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Animal virus discovery: improving animal health, understanding
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The characterization of viral genomes has accelerated due to

improvement in DNA sequencing technology. Sources of

animal samples and molecular methods for the identification of

novel viral pathogens and steps to determine their

pathogenicity are listed. The difficulties for predicting future

cross-species transmissions are highlighted by the wide

diversity of known viral zoonoses. Recent surveys of viruses in

wild and domesticated animals have characterized numerous

viruses including some closely related to those infecting

humans. The detection of multiple genetic lineages within viral

families infecting a single host species, phylogenetically

interspersed with viruses found in other host species, reflects

past cross-species transmissions. Numerous opportunities for

the generation of novel vaccines will arise from a better

understanding of animal viromes.
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Introduction
The rate of viral discovery has recently increased due to

the introduction of next generation sequencing technol-

ogies and the analyses of biological samples of diverse

geographic origins from multiple host species. By 2006

the number of known human viral species was estimated

at approximately 180 [1]. In 2009 the number of all ICTV

defined viral species, including both eukaryotic viruses

and bacteriophages, stood at approximately 2200 (http://

www.ictvonline.org/virusTaxInfo.asp). Compared to the

sustained efforts in human virus discovery, viruses infect-

ing other species, including >4200 species of mammals

[2], have been greatly under-sampled. While the number

of known, globally prevalent human viruses (excluding

geographically restricted and emerging viruses), may

eventually reach a plateau, the rate of discovery of animal
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viruses is expected to rapidly increase. The generation of

more fully characterized animal viral genomes, from more

host species, will improve our understanding of viral

evolution, cross species transmissions, and will provide

new opportunities for animal vaccine development

particularly for domesticated and endangered wild

species.

Sources of biological samples for animal virus
discovery
Specimens to analyze for new viruses include those from

animals with diseases affecting farm productivity or the

survival of critically endangered or threatened species.

Farmers, with their extensive knowledge and experience

of animals, can readily identify new health problems. The

health of animals in zoos and aquariums is also of interest

given their high level of care, the diverse viral exposures

they may experience, and their close proximity to human

handlers. Companion animals, due to their extensive

health care and close contact with owners may also be

a readily accessible source of animal samples for pathogen

discovery. Shelters for abandoned or feral animals,

because of their crowded conditions and the high

susceptibility to infections of their often undernourished

and weakened residents also provide a fertile breeding

ground for viral epidemics and pathogen discovery

(Figure 1).

Outbreaks of acute disease on farms and in animal shel-

ters greatly facilitate virus-disease association studies if

appropriate data and sample collection occurs. The

affected animals should all exhibit pathogen-specific

markers of infection, such as sero-conversion or the pre-

sence of a newly characterized virus. The pathogenicity of

a new virus can also be tested in animals following direct

inoculation with viral isolates (minimally passaged to

prevent attenuation), the original biological samples (if

shown to contain no other virus by metagenomics), or by

synthesizing the genome and transfecting it in vitro to

generate infectious particles. Because of their protected

status, such inoculations are not feasible in endangered

species where more indirect means of testing disease

causation, akin to the situation for novel human viruses,

are required [3,4]. By identifying unusual symptoms or

disease outbreaks, both academic and private veterinar-

ians and scientists also contribute to the identification of

previously unknown or emerging animal pathogens. Fed-

eral departments such as the USDA and CDC, state

organizations concerned with fish and game or food

and agriculture, and local government groups involved
www.sciencedirect.com

mailto:delwarte@medicine.ucsf.edu
http://dx.doi.org/10.1016/j.coviro.2012.02.012
http://www.ictvonline.org/virusTaxInfo.asp
http://www.ictvonline.org/virusTaxInfo.asp
http://www.sciencedirect.com/science/journal/18796257


Animal virus discovery Delwart 345

Figure 1

FAO

WHO

OIE

ProMED
USDA

CDC

State Food &
Agriculture
State Fish & Games

Healthy
Metagenomic(sequencing)

