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Abstract

A disastrous form of pedestrian behavior is a stampede occurring in an event
involving a large crowd in a panic situation. To deal with such stampedes, the
possibility to increase the outflow by suitably placing a pillar or some other shaped
obstacles in front of the exit has been demonstrated. We present a social force
based genetic algorithm to optimize the best design of architectural entities to deal
with large crowds. Unlike existing literature, our simulation results indicate that
appropriately placing two pillars on both sides but not in front of the door can
maximize the escape efficiency. Human experiments using 80 participants
correspond well with the simulations. We observed a peculiar property named
tangential momentum, the escape speed and the tangential momentum are found
to be negatively correlated. The idea to reduce the tangential momentum has
practical implications in crowd architectural design.

Introduction

Crowd stampedes happen not rarely in religious gatherings, music concerts,
earthquakes or in other panic situations [1-3]. Recently in the literature, there
emerge a great number of researches on the modeling of the behavior of
pedestrians [4-7], such as queueing theoretical approaches [8], fluid-dynamic

models [9-11], the social force model [2, 12—14], cellular automata [15-18], and
multi-agent approaches [19, 20]. The social force model is a widely used approach
[14,21-25], that can model many observed collective behaviors, such as “stop-

and-go”, “faster is slower”, “arching and clogging” [12, 26].
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Architectural design can either facilitate or hamper the escape process in panic
situations. To do this, some interesting obstacle placements were studied
outflow by suitably placing an obstacle or some other shaped obstacles in front of
the exit. Unsuitable obstacles, however, will slow down the flow rather than
increase it. Although many researchers have already performed a significant
amount of work on how to control the pedestrian flow and to maximize the
escape speed in panic situations, there is no very simple but particularly effective
approach to achieve the goal.

Helbing et al. [2] suggested that the obstacle may behave like a wave breaker to
absorb the pressure in the crowd and to reduce it to a subcritical level. They
observed the clogging effect in a pushy crowd with approximately 20 participants,
while the placement of one obstacle increased the efficiency of escape. Zuriguel et
al. [30] proposed that the physical mechanism behind the clogging reduction is a
pressure decrease in the region of arch formation. Escobar et al. [25] compared
different shaped obstacles for their ability to enhance the outflow efficiency, and
pillar(s) were found to be the most efficient and the simplest design. Yanagisawa
et al. [29] studied efficiency of escape with an obstacle on hexagonal cell space
with human experiments and Shiwakoti et al. [22] performed a series of
experiments with ants to enhance the panic escape of crowd through architectural
simple and effective shape of obstacle, none of them told us what is the best layout
of the obstacles. Both Johansson [26] and Shukla [28] used a genetic algorithm to
optimize the layout of the obstacles. Their works demonstrated that a genetic
algorithm 1is an efficient tool for solving such types of problems. In [26], they
claimed that the “useless channel” in the architecture design “has obviously no
negative effect on the flow”. However, this design sacrifices the pedestrians in the
“useless channel” to rescue the others, which we regard as unacceptable and
unfair to the pedestrians in it.

People with an experience of running to catch a bus during rush hour in large
and crowded cities such as Beijing may have the experience that people pushing
from the middle are comparatively less successful to get on board the bus than
those people pushing from the sides. This experience provides us with the
heuristics required to study the property that benefits the people who push from
the sides. Intuitively stated, the people pushing from the middle are “blocked” by
the force coming from aside, which we call here the tangential momentum that
will be defined in Simulation Results section. This is like the case when you pull
out two balls from a bottle. When you pull out the balls one by one, the force is
along the pulling rope and you can finish the task easily. When you pull them out
simultaneously, the two balls interact with tangential force that is perpendicular to
the pulling rope that gets them stuck. We make an assumption that the property
that reduces the escape speed in a panic situation is the tangential momentum. If
this assumption is true, to increase the escape speed is to find a better layout
design of a room that can reduce the tangential momentum.
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In this work, a genetic algorithm is used to provide the layout design of the
obstacles (pillars) that can reduce the tangential momentum, the settings and
parameters for the simulation are extracted from human experiments. The human
experiments are used as a test of the simulated optimal layout to see whether the
layout can speed up the escape. The model, on the other hand, is a prediction of
the experiments, provided the simulated escape time corresponds well with the
experiment outcomes.

