutrients Protein
CO2 Kiverdi Protein
CO2 White Dog Labs Protein
CO2 OPX Biotechnologies (Cargill) Biofuels
CO2 Trelys Amino acids
CO2 BioMason (Novo Holdings) Biocementation
CO2 BioCement Technologies Inc. Biocementation
CO2 Basilisk Self-healing concrete
HCOOH-
electro
CO2

Ginkgo Bioworks Biofuels
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by bacteria or yeasts, the C1 liquids, neither CH3OH nor
HCOOH are currently being used at industrial scale as
feedstock to produce materials of commercial interest
through fermentation. Interestingly, Feedstocks United
(Netherlands) has developed a new technology that uses
trioxane derived by chemical synthesis from C1 com-
pounds as feedstock for microbial fermentation, exemplify-
ing that there are still other options to be explored in the
field of C1 biotechnology. All this leads to the conclusion
that we are facing a large scenario of opportunities and
strategies for biotechnological companies to face the chal-
lenge posed by the Green Deal in the coming years.
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