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The interdependent network of gene regulation and
metabolism is robust where it needs to be
David F. Klosik1, Anne Grimbs 2, Stefan Bornholdt1 & Marc-Thorsten Hütt2

Despite being highly interdependent, the major biochemical networks of the living cell—the

networks of interacting genes and of metabolic reactions, respectively—have been approa-

ched mostly as separate systems so far. Recently, a framework for interdependent networks

has emerged in the context of statistical physics. In a first quantitative application of this

framework to systems biology, here we study the interdependent network of gene regulation

and metabolism for the model organism Escherichia coli in terms of a biologically motivated

percolation model. Particularly, we approach the system’s conflicting tasks of reacting rapidly

to (internal and external) perturbations, while being robust to minor environmental fluc-

tuations. Considering its response to perturbations that are localized with respect to func-

tional criteria, we find the interdependent system to be sensitive to gene regulatory and

protein-level perturbations, yet robust against metabolic changes. We expect this approach

to be applicable to a range of other interdependent networks.
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A main conceptual approach of current research in the life
sciences is to advance from a detailed analysis of indivi-
dual molecular components and processes towards a

description of biological systems and to understand the emer-
gence of biological function from the interdependencies on the
molecular level. Supported by the diverse high-throughput
‘omics’ technologies, the relatively recent discipline of systems
biology has been the major driving force behind this new per-
spective, which becomes manifest, for example, in the effort to
compile extensive databases of biological information to be used
in genome-scale models1–3. Despite its holistic ‘game plan’,
however, systems biology frequently operates on the level of
subsystems: Even when considering cell-wide transcriptional
regulatory networks, as, e.g., in network motif analysis4, this is
only one of the cell’s networks. Likewise, the popular approach to
studying metabolic networks in systems biology, constraint-based
modelling, accounts for steady-state predictions of metabolic
fluxes of genome-scale metabolic networks5, which again, is only
one of the other networks of the cell.

In the analysis of such large networks, systems biology draws
its tools considerably from the science of complex networks,
which, by combining the mathematical subdiscipline of graph
theory with methods from statistical physics, greatly contributed
to the understanding of, e.g., the percolation properties of net-
works6, potential processes of network formation7 or the
spreading of disease on networks8. In the early 2000s, gene reg-
ulation and metabolism have been among the first applications
of ‘network biology’9. The most prominent findings on the gene
regulatory side concerned the statistical observation and func-
tional interpretation of small over-represented subgraphs (net-
work motifs)10, 11 and the hierarchical organization of gene
regulatory networks12. On the metabolic side, the broad degree
distribution of metabolic networks stands out13, with the caveat,
however, that ‘currency metabolites’ (as ATP and H2O) can
severely affect network properties14, as well as the hierarchical
modular organization of metabolic networks15, 16.

Recently, the field of complex networks moved its focus from
single networks to the interplay of networks that interact with
and/or depend on each other (multilayer networks, networks of
networks). Strikingly, it turned out that explicit interdependency
between network constituents can fundamentally alter the per-
colation properties of the resulting interdependent networks,
which can show a discontinuous percolation transition in contrast
to the continuous behavior in single-network percolation17–23.
Also, contrary to the isolated-network case, networks with
broader degree distribution become remarkably fragile as inter-
dependent networks17.

However, this set of recent developments in network science
about fragility due to interdependence still lacks application to
systems biology. In Reis et al.24 the question of robustness in
multilayer biological networks has been raised for the first time
(see also Bianconi25). Specifically, it has been shown how specific
correlations of the intra- and interlayer connections reduce cas-
cading failures and thus provide a robust multilayer network
architecture. Relevant progress in the application of concepts of
multilayer networks has been made, for instance, in transporta-
tion infrastructures26 and brain networks24. In such applications,
the discovery of new mechanisms went along with advances in
the theoretical foundation in exploring dynamical processes in
multilayer networks, for example, diffusion processes27, spreading
processes28 and message passing29–31.

Arguably, the most prominent representative of inter-
dependent networks in a biological cell is the combined system of
gene regulation and metabolism, which are interconnected by
various forms of protein interactions, e.g., enzyme catalysis of
biochemical reactions couples the regulatory to metabolic

network, while the activation or deactivation of transcription
factors by certain metabolic compounds provides a coupling in
the opposite direction.

