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Simple Summary: Glioma represent approximately one-third of all brain tumors. Although they
differ clinically, histologically and genetically, they often are not distinguishable by morphological
magnetic resonance imaging (MRI) diagnostics. We therefore investigated in this retrospective study
whether diffusion weighted imaging (DWI) using a radiomic approach could provide complementary
information with respect to tumor differentiation and cell proliferation, as well as the underlying
genetic and epigenetic tumor profile. We identified several histogram features that could facilitate
presurgical tumor grading and potentially enable one to draw conclusions about tumor characteristics
on a cellular and subcellular scale.

Abstract: (1) Background: Astrocytic gliomas present overlapping appearances in conventional MRI.
Supplementary techniques are necessary to improve preoperative diagnostics. Quantitative DWI via
the computation of apparent diffusion coefficient (ADC) histograms has proven valuable for tumor
characterization and prognosis in this regard. Thus, this study aimed to investigate (I) the potential of
ADC histogram analysis (HA) for distinguishing low-grade gliomas (LGG) and high-grade gliomas
(HGG) and (II) whether those parameters are associated with Ki-67 immunolabelling, the isocitrate-
dehydrogenase-1 (IDH1) mutation profile and the methylguanine-DNA-methyl-transferase (MGMT)
promoter methylation profile; (2) Methods: The ADC-histograms of 82 gliomas were computed.
Statistical analysis was performed to elucidate associations between histogram features and WHO
grade, Ki-67 immunolabelling, IDH1 and MGMT profile; (3) Results: Minimum, lower percentiles
(10th and 25th), median, modus and entropy of the ADC histogram were significantly lower in
HGG. Significant differences between IDH1-mutated and IDH1-wildtype gliomas were revealed for
maximum, lower percentiles, modus, standard deviation (SD), entropy and skewness. No differences
were found concerning the MGMT status. Significant correlations with Ki-67 immunolabelling
were demonstrated for minimum, maximum, lower percentiles, median, modus, SD and skewness;
(4) Conclusions: ADC HA facilitates non-invasive prediction of the WHO grade, tumor-proliferation
rate and clinically significant mutations in case of astrocytic gliomas.
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1. Introduction

Gliomas, along with rarer tumors arising from neuroepithelial tissue, represent circa
28 percent of all brain tumors [1]. They derive from the enduring glia of the brain and
are either grouped as astrocytoma or oligodendroglioma, depending on the glial cell type
they originate from. Furthermore, based upon histopathologic tumor characteristics and
with increasing importance related to genetic alterations, the World Health Organization
(WHO) taxonomy subdivides gliomas from the lowest grade, I, to the highest grade, IV.
Whereas WHO grade I and II gliomas, which usually present a rather benign tumor biology,
are classified as low-grade gliomas (LGG), entities of WHO categories III and IV, which
exhibit a more aggressive tumor behavior, are classified as high-grade gliomas (HGG).
With about 14.6 percent of all newly diagnosed brain tumors, WHO grade IV astrocytoma
(or glioblastoma, GBM) represents the most frequent entity, followed by WHO grade II
astrocytoma (1.8 percent), then WHO grade III astrocytoma (1.7 percent) and WHO grade
I astrocytoma (1.3%) [1]. In fact, gliomas are tumors of substantial heterogeneity, both
in terms of the underlying histopathology, manifestation age and the associated clinical
course. For example, WHO grade IV astrocytoma, being the most aggressive glioma, is
associated with survival rates of 15 months on average [2], whereas WHO grade I (pilocytic)
astrocytoma, the most frequent pediatric glioma, is associated with a rather uneventful
further course [3].

Since the 2016 update of the WHO classification of CNS tumors, the diagnostic
paradigm in case of gliomas shifted from a predominantly histological perspective to-
wards a genetic- and molecular-based approach [4]. The classification of diffuse gliomas
(WHO II-IV), in particular, now includes mutation analysis of the isocitrate dehydrogenase
(IDH) 1 and 2 gene, the telomerase (TERT) promoter, the transcriptional regulator (ATRX)
gene and the tumor suppressor gene TP53, as well as methylation analysis of the (MGMT)
promoter and detection of 1p/19q co-deletions. Besides the prognostic value of this ge-
netical tumor profile, it is essential for the final diagnosis and supersedes the histological
diagnostics. For example, the diagnosis of oligodendroglioma is made only in the presence
of a complete 1p/19q co-deletion, regardless of the underlying histological appearance [5].