Microarrays

Sporadic
illness

Disease
outbreak

Local animal care andcontrol

Zoos

Aquariums
Humane Society
SPCA

Diagnostic companiesAnimal shelters
Farms
Academic VeterinariansPrivate VeterinariansEcologists
Primatologists
Wildlife scientists

(virochips)

Consensus PCR
(virus groupspecific)

PCR or antibodyprevalence inmatched case-control study

Convalescentsero-conversion

Antigens inaffected tissues

Animal
Diagnostics

prevention

Vaccines andanti-virals

inoculation withculture isolate,synthetic
genome, or
biological
sample

Transmission

IN
T

E
R

V
E

N
T

IO
N

D
is

ea
se

 c
au

sa
tio

n

D
is

ea
se

 a
ss

oc
ia

tio
n

H
E

A
LT

H
 S

TA
T

U
S

M
O

LE
C

U
LA

R
 C

H
A

R
A

C
T

E
R

IZ
AT

IO
N

S
O

U
R

C
E

S
 O

F
 B

IO
LO

G
IC

A
L 

S
A

M
P

LE
S

 &
 IN

F
O

R
M

AT
IO

N

Current Opinion in Virology

Flow chart of animal virus discovery, pathogenicity determination, and interventions.
in animal care and control can also identify disease out-

breaks in wild, farm or companion animals and collect

samples for further studies. The Humane Society and the

Society for the Prevention of Cruelty to Animals, by

closely monitoring and promoting animal health, may

also detect and report early signs of emerging infections.

International organizations such as the Food and Agri-

culture and World Health Organizations of the United

Nations, World Organization for Animal Health (i.e.

OIE), and ProMED can also assist in the recognition

of emerging animal health problems, dissemination of

information, and in coordinating international collabor-

ations (Figure 1). A growing realization of animals as the

source of most emerging human and animal infections has

led to the One Health Initiative to foster collaborations

between physicians, veterinarians, and scientists to

monitor the exchange of infectious agents between

species [5–12].

Bats, rodents, and primates are notorious sources of zoo-

notic infections, possibly a result of their very large colony

sizes facilitating maintenance of viral transmission chains,

frequent association with humans, and their close genetic

relatedness to humans respectively. The consumption of

wild animals as bush meat, particularly of non-human
www.sciencedirect.com 
primates, also provides a portal of entry of animal viruses

into human populations [8,10,11]. Large unbiased or viral

family specific surveys of these and other mammalian

groups to characterize their viruses will enhance our un-

derstanding of the original animal reservoirs of many

current human viruses. Viral infections may be mostly

asymptomatic in their long-term hosts, but pathogenic in

a new host species. Viral metagenomics and more virus

family specific surveys have therefore been used to charac-

terize viral populations in both sick and healthy animals

[13,14,15�,16–28]. The buildup of known animal viral

genome sequences will also allow their inclusion in

updated high-throughput virus detection assays, such as

micro-array ‘virochips,’ able to very sensitively detect

known viruses and their close genetic relatives

[29,30,31�]. Including probes from the growing number

of viral genomes on micro-arrays also allows simultaneous

disease association studies for multiple viruses using

animal (and human) cohorts. The availability of biological

samples from large numbers of epidemiologically matched

unexplained disease cases and healthy controls is likely to

be a major limiting factor for determining which of the

rapidly growing number of animal viruses are likely patho-

gens and therefore targets for transmission control

measures or vaccine development.
Current Opinion in Virology 2012, 2:344–352
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Molecular methods for viral discovery
Many classical methods of viral discovery such as cell