Although it is well-known that gene regulatory and metabolic
processes are highly dependent on one another, only few studies
addressed their interplay on a larger, systematic scale32–34. The
first two studies (Covert et al.32 and Shlomi et al.33) aimed at
finding consistent metabolic-regulatory steady states by translat-
ing the influence of metabolic processes on gene activity into
metabolic flux predicates and incorporating high-throughput
gene expression data. This can be considered as an extension of
the constraints-based modelling framework beyond the metabolic
subsystem. In the paper of Samal and Jain34, on the other hand,
the transcriptional regulatory network of Escherichia coli (E. coli)
metabolism has been studied as a Boolean network model with
flux predicates represented by additional interactions.

The formalism of interdependent networks now allows us to go
beyond these important pioneering works on integrative models,
by analysing the robustness of the combined system in terms of
the maximal effect of a small perturbation. In particular, the
findings can be interpreted in the context of cascading failures
and percolation theory.

We here formulate a first application of the new methodolo-
gical perspective to the combined networks of gene regulation
and metabolism in E. coli. Using various biological databases,
particularly EcoCyc35, 36 as the main core, we have compiled a
graph representation of gene regulatory and metabolic processes
of E. coli, including a high level of detail in the structural
description, distinguishing between a comparatively large number
of vertex and edge types according to their biological
functionality.

A structural analysis of this compilation reveals that, in addi-
tion to a small set of direct edges, the gene regulatory and the
metabolic domains are predominantly coupled via a third net-
work domain consisting of proteins and their interactions. This
rich structural description, together with a purpose-built, biolo-
gically motivated percolation model allows us to assess the
functional level with methods derived from percolation theory.
More precisely, we investigate cascading failures in the three-
domain system, emanating from small perturbations, localized in
one of the domains. We observe below that (i) randomized ver-
sions of the graph are much less robust than the original graph
and (ii) that the integrative system is much more susceptible to
small perturbations in the gene regulatory domain than in the
metabolic one.

Results
The core object of our investigation is an E. coli network repre-
sentation of its combined gene regulation and metabolism, which
can be thought of as functionally divided into three domains.
Aside from the obvious domains emerging from gene regulatory
and metabolic processes, these processes are connected by an
intermediate domain that models both, the enzymatic influence
of genes on metabolic processes, as well as signalling-effects of the
metabolism on the activation or inhibition of the expression of
certain genes. Accordingly, the underlying interaction graph
G= (V, E)= {GR, GI, GM} with its set of vertices V and edges E
consists of three interconnected subgraphs, the gene regulatory
domain GR, the interface domain GI and the metabolic domain
GM. A sketch of the network model and some of its properties are
presented in Fig. 1. Further information and a detailed char-
acterization are given in the “Methods” section (as well as in A.G.,
D.F.K., S.B., and M.-T.H., manuscript in preparation).

Of central importance for modelling spreading dynamics in
our system are the functionally different roles of the edges in the
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system, which we capture in three logical categories of an edge
(LCE):

C, ‘conjunct’: The target vertex of an edge with this logical
AND property depends on the source vertex, i.e., it will fail once
the source vertex fails. For example, for a reaction to take place,
all of its educts have to be available.

D, ‘disjunct’: Edges with this logical OR property are con-
sidered redundant in the sense that a vertex only fails if the source
vertices of all of its incoming D-edges fail. For instance, a com-
pound will only become unavailable once all of its producing
reactions have been canceled.

R, ‘regulation’: Edges of this category cover 14 different kinds
of regulatory events (described in detail in Supplementary
Note 2). As shown below, in terms of the propagation dynamics
we treat these edges similar to the ‘conjunct’ ones.

As outlined in the "Methods" section the conjunct and disjunct
edge properties in our study have been derived from the under-
lying biological mechanisms. The disjunct edges may be examples
of the redundant interdependencies, which have been discussed in
Radicchi and Bianconi31 as a possible foundation of the robust-
ness of multilayer (specifically, multiplex) networks.