Results

We consider the evacuation of a room of size 10m x 10m with a single exit of
width of 1 m. This room might be a public hall or inside a temple, for example.
We assume that there are 80 participants in this room and due to some panic
situations, all the participants need to escape. We used the social force model for
pedestrian dynamic. The room architecture and escape process are shown in
Fig. 1, with the black line representing the wall and the red dots representing the
evacuating pedestrians.

Simulation Results

We used an Genetic Algorithm to optimize the setting of the obstacles. The
simulation is run on a AMD 6172 based 2.1 GHz server. A typical optimization
using 80 participants costs approximately 1,250 CPU core hours. The total
computation time for our nine optimizations was 11,242 CPU core hours.

The optimized obstacle settings when there are 80 participants in the room are
shown in Fig. 2 and Table 1 (the lower left corner of the room is set as (0,0), with
the coordinates in Table 1 being in meters).

The optimization results indicate that the obstacle settings near the two sides of
the gate are better than the obstacle settings studied in other literature, which are

the number of pedestrians divided by the time for all pedestrians leaving the
room. The escape simulation results using the above mentioned designs of
obstacles in Table 1 are presented in Fig. 3. As shown in Fig. 3, the optimized
obstacles can improve the pedestrians escape speed by 28% to 50%.

We examined the “tangential momentum” in the simulations. The tangential
momentum p is defined by equation (1), where f;//(t) is the component force
parallel to the wall of the interaction force between pedestrian i and j at time ¢, as
shown in Fig. 4, and Nemgin(t) is the number of pedestrians remaining in the
room at time ¢.

_ JZiZ/’#ilﬁj//(t)’dt (1)

N, remain(t)
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Fig. 1. Room evacuation simulation in a panic situation with only one exit. a, b, c and d is the escape
snapshot after 4, 14, 22 and 28 sec, respectively.

doi:10.1371/journal.pone.0115463.9001

To obtain various escape speed value vs. tangential momentum samples, we
need different obstacle placement configurations. During the evolutionary process
of the GA, it gives plenty obstacle placement configurations which we can use. For
each individual obstacle configuration, the average escape speed was calculated for
over 100 escape runs. Fig. 5 is a plot of the tangential momentum vs. the escape
speed for all of the simulation results, which comprise nine combinations of the
parameters of one, two and three obstacles and obstacle radius values of 0.5 m,
0.75 m and 1 m. We can see a decreasing trend for the tangential momentum,
especially for high velocity values.

To compare the effect of the GA-optimized obstacle setting, which is “at the
side of the door”, and the “in front of the door” setting wildly used in existing
literature, we used the data in the last generation of our genetic algorithm. As seen
from Fig. 6, the most efficient settings with high escape speed and low tangential

[R=0.50m

[R=0.75m

]
L1

]

]

[R=1.0m

e Bl Sl Sl

Fig. 2. Optimized obstacle setting for 1 to 3 obstacles and 80 participants. R is the obstacle radius. The

blue circle dots represent the obstacles. The GA-optimized obstacle setting results indicated that the
obstacles should be near the two sides of the gate.

doi:10.1371/journal.pone.0115463.g002
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Table 1. GA-Optimized obstacle settings for 80 participants.

Coordinate R
o Jsm  Jomm  Jiom

1 (9.63,3.72) (9.66,3.47) (9.69,6.80)
2 (9.91,6.23) (9.77,6.52) (9.64,6.78)
(9.75,3.73) (9.70,3.49) (7.76,3.49)
3 (9.80,6.30) (9.70,3.45) (9.71,6.85)
(9.66,3.80) (10.25,7.39) (9.85,3.23)
(7.33,4.48) (10.08,6.41) (6.28,5.99)

The obstacle settings are the coordinate positions of the obstacle(s) in the room. No. and R represent the number and radius of the obstacles, respectively.
The two numbers in each parenthesis represent the position of one obstacle, thus in the cases of 1, 2 and 3 obstacles, there are 1, 2 and 3 parentheses,
respectively.

doi:10.1371/journal.pone.0115463.t001

momentum are near the side of the door, while the settings in front of the door
are less efficient. It’s also shown that both the escape speed and the tangential
momentum are sensitive to the position of the obstacle when the obstacle was
placed quite near the door, specifically when the distance between the door and
the obstacle is less than 2 m in this case, which we named “sensitive region”.
However, the most efficient position of the obstacle is also in the sensitive region.
If put out of the sensitive region, obstacle can not improve the escape speed by
more than 5% in our simulations.