inoculation and monitoring for cytopathic effects can yield

pure viral cultures, but are subject to the availability of

susceptible cell lines and infectious inoculums. The intro-

duction of molecular methods has greatly simplified the

genome characterization of both known and emerging or

previously unrecognized viruses. Consensus PCR, target-

ing conserved viral genome regions, [32,33] can be used to

rapidly screen large numbers of samples for any group of

related viruses such as herpes viruses [34], astroviruses

[35,36], and enteroviruses [37]. The downside of this

sensitive method is the requirement for a priori knowledge

of which viral family is likely to be present in order to avoid

the need for numerous PCR primer sets targeting a large

number of different viral families. Rolling circle amplifica-

tion preferentially amplifies circular DNA viral genomes

and has greatly enhanced their discovery but is less effi-

cient for linear DNA or RNA genomes [38–40]. Micro-

arrays spotted with oligonucleotides of the most conserved

viral regions have also been highly successful but are

limited by the amount of mismatch they can tolerate such

that highly divergent species (relative to those previously

known and spotted on arrays) may not hybridize

[29,30,31�,41–44]. Random nucleic acid amplification with

or without prior enrichment for viral particles [45], followed

by DNA sequencing (including next generation sequen-

cing) and in silico similarity searches for sequence related

to those of known viruses has been highly productive [46–
49,50�,51,52,53�,54,55]. This metagenomic approach is

limited by the need for novel viral sequences to show

detectable protein or nucleic acid sequence similarity to

those of the many already sequenced viruses.

Anticipating zoonoses
The sources of many emerging viral diseases are animals

in contact with the new viral host or with an intermediate

bridge species [5–12]. Initially, cross-species trans-

missions are thought to result in weakly adapted viruses

that through mutations may evolve to increase their

pathogenicity and transmissibility in the new host

species. A well understood example of cross-species

transmission is of a feline parvovirus adapting to dogs

in the late 1970s followed by its global spread and increase

in pathogenicity [10,56]. Mutations in the feline parvo-

virus surface glycoprotein allowed infection and trans-

mission in dogs [57,58��]. Further adaptation of the

original canine parvovirus may have occurred through

intermediate species such as raccoons [59]. The emer-

gence of HIV1 groups M and N from chimpanzees, HIV

group P from gorillas and HIV2 from sooty mangabeys,

most likely through bush meat hunting, butchering, and

consumption is also generally accepted [60,61��,62,63].

SIVcpz, the presumed progenitor of HIV, may itself be a

recombinant of two retroviruses from monkeys preyed

upon on by chimpanzees [64]. Influenza viruses are

especially notorious for their ability to transfer from birds
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to mammals such as pigs, that can act as intermediate

hosts, facilitating recombination with porcine influenza

viruses before transmission to humans [56,65,66]. Bats

and rodents appear to be frequent sources of viral zoonosis

but the very high number of these animal species and

their global distribution makes a systematic determi-

nation of their viromes difficult. The genetic character-

ization of viruses per se in these frequent virus donor

species does not a priori provide information regarding

the likelihood of successful transmissions to human.

Zoonoses are dependent on complex interactions be-

tween viral phenotypes and host genetics (particularly

surface receptors and innate immune responses), cross-

neutralization by antibodies to related viruses, and epi-

demiological factors influencing viral exposures. The

high mutability of viral genomes indicates that, provided

some chronic low-level replication occurs in a new host

species, these viruses have the potential to further adapt

increasing both their viral load and the possibility of

transmission in that species. The diversity of emerging

or re-emerging human viruses such as HIV (Retroviridae)
and the SARS virus (Coronaviridae) that are transmissible

between humans, zoonotically acquired viruses capable of

only limited transfer between humans such as the Ebola

virus (Filoviridae) and Lassa virus (Arenaviridae), ‘dead

end’ zoonoses without the necessary adaptation to facili-

tate ongoing transmission between humans such as rabies

virus (Rhabdoviridae), Hendra virus (Paramyxoviridae),
and monkeypox virus (Poxviridae), as well as the arthro-

pod vectored West Nile and Japanese encephalitis viruses

(Flaviviridae), Crimean-Congo hemorrhagic fever virus

(Bunyaviridae), and Chickungunya virus (Togaviridae),
indicate that sequence members of any of the known