In order to assess the effect of perturbations in this three-
domain organized system, we devise a biologically motivated
percolation model that determines the sets of potentially affected
vertices (see “Methods” section). An illustration of the dynamics
is shown in Fig. 2.

As a side remark, the spreading of a perturbation according to
the rules defined above could also be considered as an epidemic
process with one set of connections with a very large, and a
second set of connections with a very low probability of
infection37.

Comparison with previous approaches. In systems that can be
described without explicit dependencies between its constituents,
but with a notion of functionality that coincides with con-
nectivity, percolation theory is a method of first choice to
investigate the system’s response to perturbations of a given size
that can be modelled as failing vertices or edges6, 38. The frac-
tional size of the giant connected component as a function of the
occupation probability p of a constituent typically vanishes at
some critical value pc, the percolation threshold. In the following,
we will mostly use the complementary quantity q= 1 − p so that
qc= 1 − pc can be interpreted as the critical size of the initial
attack or perturbation of the system. The strong fluctuations of
the system’s responses in the vicinity of this point can serve as a
proxy for the percolation threshold, which is especially useful in
finite systems in which the transition appears smoothed out.
In our analysis, the susceptibility ~χ ¼ S2h i � Sh i2, where S is
the size of the largest cluster, is used39.

Upon the introduction of explicit dependencies between the
system’s constituents, the percolation properties can change
dramatically. The order parameter no longer vanishes continu-
ously but typically jumps at pc in a discontinuous transition18, 19

as cascades of failures fragment the system. A broader degree
distribution now enhances a graph’s vulnerability to random
failures, in opposition to the behavior in isolated graphs17, 40.
Details of the corresponding theoretical framework have been
worked out by Parshani et al.18, Son et al.20, Baxter et al.41 and
more recently the notions of ‘networks of networks’42–45 and
network recovery46, 47 have been included. There have also been
attempts to capture this class of models in a general framework of
multilayer networks48. Important contributions to the theoretical
understanding of percolation phenomena in multilayered struc-
tures come from studying variants of message passing algorithms
on multiplex networks. Cellai et al.29, for example, show how the
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Fig. 1 Sketch of the domain organization of the integrative E. coli network.
The gene regulatory domain, GR, (top) is predominantly connected to the
metabolic domain, GM, (bottom) via a protein-interface layer, GI. For each
domain, the number of vertices, |V|, and the number of edges, |E|, are given
as well as the number of inter-domain edges (attached to the arrows). For
illustrative purposes, snapshots of the largest weakly-connected
components of GR, GI and GM are included
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Fig. 2 Sketch of the propagation dynamics of a single-vertex perturbation.
The perturbation in the small sample three-domain organized network with
gene regulatory domain (top, green), (protein-)interface (middle, blue) and
metabolic domain (bottom, red) is initiated in vertex 0 and spreads
according to the percolation model given in Eqs. (1) and (2). The numbers
and the grayscale indicate the time step in which the respective vertex has
been turned off; black vertices are not affected. The arrow line styles denote
the three logical categories of edges: C: curly, D: solid, and R: dashed. In the
subsequent steps of the analysis, we consider the largest weakly connected
component of the frozen network state (vertices in the dark area). A more
detailed illustration is given in Supplementary Fig. 7
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presence of link overlap between layers can be considered in
terms of two similar, but conceptually different, processes and
analyse the behavior of the corresponding order parameters.

In addition to random vertex failure other procedures for
initial vertex removal have been explored, e.g., vertex removal
with respect to their degree (targeted attacks)49 or localized
attacks, for which currently two notions have been described.
Localized attacks of the first sort are defined on spatially
embedded networks and are ‘local’ with respect to a distance in
this embedding, i.e., in a ‘geographical’ sense50, 51. The second
approach considers locality in terms of connectivity: around a
randomly chosen root vertex, neighbors are removed layer by
layer52, 53. In contrast, as described below in our approach,
attacks are localized with respect to the three network domains,
while within the domains vertices are chosen randomly.