Average Escape Speed(p/s)

1 Obstacle 2 Obstacles 3 Obstacles 0 Obstacle

Fig. 3. The escape speed of simulations for various obstacle configurations for 80 participants. As a
baseline, when there is no obstacle in the room, the average escape speed of the crowd determined using
over 100 simulations is 2.64 persons/sec, i.e., 2.64 individuals can leave the room every sec. When there are
one, two or three obstacle(s) and the radius of the obstacles are 0.5 m, 0.75 m or 1 m, the average escape
speed is listed on the top of the corresponding bar diagrams.

doi:10.1371/journal.pone.0115463.9003
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Fig. 4. Schematic defining the tangential force. F, is the component force perpendicular to the wall of the
gate. F,, is the component force parallel to the wall. The integral of F, over time t is the tangential momentum.
F,; here in the figure is the same as f;//(t) in equation (1).

doi:10.1371/journal.pone.0115463.9004

Experimental Results

To confirm our simulation results, we performed a series of human experiments.
As shown in Fig. 7, the first run (black dots) in each of the three configurations is
not necessarily slower (above) than the other two runs, i.e., the order of the
experiments had no significant correlation with the escape speed, which indicated
that there was no obvious learning effect. The experiments details was listed in
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Fig. 5. The tangential momentum vs. the escape speed for the simulation results, which comprise nine
combinations of parameters of one, two or three obstacles and obstacle radius values of 0.5 m, 0.75 m
or 1 m. The straight line is a linear fit to the data. We analyzed the points with an escape speed greater than
2.64 persons/sec. The reason is that the escape speed for the zero obstacle case is 2.64 persons/sec and the
obstacle position configurations that reduce this escape speed are useless and not worth being analyzed. A
decreasing trend for the tangential momentum, especially for high velocity values, is easily observed.

doi:10.1371/journal.pone.0115463.9005
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Fig. 6. The escape speed and tangential momentum of different obstacle settings. The most efficient settings are at the side of the door but not in front
of the door and the tangential momentum and the escape speed are negatively correlated.

doi:10.1371/journal.pone.0115463.9006
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Table 2. The average value for the escape speed with zero, one or two obstacles are
2.476 persons/sec, 2.732 persons/sec and 2.872 persons/sec, respectively. Using
one and two obstacles increased the escape speed by 10.33% and 15.99%,
respectively. The standard deviations are small, so that the use of three runs for
each obstacle configuration is statistically sufficient.

To clearly present the results, we show the average escape time vs. the number
of escaped participants in Fig. 8. It can be seen that the difference between the
obstacle numbers does not have an obvious influence on the escape speed during
the initial stage of escape. When the number of escaped participants accumulated
is up to approximately 15, the escape speed with obstacles is faster than that
without an obstacle. When the number of escaped participants accumulated is up
to approximately 35, the escape speed using two obstacles is faster than that using
one obstacle. This difference could be understood if we consider the first 5 sec,
when the participants near the gate run to the gate and escape before the pushing
state is formed; under these conditions, the obstacles do not have an influence on
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Fig. 7. The escape time vs. the number of escaped participants for human experiments. Panels a, b and c are for zero obstacle, one obstacle and two
obstacles, respectively. The data of the first run (black dots) is above the other two runs in panel a and c, which means the former participants escape slower
than the latter ones. In panel b, however, the data of the first run lies between those of the second run and the third run, indicating that the escape speed of
the first run is faster than that of the second run and slower than that of the third run. Therefore, the escape time has no correlation with experiments order.

doi:10.1371/journal.pone.0115463.9007
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Table 2. Average escape speed of human experiments and relevant statistical analysis.

No. of obstacles Exp. 1 Exp. 2 Exp. 3 Mean SD

Zero 2.448 2.561 2419 2.476 0.075

One 2.745 2.702 2.749 2.732 0.0261

Two 2.857 2.927 2.832 2.872 0.0492
All of the human experiments used the same obstacles, which is R=0.5 m. For each row, experiments 1, 2 and 3 are three trials of the same configuration of
the obstacles. The configuration of the obstacles are the same as the simulation result. Average escape speed = w where penum is the total

participants and ¢ is the time for all of the participants escaping from the room.

doi:10.1371/journal.pone.0115463.t002

the fast runners. When there is an arc formed, with the participants pushing
against each other, the use of obstacle(s) helps to reduce the tangential
momentum and therefore speed up the escape.