viral families infecting animals could potentially become

epidemic in humans. The recent demonstration of an

adenovirus (Adenoviridae) from a titi monkey outbreak of

respiratory symptoms infecting a scientist at a primate

center and this person transmitting the virus to a human

contact, further illustrates the wide range of viral families

that can be considered capable of at least some level of

replication in multiple host species [67��]. This study

exemplified the speed with which an adenovirus could be

transmitted from an unknown host to titi monkey, be-

tween titi monkeys, from a titi monkey to a human and

between at least two humans. Some genotypes of

hepatitis E virus (Hepiviridae) are capable of oral-fecal

transmission between human while other genotypes are

acquired by consuming infected animal meat, but are

inefficiently transmitted between human [68,69]. Simian

foamy and T-lymphotropic viruses (Retroviridae) that

have infected persons exposed to non-human primates

can also be considered as viruses constantly ‘probing’

human populations but that, unlike HIV1 and HIV2,

have not adapted sufficiently to be transmitted between

humans [70,71,72��,73–75]. Certain human viruses such

as influenza (Orthomyxoviridae) are periodically acquired

directly from avian or mammalian hosts. The highly lethal
www.sciencedirect.com



Animal virus discovery Delwart 347
H5N1 influenza circulating in birds is currentlyy poorly

transmissible between humans or between other mam-

mals although rapid passage experiments in ferrets or

direct mutagenesis have exposed its latent capacity to

rapidly increase its pathogenicity and transmissibility

[76,77,78�].

The wide diversity of viruses capable of switching host

species therefore highlights the difficulty in predicting

from which viral family will emerge the next human viral

pandemic. Because increasing genetic distances be-

tween hosts is a significant block to cross species

transmission [79��,80,81], there has been a focus on

identifying viruses and immune response shared be-

tween non-human primates and people exposed to them

[70,71,72��,73,74,82]. Since the frequency and intensity

of viral exposure can also be expected to increase the

likelihood of cross-species transmission, the study of

viruses in farm or companion animals with extensive

contact with both humans and wildlife should also

uncover viral species of concern for future zoonoses.

Sero-surveys for antibodies to these viruses would reveal

the extent of their replication in highly exposed humans.

Arboviruses also present a growing threat as seen with

resurgent West Nile, Dengue, Japanese encephalitis and

Chikungunya viruses following introductions in new

locales or extension of the range of their insect vectors

[83�]. Monitoring for new arboviruses in anthropophilic

arthropod vectors may provide novel viral genomes

whose capacity to infect humans or other mammals

can then be tested serologically. Vaccinating animal

reservoirs for some arboviruses could warrant consider-

ations to reduce spill-over infections into humans.

The recent characterization of the closest known genetic

relative of the human HCV [84��] and enteric Aichi

viruses in canine samples [14,85] point to dogs as a

potential zoonotic origin of these now common human

infections. The direction of transmission (dogs to human

or human to dogs) cannot be revealed by genetic sim-

ilarities alone and future viral discoveries may reveal yet

closer relatives of these and other human viruses [16]. As

sampling of animal viruses increases, a complex network

of past cross-species transmission will likely emerge. For

example until recently only a single species of astrovirus

(HAstV) and of parvovirus (B19) were known to infect

humans. Viral survey in human have now shown that

multiple genera and species within the Parvoviridae
[46,86–89] and Astroviridae [90–92] can infect humans.

