## OPEN

## Association Between End-Tidal Carbon Dioxide Pressure and Cardiac Output During Fluid Expansion in Operative Patients Depend on the Change of Oxygen Extraction

Pierre-Grégoire Guinot, MD, Mathieu Guilbart, MD, Abdel Hakim Hchikat, Marie Trujillo, Pierre Huette, Stéphane Bar, Kahina Kirat, Eugénie Bernard, MD, Hervé Dupont, MD, PhD, and Emmanuel Lorne, MD, PhD

**Abstract:** In a model of hemorrhagic shock, end-tidal carbon dioxide tension (EtCO<sub>2</sub>) has been shown to reflect the dependence of oxygen delivery (DO<sub>2</sub>) and oxygen consumption (VO<sub>2</sub>) at the onset of shock. The objectives of the present study were to determine whether variations in EtCO<sub>2</sub> during volume expansion (VE) are correlated with changes in oxygen extraction (O<sub>2</sub>ER) and whether EtCO<sub>2</sub> has predictive value in this respect.

All patients undergoing cardiac surgery admitted to intensive care unit in whom the physician decided to perform VE were included. EtCO<sub>2</sub>, cardiac output (CO), blood gas levels, and mean arterial pressure (MAP) were measured before and after VE with 500 mL of lactated Ringer solution. DO<sub>2</sub>, VO<sub>2</sub>, and O<sub>2</sub>ER were calculated from the central arterial and venous blood gas parameters. EtCO<sub>2</sub> responders were defined as patients with more than a 4% increase in EtCO<sub>2</sub> after VE. A receiver-operating characteristic curve was established for EtCO<sub>2</sub>, with a view to predicting a variation of more than 10% in O<sub>2</sub>ER.

Twenty-two (43%) of the 51 included patients were EtCO<sub>2</sub> responders. In EtCO<sub>2</sub> nonresponders, VE increased MAP and CO. In EtCO<sub>2</sub> responders, VE increased MAP, CO, EtCO<sub>2</sub>, and decreased O<sub>2</sub>ER. Changes in EtCO<sub>2</sub> were correlated with changes in CO and O<sub>2</sub>ER during VE (P < 0.05). The variation of EtCO<sub>2</sub> during VE predicted a decrease of over 10% in O<sub>2</sub>ER (area under the curve [95% confidence interval]: 0.88 [0.77–0.96]; P < 0.0001).

During VE, an increase in  $EtCO_2$  did not systematically reflect an increase in CO. Only patients with a high  $O_2ER$  (i.e., low  $ScvO_2$  values) display an increase in  $EtCO_2$ .  $EtCO_2$  changes during fluid challenge predict changes in  $O_2ER$ .

(Medicine 95(14):e3287)

Abbreviations:  $CaCO_2$  = arterial  $CO_2$  contents,  $CaO_2$  = arterial  $O_2$  contents, CO = cardiac output,  $CvCO_2$  = venous  $CO_2$  contents,

Editor: Tomasz Czarnik.

- Correspondence: Pierre-Grégoire Guinot, Anesthesiology and Critical Care Department, Amiens University Hospital, Place Victor Pauchet, Amiens F-80054, France (e-mail: guinotpierregregoire@gmail.com).
- Acquisition of data: P-GG, MG, AHH, MT, PH, SB, KK, EB, HD, EL; analysis and interpretation: P-GG, HD, EL; and drafting the manuscript for important intellectual content: P-GG, MG, EL.

This study has been approved by the IRB of Amiens University Hospital. The authors have no funding and conflicts of interest to disclose.

Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved.

 $CvO_2$  = venous  $O_2$  contents, CVP = central venous pressure,  $DO_2$  = oxygen delivery, HR = heart rate, ICU = intensive care unit, MAP = mean arterial pressure,  $O_2ER$  = oxygen extraction,  $PaO_2$  = arterial oxygen pressure, PLR = passive leg raising,  $PvO_2$  = venous oxygen pressure,  $SaO_2$  = arterial oxygen saturation, SV = stroke volume,  $SvO_2$  = central venous oxygen saturation,  $VCO_2$  = carbon dioxide production,  $VO_2$  = oxygen consumption.