Magnetic resonance imaging (MRI) is the most important imaging modality for
gliomas. Presurgical tumor localization, treatment planning and the visualization of
eloquent brain areas are the main tasks of MRI in this context, usually performed via
conventional T2- and T1-weighted MRI sequences with 2D or 3D acquisition. However,
through partially overlapping tumor morphology and significant interobserver variability,
the diagnostic performance with those morphological MRI sequences remains limited for
glioma grading, and hence, preoperative risk stratification. To overcome those limitations,
advanced MRI approaches, for example MR spectroscopy, DWI and gadolinium-based
perfusion techniques have been established and integrated in the majority of clinical MRI
protocols. Especially DWI, which provides ADC maps that allow one to quantify the spatial
extent of diffusion in vivo on a µm scale [6], enables evaluation of the microscopic archi-
tecture of a biological sample [7], which renders the technique an important oncological
tool [8]. For example, DWI has been shown to be useful in assessing the growth potential
of gliomas [9,10], in glioma grading [11], in estimating the clinical prognosis of glioma
patients [12] or even in the differentiation of GBM from brain abscesses [13]. Most DWI
studies conducted in the past have focused predominantly on first-order features of the
ADC histogram profile, i.e., the mean, median, extreme values and percentiles. However,
advanced HA includes an estimation of second-order features, i.e., skewness, entropy and
kurtosis of the ADC. The latter allow an assessment of the shape of the ADC value distri-
bution within the lesion and therefore facilitate assessment of tumor heterogeneity [14].
Recent studies have further substantiated the value of advanced HA for tumor grading and
evaluation of individual tumor biology based on DWI [10,15–21] and even signal intensities
of conventional T1- and T2-sequences [22–25].

Nevertheless, despite the recent developments in the field of advanced MRI techniques,
there still are no reliable in vivo imaging biomarkers that could lead to an effective reduction
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in tumor biopsies or even replace them, for example, in the case of suspected low-grade
gliomas. Therefore, further imaging studies are necessary to reveal new and to evaluate
already known imaging biomarkers.

Considering the available data and the need for improved, non-invasive character-
ization of gliomas, the aim of this study was to evaluate whether whole tumor HA of
ADC profiles has the ability to (i) differentiate LGG from HGG, (ii) predict the proliferative
activity of the glioma represented by Ki-67 immunolabelling and (iii) predict the prognostic
relevant MGMT (methylguanine-DNA methyl-transferase) MGMT methylation profile, as
well as the IDH (isocitrate dehydrogenase) mutation profile.

2. Materials and Methods
2.1. Patients

Our radiological database was reviewed for patients suffering from primary brain
tumors/gliomas. A total of 114 patients who were treated in our center between January
2012 and February 2017 were included. Each diagnosis was confirmed histologically either
by biopsy or open tumor surgery. The samples were further processed neuropathologically
as outlined below. The patients included had sufficient pre-treatment MRI including DWI
and did not exhibit signs of lesional hemorrhage or calcification. Eventually, 82 patients
met those criteria. In total, 26 patients had LGG (WHO I: n = 7, WHO II: n = 19; 12 females,
14 males; average age: 34a) and 56 had HGG (WHO III: n = 11, WHO IV: n = 45; 22 females,
34 males; average age: 62a). Twenty-three percent (19/82) of the patients revealed an IDH-1
mutation and 71 percent (58/82) an IDH-1 wildtype genotype (for 5 patients no IDH-1
mutation status was available). The methylation of the MGMT promoter was positive in
39 percent (32/82); 43 percent (35/82) had tumors with an unmethylated MGMT promoter.
In the remaining 15 patients, no MGMT promoter profile was available. In 9.8 percent
(8/82) Ki-67 immunolabelling was not available.