Multiple lineages of these viral families can also be found

in pigs and other animals [15�,17] (Figure 2). Distinct

phylogenetic clades within a viral family also include

viruses found in different mammal hosts, likely reflecting

cross-species transmission of parvoviruses [93–96] (as was

recently documented for the feline to canine CPV2

transfer in the 1970s) and of astroviruses (Figure 2)

[90–92].
www.sciencedirect.com 
While the occurrence of cross-species transmissions is

well established the overall frequency of such events is

harder to estimate using molecular clocks calibrated

based on short-term observations of viral evolution. Esti-

mates of the time to last common ancestor of existing

lineages of related viral RNA species yields date of

thousands of years which differ greatly from dates derived

using molecular clocks based on ancient viral genomes

recently found on host chromosomes whose ages since

integration are in the millions of years [97,98,99��]. In the

absence of longitudinally collected epidemiological data

confirming the recent emergence of a virus in a new host

species, as was possible for HIV1/2, SARS-CoV, and

canine parvovirus CPV2, estimating the age and therefore

the frequency for other cross-species jumps based on

molecular clocks derived from short term viral evolution

data, is therefore problematic [100–102].

Newly characterized animal viruses and
disease association
While the rate of viral discovery has greatly accelerated,

the epidemiological studies required to associate infec-

tions with symptoms has lagged behind due to difficulties

in obtaining large numbers of the most appropriate bio-

logical samples. In order for human or animal viral vaccine

development to proceed, convincing evidence of patho-

genicity is required [4,103]. Genetically characterizing

novel viral genomes in diseased animals provides the

information required to design high throughput PCR

assays with which to compare viral prevalence in epide-

miologically matched disease cases versus healthy con-

trols (Figure 1). Matching between cases and controls

should optimally include age, sex, location, and type of

environment (e.g. high intensity farming or free range).

Disease association studies as well as temporal association

of symptoms with IgM detection, rising IgG can both

provide evidence in support of pathogenicity. Disease

induction following animal challenge with the purified

virus amplified in cell culture, or other pure virus inocu-

lum can directly demonstrate disease causation

(Figure 1). Complicating factors to be considered which

may influence clinical outcome include variable host

genetics, passive immunity due to maternally acquired

antibodies, cross-protection by prior infections with

related but less pathogenic viruses, and co-infections with

other agents. Repeatability in independent studies can

also validate prior conclusions. The severity of symptoms

and their frequency must also be onerous enough to

justify the cost of vaccine development, efficacy testing

under realistic conditions, and ultimately large-scale vac-

cination.

Recent successes in identifying animal viruses and associ-

ating them with disease include the piscine reovirus

(PRV) associated with heart and skeletal muscle inflam-

mation in farmed salmon, where viral prevalence and viral

loads were higher in affected than in healthy fish and viral
Current Opinion in Virology 2012, 2:344–352
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Figure 2
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Maximum likelihood phylogenetic analysis of capsid proteins of astroviruses showing that diverse astroviruses infect some mammalian hosts species

likely reflecting past cross-species transmissions. Bootstrap values of �70% are indicated at each branching point.

Current Opinion in Virology 2012, 2:344–352 www.sciencedirect.com



Animal virus discovery Delwart 349
expression was detected in affected tissues [50�]. A new

bornavirus was also detected and associated with proven-

tricular dilatation disease in psittacine birds [44,49,104].

Animal viral vaccines
Once pathogenicity has been established, the efficacy of

vaccination must be shown to provide cross-protection

against genetically diverse viral ‘field’ strains. In situ-

ations where the challenge viruses are highly diverse, the

use of multiple viral strains as vaccine antigens may be

considered to widen the breadth of cross-protection.

Given the rapid rate of animal virus genome character-

ization using deep sequencing and other molecular

approaches and the ever wider surveys of domesticated

and exotic animal populations, it can be anticipated that a

subset of the newly identified viruses will be shown to

be pathogenic [15�,17,18,36,54,55,93,96,105–119]. The

decision to develop animal viral vaccines will depend

largely on economic calculations and/or the need to

protect animal and/or human health. The ease of devel-

oping vaccines for animals, relative to human vaccines,

including direct viral challenges and the requirement for

only short term protection, will facilitate the rapid man-

ufacture and testing of novel attenuated, inactivated, or

subunit animal viral vaccines. Opportunities for vaccine

development protecting farm, companion, and endan-

gered animals should therefore rapidly expand in the

near future.
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