The simulation and the experiment results are compared in Fig. 9. The
simulation corresponds well with the experiment in the trend that two obstacles is
better than one obstacle and still better than zero obstacle.

Discussion

We hypothesized in this paper that the property that reduces the escape speed in a
panic situation is the tangential momentum. To test this hypothesis, we simulated
escapes in a panic situation using genetic algorithms to optimize the settings of
the obstacles considered in the simulations, including the number, the size and the
position of the obstacles. We found that obstacles at the two sides of the door is
the best configuration to increase the escape speed, which is different from the
configurations of existing literature. The escape speed and the tangential

35
|| —©—0 Obstacle
0l 1 Obstacle
o 2 Obstacles
@ 25
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=
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[$)]
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Average Escape
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0 10 20 30 40 50 60 70 80
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Fig. 8. The average escape time vs. the different numbers of obstacles. The average escape time is the
average time of three runs in each of the three obstacle configurations.

doi:10.1371/journal.pone.0115463.9008
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Fig. 9. The graph showing the simulation and experimental results. The average escape speed for zero,
one and two obstacles with the optimized positions is shown for the experiment (left) and the simulation (right).
The chosen simulation data are the corresponding results when the obstacle radius is 0.5 m. The simulation
corresponds well with the experiment in the trend that two obstacles is better than one obstacle and even
better than zero obstacle.

doi:10.1371/journal.pone.0115463.9009

momentum were found to be negatively correlated, as shown in Fig. 5, thus
confirming our hypothesis. The human experiment results validated the
simulation results.

The previous works got various kind of settings, some of them are more or less
complicated [27,28] and others being neat and clear but not optimized
[12,23,25,29]. The argument of this paper is that to obtain a high escape speed,
we must base on the obstacle settings that can reduce the tangential momentum.
The optimized configuration with pillars at the two sides of the gate supported the
concept of reducing the tangential momentum to increase the escape speed.

Fig. 2 shows the GA optimized simulation results. It is the characteristics of a
GA that it may not give the optimal solution every time, but it gives a near-
optimal solution fast [32]. The simulation is very time consuming, so we get the
results on a 100 run average bases. The initial participants locations and the escape
processes all include random factors. These will increase the fluctuation that may
not be wiped out by the 100 run average. For the two obstacles with R=1.0 m,
three obstacles with R=0.5 m and R=1.0 m cases, the results given by GA seem to
be counter intuitive in the sense that its not symmetric. To test whether GA is
worth to trust, we put the pillars standing out in the room to places near the gate
so that it looks symmetric. The outcome of the escape speed is worsened by 6.6%,
17.7% and 21.7% respectively. As we mentioned in the Human Experiments
section, a pillar placed in the middle of the hallway could not be well accepted in
both room efficiency or engineering convenience. The optimized positions are
related to both the size and number of the pillars, the above mentioned example
demonstrates that large radius pillar or three pillars may yield a layout that has an
outstanding pillar in the middle of the hallway. Although it is efficient in a panic
escape, it may cause confusion for daily use. Therefore, our suggestion for

PLOS ONE | DOI:10.1371/journal.pone.0115463 December 22, 2014 9/15
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potential engineering applications is the use of two pillars placed near the two
sides of the gate.

To better understand that the two pillars at the two sides of the door can reduce
the tangential momentum we can refer back to the catching bus example in
Introduction section. The two pillars near the door actually “block” the people
pushing from the sides, and this leads to the fact that the majority people pushing
from the middle get released and can pass the relatively weakened bottleneck. This
may act as a guidance for further researches in the layout design to focus on
reducing tangential momentum rather than trying other approaches.