2.2. MRI Protocol

MRI was performed in all cases using a 1.5 T MAGNETOM scanner (Aera or Sym-
phony, using a Tx/Rx CP head coil, Siemens, Erlangen, Germany). The scanning protocol
consisted of axial T1-weighted (T1w) spin echo (SE) sequences (TR/TE: 453/17, flip angle:
90◦, slice thickness: 5 mm, acquisition matrix: 320 × 179, field of view: 230 × 187 mm) be-
fore and after the application of a gadolinium-based contrast agent (Gadobutrol, Gadovist,
Bayer Schering Pharma, Leverkusen, Germany), an axial T2-weighted (T2w) turbo spin
echo (TSE) sequence (TR/TE: 5390/99, flip angle: 150◦, slice thickness: 5 mm, acquisition
matrix: 512 × 291, field of view: 230 × 187 mm) and an axial DWI sequence (readout-
segmented, multi-shot EPI sequence; TR/TE: 5500/103, flip angle 90◦, slice thickness:
5 mm, acquisition matrix: 152 × 144, field of view: 230 × 230 mm).

All images were digitalized and reviewed by two experienced readers (DHR, SS) who
were blinded regarding the histopathological report. Image analysis was performed using
a commercially available PACS workstation (Impax EE R20 XII).

2.3. Histogram Analysis of ADC Volumes

T1w images, T2w images and ADC maps were anonymized and extracted from the
institutional PACS as DICOM files. Subsequently, histogram analysis was performed via
a custom-made, MATLAB-based analysis tool (programmed by N.G. using MATLAB,
The Mathworks, Natick, MA, USA) as follows. In the case of contrast-enhancing tumors,
T1w (post contrast) images, and in the case of non-enhancing tumors, T2w images, were
uploaded to the visual interface displaying the anatomical image in order to correlate and
tag the tumor of each patient entirely. Regions of interest (ROIs), which were manually
drawn in T1w (post contrast) or T2w images along the corresponding border of the whole
visible signal alteration (contrast-enhancing region or T2w hyperintense region) in every
slice of detectable tumor, were propagated and co-registered to the corresponding ADC
maps. Using the MATLAB library, the following features of the ADC histogram of the
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whole tumor volume were computed: mean, minimum (min), maximum (max), 10th
percentile (p10), 25th percentile (p25), 75th percentile (p75), 90th percentile (p90), modus,
median, standard deviation (SD), skewness, kurtosis and entropy.

2.4. Immunolabelling and Polymerase Chain Reaction (PCR)—Molecular Neuropathology

Testing was performed as described previously [10]:
Tumor specimens were fixed in formaldehyde and embedded in paraffin for histology,

immunolabelling and PCR. The embedded tissue was cut with 3µm thickness and stained
with hematoxylin and eosin (H&E). Immunolabelling was done employing antibodies
raised against IDH1-R132H (1:20 diluted, cat. no. DIA-H09; Dianova, Hamburg, Germany)
and MIB/Ki67 (1:800 diluted; cat. no. M7240; Dako Denmark A/S, Glostrup, Denmark).
Histology was digitalized using a Leica microscope equipped with a DFC290 HD digital
camera; LAS V4.4 was used for image processing (Leica Microsystems, Wetzlar, Germany).
Necrosis and hemorrhage were absent in the investigated samples; the presence of viable
tumor cells was also confirmed via microscopy. IDH1 immunolabelling resulting in strong
cytoplasmic staining was interpreted as IDH1 positive. The proliferation index was calcu-
lated by dividing the Ki67-immunolabelled (stained) cellular nuclei by all nuclei. The area
exhibiting the greatest number of Ki67-reactive nuclei was chosen in each sample.

To determine the methylation profile of the MGMT promoter, DNA from each glioma
was isolated using 10 µm-thick sections (derived from the paraffin-embedded samples).
Extraction was performed with the Maxwell® RSC FFPE Plus DNA Kit AS1720 (Promega,
Madison, WI, USA). Unmethylated cytosine residues were converted to uracil by bisul-
fite treatment using the EpiTect® Bisulfite Kit (QIAGEN, Hilden, Germany). All steps
were performed in accordance with the manufacturer’s instructions. PCR with bisulfite-
converted DNA was performed for amplification and the methylation profile was evaluated
via pyrosequencing using the Therascreen MGMT Pyro® Kit (QIAGEN, in accordance
with the manufacturers protocol). A methylation of 10 percent or more was considered
methylation positive.