At this point, we would like to shortly comment on the
applicability of the mathematical concepts of interdependent
networks to real-world data. Clear conceptual categories such as
the distinction between dependency edges and connectivity edges
have been instrumental in gaining theoretical insight into the
properties of interdendent systems. Similarly, in the theoretical
work on multilayer networks (see, e.g., De Domenico et al.54,
Boccaletti et al.55), it is assumed that the assignment of vertices
and edges to layers is defined a priori. It is worth mentioning,
however, that in order to adapt these frameworks to the situation
at hand several of these categories require adaptation. We
envision that for many real-life applications a certain diversity of
vertex and edge attributes will be required and the multilayer
structure will rather emerge from the arrangement of such
different edge types among the different vertex types in the
system. Effectively, some classes of edges may then represent
simple connectivity, while others can rather be seen as
dependency edges. In biology, such dependencies are typically
mediated by specific molecules (e.g., a small metabolite affecting a
transcription factor, or a gene encoding an enzyme catalysing a
biochemical reaction). Such implementations of dependency
edges are no longer just associations and it is hard to formally
distinguish them from the functional edges.

With the explicitly alternating ‘percolation’ and ‘dependency’
steps in typical computational models of the kind originally
introduced in Buldyrev et al.17 in mind we would like to point out
that in our directed model edges of all types are updated in every
time step. If the dependencies of a vertex are fulfilled (here: only
intact C- and R-neighbors), it will only fail once it loses all
connectivity (here: via D-edges), irrespective of the current
component structure, which is only considered after the dynamics
is frozen.

Network response to localized perturbations. The main feature
of our reconstructed network, the three-domain structure based
on the biological role of its constituents, allows us to study the
influence of localizing the initial perturbation (see “Methods”
section). Thus, although we will not focus on (topological) details
of the graph here (which will be presented in (A.G., D.F.K., S.B.,
and M.-T.H., manuscript in preparation)), already from the
vertex and edge counts in Fig. 1, we see that the domains are of
different structure. While the regulatory and the metabolic sub-
graphs, GR and GM have average (internal) degrees of about 1.9
and 2.5, the interface subgraph, GI, is very sparse with 〈k〉≈ 0.6
and we can expect it to be fragmented. Hence, in the following,
we decide to only perturb in GR and GM.

In a first step, we sample some full cascade trajectories in order
to check our expectation of different responses of the system to
small perturbations applied in either GR or GM; two rather large
values of q are chosen and the raw number of unaffected vertices
is logged during the cascade. Indeed, already this first approach
implies a different robustness of the gene regulatory and the
metabolic domains in terms of the transmission of perturbation
cascades to the other domains. Cascades initiated in the metabolic
domain of the network tend to be rather restricted to this domain,
while the system seems much more susceptible to small
perturbations applied in the gene regulatory domain. This effect
can be seen both in the overall sizes of the aggregated cascades as
well as in the domain which shows the largest change with respect
to the previous time step (largest set of newly affected vertices),
which we indicate by black markers in Fig. 3. More sample
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trajectories are shown in Supplementary Figs. 1–5 and, although
they illustrate occasionally large fluctuations between the
behaviors of single trajectories, they are consistent with this first
observation. They also show that considerably larger metabolic
perturbations are needed for large cascades and back-and-forth
propagation between domains to emerge.

After this first glance at the system, we aim for a more
systematic approach and apply our analysis as described above:
we compute cascade steady-states σ∞ but now we choose the
largest (weakly) connected component B(X, q) as the order
parameter and compute the susceptibility according to Eq. (3),
the peak-position of which, when considered as a function of
q= 1 − p, we use as a proxy for the perturbation size at which the
interdependent system breaks down.

The results for different initially perturbed domains illustrate
that, indeed, a considerably lower pc (i.e., larger critical
perturbation size qc) is estimated in the case of metabolic
perturbations compared to regulatory or non-localized ones
(Fig. 4a). For each point, we average 500 runs for the
corresponding set of parameters.