Methods

Simulation Models
The simulations in this work are based on the social force model [12]. We use the
common annotations in this field for the ease of reading. Each pedestrian i of

. — 0. . .
mass m; attempts to move in the direction ¢’; with a speed v?, and adjusts her/his

current velocity ¥'; with a characteristic time 7;. At the same time, pedestrian i
attempts to keep away from the other pedestrian j, the walls W, and obstacles o,

—  — —

which are represented by the interaction forces: f ;, f ;y, and f ,, respectively
ﬁ

[25]. Here, the obstacle social force f . did not exist in the original social force

model [12], but was introduced by Escobar [25]. f has a similar form as that of

f ; because the interaction between a pedestrian and an obstacle is very much like

the interaction between pedestrians. Thus, mathematically, we have the following
change in velocity by adding the last item.

dv W l - .
mid—lt)zm 0(t) e (1) — (t)+ ZfﬁZfszer,o (2)
w

b J(#i)

?ij, ?iw and ?io in equation (2) is explained in equations (3),(4),(5).

—d; —
7 i=1A expl—) 1 kg(ry— dg)} 1+ reg(r— dy) Avs; £ (3)

l

|+ kg(r;— diw) } 1 iw + Kg(r; — diW)(Wi'?iW)?iW (4)

- ri_dz
fiw={Aiexp| B ul
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7)1'0 = {Aiexp[rio%'dio] + kg(rio - dio)}Wio + Kg(rio - dio)AU(t)i?io (5)

The detailed simulation parameters are available as S1 Data.

Optimization Algorithms

Genetic algorithms have been fairly successful at solving problems of the form that
are too ill-behaved (such as multimodal and/or non-differentiable) for the more
conventional hill-climbing and derivative based techniques to solve. In this paper,
we must optimize the position of the obstacles, which is defined in two-
dimensional real number coordinates. We used a real-coded GA because it is
better than binary-coded for solving this stampede problem [33].

We use the escape speed (persons/sec) as the fitness index and perform
computer simulations of the panic escape process. Normally 80 people can escape
from the room in less than 40 sec when there is no obstacle, if pedestrians didn’t
escape from the room in 45 sec, it indicates that the obstacle setting is bad, thus
there is no need to continue the escape simulation. Therefore, if the entire crowd
is out of the room in less than 45 sec (it is also used by Escobar [25]), assume the

penum

time is ¢, and the fitness is calculated as fitness = — where penum is the total

participants of the crowd. If not, set peout as the count of participants who are

eout .
already out of the room and set fitness = % For each obstacle setting, we take

the average fitness of 100 escape simulations as the final fitness.

In addition, we propose an elitist strategy and use dynamic crossover and
mutation probabilities to keep the best individual and adaptive strategies in the
crossover and mutation operators to avoid early convergence[34]. The parameter
settings in this current research follow [33,34]. We set the obstacle position
coordinates as the chromosome. Therefore, as an example, the chromosome of an
individual in the GA population with two obstacles is (x1,y1,%2,y2). All of the
chromosomes for m individuals with n obstacles form a m x 2n matrix
representing the population. We use the Elitist strategy to retain the best
individual and adaptive strategies in the crossover and mutation operators to
avoid early convergence. Let N, P., P, gemax and gen be the population size, the
crossover rate, the mutation rate, the maximum generation and the current
generation respectively. N is an odd integer to conveniently accommodate the
Elitist strategy. The pseudo code for the GA is as follows.

1. Elitist strategy: the individual with the highest fitness value is saved and
passed to the next generation automatically;

2. Select: according to the fitness value, perform a roulette wheel selection to
select two individuals as parents;

emax—gen
3. Adaptive Crossover: set P.=0.69+0.3 x gemax —gen

, so that P, ranges
gemax

from 0.69 to 0.99, which will decrease as generation increases. In this way,

PLOS ONE | DOI:10.1371/journal.pone.0115463 December 22, 2014 11/15
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the algorithm can search as large a space as possible at the beginning and
will not damage the good patterns in the later stage. The offspring will be

generated from the crossover of individuals X4 and Xp according to
equation (6). Here 4 is a random number in the interval [—3, 3].

(6)

Xy =IXp+ (11— )X

X =X, +(1—2)X}
If the offspring is out of the searching range, i.e., outside the room, 4 is changed to
the interval [—1, 1]. Perform the crossover again until all of the offspring are in
the room. Because / is in the interval larger than the interval [0, 1], we effectively
improved the search capabilities of the genetic algorithms.

4. Adaptive Mutation: set P, =0.01. Set P,,=0.03 if there is no new best-
individual generated for 10 consecutive generations, by doing so, we can
avoid early stage convergence and improve the search capabilities of GA. To
mutate one variable, for example Xy, a uniform random number between
[min, max] is chosen to replace Xj4.