2.5. Statistical Analysis

Descriptive statistics, group comparison with significance testing and computation of
correlations was performed with GraphPad Prism 8 (GraphPad Software, CA, USA).

The Shapiro–Wilk test was performed to test for Gaussian vs. non-Gaussian distribu-
tion. Group comparisons of normally distributed values was performed with Student’s
T test; non-normally distributed data were tested employing the Mann–Whitney U Test.
Correlations between parameters with normal distribution were computed using Pear-
son’s Correlation Coefficient. For parameters exhibiting non-Gaussian distribution, the
Spearman–Rho coefficient was computed. In all instances, p-values < 0.05 were interpreted
as statistically significant.

As a last step, aiming to assess the accuracy of the investigated histogram features,
the receiver operating characteristics (ROC) curve analysis was calculated, including the
area under the curve (AUC). For the estimation of suitable cutoff values, Youden’s index
was calculated.

3. Results

Figure 1 demonstrates the commonly used contrast-enhanced T1-weighted MRI scans
of different representative glioma entities (WHO grade II and WHO grade IV), the calcu-
lated ADC histogram of the respective tumor, as well as the corresponding histopathological
images, consisting of HE staining and Ki-67 immunolabeling.

For better comprehensibility, Table 1 summarizes the results of the descriptive statisti-
cal analysis of all included cases.

In brief, statistically significant differences between both entities, LGG vs. HGG, were
identified for the following set of ADC features: minimum, lower percentiles (p10 and
p25), median, modus and entropy (p < 0.05 in all instances). As expected, Ki-67 positive
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immunolabelling was significantly stronger in HGG compared to LGG. The results of the
comparative statistics considering LGG and HGG are listed in Table 2 and graphically
demonstrated in Figure 2.
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Figure 1. T1w MR images post gadolinium, corresponding ADC histograms, H&E images and Ki67
immunolabelling sections from patients with WHO grade II—(a–d) and WHO grade IV glioma (e–h).
The upper left image shows a T1w image after intravenous application of a gadolinium-based contrast
agent revealing a WHO grade II glioma in the left frontal lobe, extending into the precentral gyrus.
The atypical morphologic appearance of this LGG with contrast medium enhancement and cystic
areas renders differentiation of this lesion difficult from high-grade neoplasms, based on standard
MRI sequences alone (a). The lower left image depicts T1w imaging of a WHO grade IV glioma
arising from the parafalcine region of the right frontal lobe (e). The set of images in the second
column show histograms of the respective entire tumor ADC volume (b,f) The set of images in the
third column demonstrate representative H&E stainings (c,g). The images in the last column (d,h)
demonstrate Ki67 immunolabeling of the lesions. The LGG (WHO grade II) showed a proliferation
index of 5%, the HGG had a proliferation index of 50%.

Table 1. ADC histogram features of all included gliomas.

ADC Histogram Features Mean ± Standard Deviation Minimum Maximum

ADCmean, ×10−5 mm2s−1 141.11 ± 31.97 66.56 230.91

ADCmin, ×10−5 mm2s−1 44.00 ± 28.36 0.1 101.30

ADCmax, ×10−5 mm2s−1 278.35 ± 60.11 107.30 397.80

ADCp10, ×10−5 mm2s−1 100.16 ± 20.25 44.50 160.70

ADCp25, ×10−5 mm2s−1 115.86 ± 26.49 49.80 203.60

ADCp75, ×10−5 mm2s−1 163.91 ± 44.76 75.30 274.00

ADCp90, ×10−5 mm2s−1 186.27 ± 48.66 82.79 283.70

ADCmedian, ×10−5 mm2s−1 137.65 ± 35.92 59.85 263.30

ADCmodus, ×10−5 mm2s−1 137.66 ± 52.57 46.30 277.00

ADC SD, 10−5 mm2s−1 34.87 ± 15.64 8.77 77.46

Kurtosis 4.72 ± 3.65 1.35 23.34

Skewness 0.60 ± 0.95 −2.07 3.80

Entropy 4.87 ± 0.61 3.25 6.19
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Table 2. ADC histogram features and Ki67 immunolabelling in LGG vs. HGG. Significant results are
written in bold letters.