In order to assess whether the above-described behavior is due
to specific properties of the network, we use sets of randomized
graphs. For each of the four randomization schemes, described in
the “Methods” section, we prepared 500 graph instances and
repeated the analysis for each of them as done before for the
single original graph. The corresponding results for the suscept-
ibility (Fig. 4b–e) yield two major observations: firstly, metabolic
perturbations still lead to, albeit only slightly, higher qc= 1 − pc
estimates (with exception of DOMAIN randomization). Thus, the
system’s tendency to be more robust towards metabolic
perturbations is largely preserved. Secondly, we see that overall
the original network seems to be much more robust than the
randomized networks; very small perturbations are sufficient to
break the latter ones. The robustness of the original graph, thus,
cannot be solely due to the edge and vertex properties kept in the
randomization schemes.

Finally, let us focus on the practical aspect of these findings.
Beyond the careful statistical analysis described above, a quantity
of practical relevance is the average size of the unaffected part of
the system under a perturbation of given size q. For this purpose,
we examine the fractions of unaffected vertices, A(X, q), after
cascades emanating from perturbations of different sizes and
initiated in different domains, regardless of the resulting
component structure and for both, the original graph and the
shuffled ones (Fig. 5).

The number of unaffected vertices for the real network is much
larger than for all four randomization schemes, suggesting a
strong overall robustness of the biological system. Distinguishing,
however, between the metabolic and the gene regulatory
components reveals that the metabolic part is substantially more
robust than the regulatory part (for not too large initial
perturbations, p> 0.94).

Discussion
We investigated the spreading of perturbations through the three
domains of a graph representation of the integrative system of E.
coli’s gene regulation and metabolism. Our results quantify the
resulting cascading failures as a function of size and localization
of the initial perturbation.

Our findings show that the interdependent network of gene
regulation and metabolism unites sensitivity and robustness by
showing different magnitudes of damage dependent on the site of
perturbation.

While the interdependent network of these two domains is in
general much more robust than its randomized variants
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(retaining domain structure, degree sequence, and major biolo-
gical aspects of the original system), a pronounced difference
between the gene regulatory and metabolic domain is found:
Small perturbations originating in the gene regulatory domain
typically trigger far-reaching system-wide cascades, while small
perturbations in the metabolic domain tend to remain more local
and trigger much smaller cascades of perturbations.

In order to arrive at a more mechanistic understanding of this
statistical observation, we estimated the percolation threshold of
the system, pc, and found that it is much lower (i.e., larger per-
turbations, qc= 1 − pc, are required) for perturbations initiated in
the metabolic domain than for those applied to the gene reg-
ulatory domain.

This is in accordance with the intuition that the metabolic
system is more directly coupled to the environment (via the
uptake and secretion of metabolic compounds) than the gene
regulatory domain. The distinct percolation thresholds therefore
allow for implementing a functionally relevant balance between
robustness and sensitivity: The biological system can achieve a
robustness towards environmental changes, while—via the more
sensitive gene regulatory domain—it still reacts flexibly to other
systemic perturbations.

Discovering this design principle of the biological system
required establishing a novel method of analysing the robustness
of interdependent networks, the network response to localized
perturbations: An interdependent network can have markedly
different percolation thresholds, when probed with perturbations
localized in one network component compared to another.

Lastly, we would like to emphasize that the application of the
theoretical concepts of interdependent networks to real-life sys-
tems involves several non-trivial decisions:

In the vast majority of theoretical investigations, inter-
dependent networks are defined via a distinction between
dependency edges and connectivity-representing edges17, 19, 56.
Often, in specific applications, this distinction of connectivity
edges and dependency edges is not immediately clear (see

examples from neuroscience57 and systems biology58). In
Morone et al.59, an elegant way of mapping such real-life systems
to the formal description of connectivity edges and dependency
edges has been worked out for the case of brain networks by
emphasizing the different roles of intramodule and intermodule
edges.

Here the consideration of the biological data with respect to
different levels of description (an overview of the corresponding
vertex and edge categories is given in Supplementary Note 2)
results in a graph representation with a functional three-domain
organization: Vertices involved in gene regulation, metabolic
vertices, and vertices associated with the (protein) interface
between these two main domains are interconnected with
(functionally) different classes of edges. These edge classes are a
key ingredient of our biologically motivated percolation model.
As a consequence, our investigation required an adjustment of
the original percolation model described in Buldyrev et al.17 to
the vertex and edge classes employed here. We expect that
application of the notion of interdependent networks to real-life
systems is likely to require adjustments of the percolation model,
even though the main features of the original theory remain fully
applicable.