We recalculated the 2 pillar case with tournament selection as is used in [28].
The result is the same with the roulette wheel selection as shown in S1 Fig. This
means that for the current optimization problem both selection operators work
well.

Human Experiments

From the simulation we can perceive that the 2 pillar layout and the 3 pillar layout
both are beneficial to the escape process in the sense that they all increase the
escape speed. The best result got from the 3 pillar layout with R=1.0 m is better
than the best result of the 2 pillar layout by 1.0%. For cases with R=0.5 m and
R=0.75 m, the 3 pillar results are not as good as the best result of the 2 pillar
layout. Whats more, the real application for an optimized obstacle layout should
consider not only the speed up during panic escape but also minimize the effect
on the normal functions. A pillar placed in the middle of the hallway in front of
the door will obviously occupy more room that could be used for accommodating
more audience or for other functions. Pillars placed at the sides of the door do not
have this drawback. Lastly, to place one or two pillars in front of the door has to
make extra permanent engineering changes to the gym which is not accepted by
any gym including the one we conducted our experiment. A removable pillar in
front of the door were proved to be easily pushed away by the participants in our
pre-experiments due to the huge rushing force. Hence, in the following
experiments, we commit the no obstacle case, the one obstacle case and the two
obstacle case.
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Fig. 10. Snapshots of the experiment (blurred for privacy protection). The left panel shows the venue
with the participants in the moving circling when there is an obstacle (lower right corner). The trash bin with
three participants pushing outside the gate was used to ensure the gate did not collapse. The right panel
shows the escape process, when the participants formed a pushing arc at the gate.

doi:10.1371/journal.pone.0115463.9010

The experiment participants were chosen among the 2012 BNU complex
systems summer school. The students consisted of college undergraduate and
graduate students, whose age ranging from 21 to 25 years old. The experimental
site is at the second floor south exit of the BNU stadium. A 10m x 10m “room” is
defined using rope, while leaving the gate open. Two trash barrels of size
0.86m x 0.72m x 1.15m filled with water were used as the obstacles. Three cameras
were used to record the experiments, with one covering the inside of the room,
one covering the gate from the outside and the last one covering the gathering of
the escaped participants.

Ethics statements

All of the subjects provided written informed consent prior to participation in the
experiments and none of the subjects enrolled in our study is minor/child. The
experiment protocol was approved by the Ethical Committee of SSDPP, Beijing
Normal University (in accordance with the Declaration of Helsinki).

To simulate the panic condition, the participants were divided into 10 groups,
with each group receiving a score according to their escape speed for each
evacuation; a prize was awarded according to the ranking of the groups
determined by their cumulative scores. To minimize the effect of the participants
selecting their positions near the gate for each of the experimental runs, all of the
participants were organized into a moving round circle, with the participants
rushing to the gate when prompted by an acoustical signal. Two test runs were
allotted to enable the participants to become familiar with the experiment.
Subsequently, the experiment was performed for the cases of zero obstacle, one
obstacle and two obstacles, with three runs for each case. Each of the 3 runs for no
obstacle, one obstacle and two obstacles cases are to get rid of the fluctuations due
to the initial configuration of participants location and fluctuations created in the
escape process. Fig. 10 shows two of the inside screenshots. Some of the
participants quit the experiment. At the end, 76 participants were recorded. S1
Video is a clip of the human experiment process. More detailed experiments data
are available as S1 Data.
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Supporting Information

S1 Data. All the simulation parameters and detailed experiments data are reported
in the MS word file R1_SI_clean.docx.
doi:10.1371/journal.pone.0115463.s001 (DOCX)

S1 Fig. The GA results of the tournament selection and the roulette wheel
selection. It shows the results of the 2 pillar case with R=0.5 m. The coordinates
for the two pillars with the tournament selection are (9.68, 6.28) and (9.92, 3.77),
respectively. The coordinates for the two pillars with the roulette wheel selection
are (9.91, 6.23) and (9.75, 3.73), respectively. The results are almost the same,
which means that for the current optimization problem both selection operators
work well.

doi:10.1371/journal.pone.0115463.s002 (EPS)

81 Video. A video clip of the human experiment. It shows that the evacuation is
quite close to a panic escape scenario.
doi:10.1371/journal.pone.0115463.s003 (AVI)
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