ADC Histogram Features Low-Grade Glioma
Mean ± SD

High-Grade Glioma
Mean ± SD

t-Test
p-Values

ADCmean, ×10−5 mm2s−1 148.70 32.04 137.60 31.88 0.1446

ADCmin, ×10−5 mm2s−1 53.75 25.47 39.48 28.96 0.0433

ADCmax, ×10−5 mm2s−1 260.50 59.07 286.60 59.85 0.0604

ADCp10, ×10−5 mm2s−1 110.00 15.45 95.59 20.88 0.0024

ADCp25, ×10−5 mm2s−1 129.30 26.59 109.60 24.47 0.0014

ADCp75, ×10−5 mm2s−1 167.80 42.13 162.10 46.58 0.4528

ADCp90, ×10−5 mm2s−1 185.30 47.07 186.70 50.22 0.8996

ADCmedian, ×10−5 mm2s−1 148.90 36.22 132.40 35.21 0.0450

ADCmodus, ×10−5 mm2s−1 153.20 46.25 130.40 54.60 0.0083

ADC SD, 10−5 mm2s−1 30.11 13.84 37.07 16.19 0.0600

Kurtosis 4.23 2.76 4.94 4.03 0.6381

Skewness 0.32 0.89 0.72 0.96 0.0740

Entropy 5.19 0.70 4.73 0.51 0.0011

Ki-67 4.71 2.58 25.74 17.82 <0.0001
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Comparing IDH1-mutated with IDH1-wildtype gliomas, the following features of the
ADC histogram achieved statistical significance: lower percentiles (p10 and p25), modus,
standard deviation, maximum, skewness and entropy. The complete results are listed in
Table 3 and those with significant differences are shown in Figure 3a–g.

Table 3. ADC histogram features in gliomas with and without IDH-1 mutation. Significant results
are written in bold letters.

ADC Histogram Features IDH-1 Mutation
Mean ± SD

IDH-1 Wildtype
Mean ± SD p-Values

ADCmean, ×10−5 mm2s−1 144.60 22.65 138.50 33.03 0.4523

ADCmin, ×10−5 mm2s−1 54.88 23.27 40.41 29.25 0.0571

ADCmax, ×10−5 mm2s−1 244.10 51.79 288.40 60.15 0.0022

ADCp10, ×10−5 mm2s−1 112.50 18.52 95.64 19.89 0.0017

ADCp25, ×10−5 mm2s−1 127.80 22.62 110.00 24.00 0.0058

ADCp75, ×10−5 mm2s−1 160.80 26.43 163.40 48.61 0.7899

ADCp90, ×10−5 mm2s−1 175.60 28.29 188.50 52.87 0.5170

ADCmedian, ×10−5 mm2s−1 144.60 25.65 133.20 35.53 0.1245

ADCmodus, ×10−5 mm2s−1 146.60 31.42 132.80 56.84 0.0320

ADC SD, ×10−5 mm2s−1 25.78 9.16 37.70 16.19 0.0030

Kurtosis 3.82 1.61 5.02 4.14 0.7296

Skewness 0.07 0.82 0.80 0.93 0.0028

Entropy 5.42 0.58 4.70 0.54 <0.0001
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When comparing gliomas with a methylated vs. unmethylated MGMT promoter, no
statistically significant differences were detectable, as demonstrated in Table 4.

Table 4. ADC histogram features in gliomas with and without MGMT promoter methylation.