As mentioned above, when dealing with (possibly incomplete)
biological data, one major task is to find the right balance between
radical simplifications of systemic descriptions and an appro-
priate level of detail, still allowing for a meaningful evaluation of
the biological information, that is, to abstract from the minor but
keep the essential details60. We have outlined that, in this study,
we chose to incorporate high level of detail in the structural
description, distinguishing between a comparatively large number
of vertex and edge types. This rich structural description, which
includes information about the functional relationships between
vertices allows us to assess the dynamical/functional level with the
comparatively simple methods derived from percolation theory.

Even though the framework of multiplex networks does not
strictly apply to the example of a multilayer network discussed
here, as there is no one-to-one mapping from vertices in one layer
to vertices in the other layers, several theoretical findings on
multiplex networks nevertheless can help us to put the results of
our investigation in a broader context. It has been recognized in a
previous study31 that understanding the robustness of multilayer
networks may require adapting the standard percolation model,
where a vertex is switched off, if at least one of the interdependent
vertices has been switched off as well. This percolation model is at
the core of many of the investigations of catastrophic failures of
interdependent networks, e.g., Buldyrev et al.17. In this scenario, a
larger number of layers will typically lead to more vulnerable
networks. The interesting question, how an increasing number of
layers might actually enhance the robustness of the system, has
been addressed in Radicchi and Bianconi31. In our case, the
cascading failure, and hence the percolation model, is determined
by the Boolean update rules in Eqs. (1) and (2), which have been
derived from the underlying biological processes as described in
the corresponding “Results” and “Methods” sections (and in
more detail in the Supplementary Information).

This biologically motivated percolation model used here is
comparable to the model of percolation in multiplex networks
introduced in Radicchi and Bianconi31. Even though intracellular
molecular network systems, as the one studied here, tend to not
adhere to the formal requirement of a one-to-one mapping of
vertices between different layers, it is likely that the main finding
from31 —that an addition of layers enhances systemic robustness
by providing redundant interdependencies— may still hold. It
would be interesting to further explore in what way the multilayer
structure of intracellular molecular networks indeed enhances
their robustness in this way.
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Fig. 5 Fractions of unaffected vertices of the integrative E. coli network and
its randomized versions for distinct localized perturbations. Per initial
perturbation size, q= 1 − p, 5000 runs were averaged for the original
network (filled markers) and the four randomization schemes (open
markers), where in turn, 500 realizations are considered for each scheme.
Initial perturbations in the gene regulatory domain are presented as green
dots, while perturbations initiated in the metabolic domain are given as red
squares. The error bars indicate s.d. (results for randomized realizations have
been combined)
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Furthermore, an important question is, whether the analysis of
the fragmentation of such a network under random removal of
vertices can provide a reliable assessment of functional properties,
since the response of such a molecular network clearly follows far
more intricate dynamical rules than the percolation of pertur-
bations can suggest.

A future step could include the construction of a Boolean
network model for the full transcriptional regulatory network and
the connection of this model to flux predictions obtained via flux
balance analysis, a first attempt of which is given in Samal and
Jain34 (where the model of Covert et al.32 with still fewer inter-
dependence edges has been used).

Our perturbation spreading approach might help bridging the
gap between theoretical concepts from statistical physics and
biological data integration: Integrating diverse biological infor-
mation into networks, estimating ‘response patterns’ to systemic
perturbations and understanding the multiple systemic manifes-
tations of perturbed, pathological states is perceived as the main
challenge in systems medicine (see, e.g., Bauer et al.61). Concepts
from statistical physics of complex networks may be of enormous
importance for this line of research62, 63.

While the simulation of the full dynamics is still problematic as
our knowledge of the networks is still incomplete, our present
strategy extracts first dynamical properties of the interdependent
networks. At a later time point, we can expect qualitative
advances from full dynamical simulations, however, dependent
on the quality of the data sets.

On the theoretical side, future studies might shift the focus
onto recasting the system into an appropriate spreading model,
e.g., in the form of an unordered binary avalanche64, 65, or as an
instance of the Linear Threshold model37 with a set of edges with
a very high and a second set with a very low transmission
probability (C/R- and D-edges, respectively).