ADC Histogram Features
MGMT Promoter

Methylation Positive
Mean ± SD

MGMT Promoter
Methylation Negative

Mean ± SD
p-Values

ADCmean, ×10−5 mm2s−1 138.30 31.98 139.60 30.61 0.8605

ADCmin, ×10−5 mm2s−1 41.96 27.30 40.21 29.64 0.8835

ADCmax, ×10−5 mm2s−1 271.80 59.61 280.70 66.78 0.4633

ADCp10, ×10−5 mm2s−1 99.01 21.24 97.10 20.17 0.3837

ADCp25, ×10−5 mm2s−1 112.60 25.37 112.50 24.19 0.9848

ADCp75, ×10−5 mm2s−1 161.70 45.81 163.00 44.18 0.6467

ADCp90, ×10−5 mm2s−1 184.00 49.19 187.10 48.99 0.7434

ADCmedian, ×10−5 mm2s−1 133.70 34.32 135.90 34.58 0.7767

ADCmodus, ×10−5 mm2s−1 131.00 50.25 135.50 53.61 0.9329

ADC SD, ×10−5 mm2s−1 34.25 15.51 36.38 16.85 0.5618

Kurtosis 3.92 2.09 4.75 3.60 0.8176

Skewness 0.59 0.71 0.55 0.70 0.8430

Entropy 4.92 0.71 4.87 0.51 0.7397

The computation of correlations between ADC histogram features and Ki67 immuno-
labelling revealed significant associations (p < 0.05) for the following ADC parameters:
minimum, lower percentiles (p10 and p25), median, modus, maximum and skewness.

Table 5 provides all results of the correlative analysis; the strongest correlation was
detected for ADCp10. All significant correlations are graphically demonstrated in Figure 4.

Table 5. Correlations between ADC histogram features and Ki67 immunolabelling in all included
gliomas. Significant results are in bold.

ADC Histogram Features Correlation

ADCmean, ×10−5 mm2s−1 r = −0.2044
p = 0.0807

ADCmin, ×10−5 mm2s−1 r = −0.3107
p = 0.0071

ADCmax, ×10−5 mm2s−1 r = −0.2772
p = 0.0168

ADCp10, ×10−5 mm2s−1 r = −0.4506
p < 0.0001

ADCp25, ×10−5 mm2s−1 r = −0.4026
p = 0.0004

ADCp75, ×10−5 mm2s−1 r = −0.1103
p = 0.3493

ADCp90, ×10−5 mm2s−1 r = −0.0207
p = 0.8613

ADCmedian, ×10−5 mm2s−1 r = −0.2835
p = 0.0144
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Table 5. Cont.

ADC Histogram Features Correlation

ADCmodus, ×10−5 mm2s−1 r = −0.2782
p = 0.0164

ADC SD, ×10−5 mm2s−1 r = 0.2957
p = 0.0105

Kurtosis r = −0.0953
p = 0.4192

Skewness r = 0.3118
p = 0.0068

Entropy r = −0.0974
p = 0.4090
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To evaluate the test performance of the different histogram parameters as possible
classifiers in terms of differentiating LGG from HGG and IDH1-mutated gliomas from
IDH1-wildtype gliomas, receiver operating characteristic (ROC) analysis and calculation of
the corresponding AUC values was performed using those ADC HA features that achieved
significance in the comparative statistics. The greatest accuracy concerning the distinction
between LGG and HGG was detected for the lowest percentile ADCp10 (AUC = 0.7332,
(CI: 0.6214–0.8450), p = 0.0007) and concerning the distinction between IDH1-mutated and
IDH1-wildtype gliomas for entropy (AUC = 0.8040, (CI: 0.6849–0.9231), p < 0.0001). The
complete results of the ROC analysis are listed in Table 6; the corresponding ROC curves
are displayed in Figure 5.
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Table 6. ROC analysis of different ADC histogram features as possible classifiers between LGG and
HGG as well as between IDH1-mutated and IDH1-wildtype gliomas.