Also, it would be interesting to investigate in more detail,
whether the pattern of dependency edges, which in Reis et al.24

has been associated with robustness of interdependent networks,
are more prominent in the metabolism-to-regulation direction of
our system than in the regulation-to-metabolism direction.

Radicchi23 presents an approach for the investigation of the
percolation properties of finite size interdependent networks with
a specific adjacency matrix with the goal of loosening some of the
assumptions underlying the usual models (e.g., infinite system
limit, graphs as instances of network model). While this form-
alism allows for the investigation of many real-world systems,
there are still restrictions as to the possible level of detail. In our
special case, for instance, a considerable amount of information
would be lost if the system was restricted to vertices with con-
nections in both the C/R- and D-layers.

The existence of different percolation thresholds for localized
perturbations in interdependent networks may reveal itself as a
universal principle for balancing sensitivity and robustness in
complex systems. The application of these concepts to a wide
range of real-life systems is required to make progress in this
direction.

Methods
Network. The integrative network of E. coli has been assembled using the EcoCyc
database35, 36 (version 18.5), which offers both the data about metabolic processes
and (gene) regulatory events incorporated from the RegulonDB66 (release 8.7). The
extensive metadata allows for the assignment of the vertices to one of the three
functional domains. Details of this process and a detailed characterization of the
resulting model are described in (A.G., D.F.K., S.B., and M.-T.H., manuscript in
preparation). The corresponding graph representation consists of 10,383 vertices
and 24,150 directed edges.

Since we are interested in the propagation of a signal between the domains, in
the following we will refer to the domains of the source and target vertices of the

edge ek ¼ vðkÞs ; vðkÞt

� �
as source domain, SD, and target domain, TD, respectively.

The metadata can be used to assign properties to the vertices and edges of the
graph beyond the domain structure, some of which are used in the following
analysis, namely in the compilation of the percolation model and the
randomization schemes.

We distinguish between biological categories of edges (capturing the diverse
biological roles of the edges) and the logical categories (determining the rules of the
percolation process). According to their biological role in the system, both vertices
and edges are assigned to a biological category; we abbreviate the biological
category of a vertex as BCV and the biological category of an edge as BCE (for
details see Supplementary Note 2). Each of the eight BCEs can then be mapped
uniquely to one of only three LCE,

eLCEk 2 C;D;Rf g:

Percolation model. In the dynamical rules describing the propagation of an initial
perturbation in the network, we distinguish between the different roles a given edge
has in the update of a target vertex in terms of the LCE.

In our percolation model, every vertex is assigned a Boolean state variable σ ∈
{0, 1}; since we intend to mimic the propagation of a perturbation (rather than
simulate a trajectory of actual biological states), we identify the state 1 with ‘not yet
affected by the perturbation’, while the state 0 corresponds to ‘affected by the
perturbation’. We stress that the trajectory σ(t) does not correspond to the time
evolution of the abundance of gene products and metabolic compounds, but the
rules have been chosen such that the final set of affected vertices provides an
estimate of all vertices potentially being affected by the initial perturbation. A
vertex not in this set is topologically very unlikely of being affected by the
perturbation at hand (given the biological processes contained in our model).

A stepwise update can now be defined for vertex i with in-neighbors Γ�
i in

order to study the spreading of perturbations through the system by initially
switching off a fraction q of vertices:

σiðt þ 1Þ ¼ fi σjðtÞjσj 2 Γ�
i

� � ð1Þ

fi ¼

1 if
P

j cij 1� σj
� � ¼ 0

h i
^

P
j dijσj>0 _

P
j dij ¼ 0

h i
^

P
j rij
�� �� 1� σj

� � ¼ 0
h i

0 otherwise

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð2Þ

where cij is 1 if vj is connected to vi via a C-edge and 0 otherwise; dij and rij are
defined analogously.

Thus, a vertex will be considered unaffected by the perturbation if none of its
in-neighbors connected via either a C- or an R-edge have failed (regardless of the
type of regulatory interaction, activation or inhibition), and at least one of its in-
neighbors connected via a D-edge is still intact. With an additional rule, it is
ensured that an initially switched off vertex stays off. The choice of the update rules
ensures that the unperturbed system state is conserved under the dynamics:
f(1) = 1.

Network response to localized perturbation analysis. Due to the functional
three-domain partition of our E. coli gene regulatory and metabolic network
reconstruction, we have the possibility to classify perturbations not only according
to their size, but also with respect to their localization in one of the domains
comprising the full interdependent system, thereby enabling us to address the
balance of sensitivity and robustness of the interdependent network of gene reg-
ulation and metabolism.

Here we introduce the concept of network response to localized perturbations
analysis. This analysis will reveal that perturbations in gene regulation affect the
system in a dramatically different way than perturbations in metabolism. Thus, we
study the response to localized perturbations, which we denote by Per(X, q), where
X is the domain, in which the perturbation is localized (X ∈ {R, I, M, T}, with T
representing the total network G, i.e., the case of non-localized perturbations). The
perturbation size q = 1 − p is measured in fractions of the total network size
N = |G|. Hence, Per(M, 0.1) is a perturbation in the metabolic domain with (on
average) 0.1|G| vertices initially affected. Note that sizes q of such localized
perturbations are limited by the domain sizes, e.g., q|G| < |GR| for a perturbation in
the gene regulatory domain.

After the initial perturbation of a fraction q of the vertices in the domain X the
stepwise dynamics described above will lead to the deactivation of further vertices
and run into a frozen state σ∞, in which only a fraction A(X, q) of the vertices are
unaffected by the dynamics (i.e., are still in state 1). In addition to being directly
affected by failing neighbors, in the process of network fragmentation vertices may
also become parts of small components disconnected from the network’s core, and
could in this sense be considered non-functional; we therefore also monitor the
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relative sizes of the largest (weakly) connected component in the frozen state,
B(X, q), for different initial perturbation sizes.

In the limit of infinite system size, we could expect a direct investigation of B(X,
q) as a function of q to yield the critical perturbation size qc= 1 − pc at which B
vanishes. In our finite system, however, we have to estimate qc; following Radicchi
and Castellano39, and Radicchi67, we measure the fluctuation of B(X, q) which
serves as our order parameter and look for the peak position of the susceptibility

~χðX; qÞ ¼ B2
1

� �� B1h i2 ð3Þ

as a function of parameter q in order to estimate the transition point from the finite
system data. Supplementary Fig. 6 schematically illustrates the analysis (also see
Supplementary Note 1).

Randomization schemes. In order to interpret the actual responses of a given
network to perturbations, one usually contrasts them to those of suitably rando-
mized versions of the network at hand. Thereby, the often dominant effect of the
vertex degree distribution of a network can be accounted for and the effects of
higher-order topological features that shape the response of the network to per-
turbations can be studied systematically.

The same is true for the localized perturbation response analysis introduced
here. In fact, due to the substantially larger number of edges from gene regulation
to metabolism (both, directly and via the interface component of the
interdependent network) than from metabolism to gene regulation we can already
expect the response to such localized perturbations to vary.

Here we employ a sequence of ever more stringent randomization schemes to
generate sets of randomized networks serving as null models for the localized
perturbation response analysis. In all of the four schemes, the edge-switching
procedure introduced by Maslov and Sneppen68 is employed which conserves the
in- and out-degrees of all vertices.

Our most flexible randomization scheme (DOMAIN) only considers the
domains of the source and target vertices of an edge (SD and TD): only pairs of
edges are flipped which share both, the source and the target domain (e.g., both
link a vertex in the metabolic domain to a vertex in the interface). The remaining
three randomization schemes all add an additional constraint. The DOMAIN_LCE
randomization further requires the edges to be of the same logical categories of an
edge (i.e., C, D, or R), while the DOMAIN_BCV scheme only switches edges whose
target vertices also share the same biological category of a vertex, BCV. The strictest
randomization, DOMAIN_BCE, finally, only considers edges with, additionally,
the same biological category of an edge, BCE. A tabular overview of the four
schemes is given in Supplementary Table 1.

Data availability. The data that support the findings of this study are available
from the authors upon reasonable request.
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