ROC Analysis LGG versus HGG

ADC Histogram Features AUC Confidence Interval p-Value

ADCmin, ×10−5 mm2s−1 0.6391 0.5107–0.7674 0.0436

ADCp10, ×10−5 mm2s−1 0.7332 0.6214–0.8450 0.0007

ADCp25, ×10−5 mm2s−1 0.7050 0.5868–0.8233 0.0029

ADCmedian, ×10−5 mm2s−1 0.6380 0.5099–0.7662 0.0452

ADCmodus, ×10−5 mm2s−1 0.6806 0.5647–0.7966 0.0088

Entropy 0.7026 0.5671–0.8381 0.0033

ROC Analysis IDH1-mutated versus IDH1-wildtype gliomas

ADCmax, ×10−5 mm2s−1 0.7314 0.6054–0.8573 0.0026

ADCp10, ×10−5 mm2s−1 0.7296 0.6116–0.8476 0.0028

ADCp25, ×10−5 mm2s−1 0.6924 0.5653–0.8195 0.0122

ADCmodus, ×10−5 mm2s−1 0.6642 0.5413–0.7872 0.0325

ADC SD, ×10−5 mm2s−1 0.7241 0.6017–0.8466 0.0035

Skewness 0.7486 0.6235–0.8737 0.0012

Entropy 0.8040 0.6849–0.9231 p < 0.0001

Finally, Youden’s index was calculated to define the optimal cutoff value for differen-
tiation between LGG and HGG: ADCp10 values ≤ 0.0009805 indicate HGG (sensitivity:
0.81, specificity: 0.63). Furthermore, the calculation of Youden’s index was performed
to define the optimal cutoff value for differentiation between IDH wildtype and IDH1
mutant: ADC entropy values ≤ 5.488 indicate an IDH1-wildtype profile (sensitivity: 0.73,
specificity: 0.97).

4. Discussion

Depending on the underlying tumor grade, gliomas comprise a more or less heteroge-
neous tissue microarchitecture containing areas of different mitotic activity and cellularity.
This tumor heterogeneity is not represented adequately by conventional T1w and T2w im-
ages. In the case of HGG, for example, it has been reported that the peritumoral edema—a
region that is not characterized by leaky neoplastic vessels and thus parenchymal contrast
enhancement—contains aggressive and highly proliferating tumor cell islets [26]. Espe-
cially those highly proliferative areas that remain unremarkable in conventional contrast-
enhanced MRI sequences are often the origin of local tumor recurrence.

Therefore, presurgical identification of hot spots with increased proliferation—within
and outside the morphologically identifiable tumor region—as potential targets for biopsy
and open surgery planning is pivotal.

The ADC histogram of a tumor reflects the characteristically altered diffusion profile
of proteins inside the extracellular matrix of a neoplasm, which is strongly associated
with tumor-cell proliferation and higher tumor grades in a variety of neoplasms, with
lower ADC values resulting from higher cellularity and tumor grade [27–30]. In line
with these studies, our results showed significantly decreased first-order ADC histogram
parameters; i.e., the minimum values, the lower percentiles as well as the median and mode
for HGG, underlining a shift of the ADC continuum towards lower values in association
with a higher tumor grade and greater proliferative activity of the respective tumor tissues.
Entropy values of the ADC, representing a second-order feature, also exhibited significant
differences between LGG and HGG with decreased values in the HGG group. This is a
rather unexpected result, since previously published ADC histogram studies suggest ADC
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entropy as potential imaging marker for tumor heterogeneity with higher values in case
of higher tumor grade [10,31,32]. Entropy as a quantity in HA describes the randomness
of values, possibly reflecting the degree of ‘chaos’ in the neoplastic microarchitecture. For
example, ADC entropy values were reported to be significantly greater in WHO grade II
gliomas in comparison to WHO grade I gliomas [10] and exhibited significant changes
after treatment of cancer cells with cytoreductive agents [33]. We hypothesize that our
finding substantiates an association of ADC entropy with a set of phenotypic features being
characteristic of altered tumor behavior, and not an exclusive link between ADC entropy
and architectural heterogeneity. In particular context of gliomas, advanced tumor biology
has been related to a phenotypic shift from a proneural to mesenchymal subtype [34],
which may potentially be reflected by corresponding changes in ADC entropy. However,
this hypothesis is of purely theoretical nature and requires further investigations.

In line with the generally accepted concept of increased proliferation in HGG, our
study revealed a significantly greater extent of Ki67 immunoreactivity in HGG than in the
low-grade neoplasms as shown in Table 2 and exemplarily demonstrated in Figure 1 by the
Ki67 immunolabelling sections.

IDH1 and -2 mutations appear early in gliomagenesis in the majority of LGG and sec-
ondary HGG [35]. As important prognostic factor, IDH mutation status is a well-established
part of the basic histopathological diagnosis in case of gliomas. Tumor entities with mutated
IDH genes show better prognosis and favorable individual outcomes in comparison to
IDH-wildtype gliomas [36–38]. Beside this prognostic relevance, IDH mutation could fur-
thermore play a role as potential therapeutical target in the future and therefore influence
the glioma therapy regime [39]. In the present study, we discovered a strong, significant dif-
ference (p < 0.0001) concerning the entropy values of IDH1-wildtype versus IDH1-mutated
tumors, with higher values being present in the latter. These findings are in accordance
with a recent imaging study on the ADC histogram analysis of LGG [10]. The entropy of
the ADC histogram appears to be a resilient imaging marker reflecting IDH gene mutation
status across the different glioma grades, and thus represents a promising biomarker for
future studies. Additionally, the present histogram study revealed significantly higher val-
ues of ADCmax, ADC SD and skewness as well as lower values of ADCp10, ADCp25 and
ADCmodus in the IDH1-wildtype group, which is best explained by the fact that most of
the IDH1-wildtype tumors are WHO grade IV entities, together with the abovementioned
asymmetrical shift of the ADC histogram profile towards lower values and a possibly
broader scattering of ADC values in general.

MGMT represents an important genomic repair mechanism, which has gained im-
portance for the risk stratification of HGG. Silencing its gene expression due to promoter
methylation during tumor development enhances the cyto-reductive efficacy of alkylating
anti-cancer drugs and has been shown to increase survival rates in the case of GBM [40].
However, the prediction of the MGMT promoter profile via ADC histograms in gliomas
showed partly conflicting and ambiguous results [41–45]. Consistent with the negative
results of those works, our actual study did not reveal associations of ADC histogram
features with the MGMT promoter profile.

Finally, a number of histogram features showed significant, inverse correlations with
Ki67 immunolabelling. It is a well-established fact that tumors with a higher tumor grade
are associated with increased proliferative activity, accompanied by the higher expression
of Ki67 and consecutively increased cellularity, with a reduction in intercellular space and
thus extracellular diffusion restriction. Our correlative statistic results suggest a direct and
robust correlation between tumor proliferation and tumor ADC histogram profile with
a complete shifting of the ADC curve towards lower ADC values, expressed by lower
percentiles, extreme values, median and modus, as well as higher skewness. These results
are consistent with previous studies investigating different neoplastic intracranial lesions
like lymphoma, meningioma and low-grade glioma, which also demonstrated comparable
associations of distinct ADC fractions with Ki67 immunolabelling [10,16,17].
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Our study has a number of limitations, including its retrospective design using data
exclusively from 1.5T scanners with therefore lower signal-to-noise ratios and subsequently
ADC maps with reduced spatial information in comparison to 3T scanners. Additionally,
the ADC was derived from only two b-values (0 and 1000 s/mm2). This may result in biased
ADC values, as perfusion effects influence the ADC when using b-values below 200 s/mm2.
This limitation could be overcome by using DWI with a multiple-b-value approach, which
not only makes the calculation of the ADC more accurate, but also provides additional
parameters like the pseudo-diffusion coefficient that reflects the perfusion properties of the
tissue. Furthermore, related to the preliminary nature of our investigation, the familywise
alpha inflation due to serial hypothesis tests in the statistical analysis was not controlled.

5. Conclusions

Glioma ADC histogram profiling could aid in the differentiation of LGG and HGG,
facilitate the estimation of growth kinetics and allow clinicians to draw preliminary conclu-
sions about the IDH gene profile of the lesion at hand. Therefore, ADC histogram profiling
as very straightforward and easily available postprocessing radiomic approach should be
implemented in standard presurgical diagnostics to improve the accuracy of diagnosis
as well as to help detecting possible hotspots of increased proliferation within the tumor
tissue for targeted biopsy.
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