#### INTRODUCTION

he objective of volume-based hemodynamic resuscitation is to raise cardiac output (CO) and increase or restore the delivery of oxygen (DO2) required to meet the demands of oxygen consumption  $(VO_2)$ .<sup>1</sup> If DO<sub>2</sub> drops below a critical threshold, oxygen extraction (O<sub>2</sub>ER) cannot increase in proportion to demand, and VO<sub>2</sub> becomes dependent on DO<sub>2</sub>. Before critical O<sub>2</sub>ER values arise, DO<sub>2</sub> can decrease independently of VO<sub>2</sub> (because DO<sub>2</sub> exceeds VO<sub>2</sub>) and O<sub>2</sub>ER will increase with demand (as demonstrated by a progressive fall in central venous saturation [ScvO2]).<sup>2</sup> When O2ER cannot rise any further, VO<sub>2</sub> decreases and the body's metabolism becomes partially anaerobic (with a resulting increase in blood lactate levels).<sup>3</sup> In many pathological situations, VO<sub>2</sub> remains constant over a wide range of DO2 values as a result of adjustments in tissue oxygen uptake.<sup>4</sup>  $SevO_2$  is a clinically meaningful measure of tissue oxygenation,<sup>5</sup> since it assesses the adequacy of DO<sub>2</sub> with regard to VO<sub>2</sub>.<sup>6</sup> Several studies have shown that ScvO<sub>2</sub>-based hemodynamic resuscitation is associated with lower morbidity and mortality rates during anesthesia and intensive care.778 Exhaled CO2 (end-tidal carbon dioxide tension,  $EtCO_2$ ) is also monitored in patients in the intensive care unit (ICU) or during anesthesia.<sup>9</sup> Over short periods (and assuming a constant metabolic state), there is a qualitative relationship between  $EtCO_2$  and  $CO.^{10,11}$  Thus,  $EtCO_2$  can be used as a noninvasive, continuous measure of CO during several clinical situations with low-flow states.<sup>10–13</sup> These results have not been confirmed in patients scheduled for surgery, in whom CO increased upon volume expansion (VE).<sup>14</sup> One possible explanation is that patients scheduled for surgery and patients in the ICU differ in terms of systemic oxygen supply dependency. Most of the literature studies were performed in low-flow states, in which patients have been on a dependence phase between  $DO_2$  and  $VO_2$ . This is probably not the case for most patients in the operating theatre. Based on a model of hemorrhagic shock in dogs, Guzman et al<sup>12</sup> demonstrated that  $EtCO_2$  can reflect the dependence of  $DO_2$  and  $VO_2$ at the onset of shock and during hemodynamic resuscitation. Thereafter, Dubin et al $^{13}$  confirmed the relationship between EtCO<sub>2</sub>, DO<sub>2</sub>, and VO<sub>2</sub>. Lastly, EtCO<sub>2</sub> may be a noninvasive indicator of O<sub>2</sub>ER (and its surrogate ScVO<sub>2</sub>). Hence, the

Received: December 10, 2015; revised: February 3, 2016; accepted: March 13, 2016.

From the Anesthesiology and Critical Care Department (P-GG, MG, AHH, MT, PH, SB, KK, EB, HD, EL), Amiens University Hospital, Amiens, France and INSERM U1088 (P-GG, HD, EL), Jules Verne University of Picardy, Amiens, France.

This is an open access article distributed under the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ISSN: 0025-7974

DOI: 10.1097/MD.00000000003287

primary objective of the present study was to confirm that variations in  $EtCO_2$  during VE are correlated with changes in  $O_2ER$ . We also evaluated the ability of variations in  $EtCO_2$  to predict a decrease in  $O_2ER$  during VE.

### Ethics

#### **METHODS**

The study's objectives and procedures were approved by the local independent ethics committee. Ethical approval for this study (Ethical Committee No. RNI2014-15) was provided by the Comité de Protection des Personnes Nord-Ouest II CHU—Place V. Pauchet, 80054 AMIENS Cedex 1 (Chairperson Bourgueil Thierry) on June 26, 2014. All patients received written information on the study and gave their verbal consent to participation prior to surgery. The present manuscript was drafted in compliance with the STROBE checklist for cohort studies.<sup>15</sup>

#### Patients

This prospective, observational study started on June 30, 2014 at Amiens University Hospital's cardio vascular and thoracic ICU over a 6-month period. The inclusion criteria were any major patient over 18 years, ventilated with controlled positive ventilation, for whom the physician decided to do a VE within hours of admission to the ICU. The indications for VE were arterial hypotension (systolic arterial pressure [SAP] lower than 90 mm Hg and/or mean arterial pressure [MAP] lower than 65 mm Hg), oliguria (urine output lower than 0.5 mL/kg per h over 1 h), clinical signs of hypoperfusion (skin mottling, capillary refill time over 2 s), and arterial hyperlactatemia (arterial lactate over 2 mmol/L). The noninclusion criteria were permanent arrhythmia, chronic obstructive pulmonary disease, and acute lung injury. The exclusion criteria were spontaneous ventilation, poor echogenicity, and arrhythmia.

#### Hemodynamic Parameters

An internal jugular vein central venous catheter and an arterial catheter were placed in all patients. Central venous pressure (CVP) and blood pressure were measured with a transducer zeroed at the mid-axillary line. Transthoracic echocardiography (Cx50, Philips Medical System, Suresnes, France) was performed by a physician who was blinded to the study outcomes. The left ventricular ejection fraction was measured using Simpson biplane method with a 4-chamber view. The diameter of the left ventricular outflow tract (LVOT) was measured on a long-axis parasternal view upon patient inclusion. Aortic area (SAo, in cm<sup>2</sup>) was calculated as  $\pi$  × LVOT<sup>2</sup>/4. The aortic velocity-time integral (VTIAo) was measured with pulsed Doppler and a 5-chamber apical view. Stroke volume (SV) (mL) was calculated as VTIAo × SAo. CO (in L/min) was calculated as SV × heart rate (HR). Mean echocardiographic parameters were calculated from 5 measurements (regardless of the respiratory cycle) and analyzed retrospectively. The intra and inter reproducibility of VTIAo measurements was tested prior to the study. Reproducibility values were  $4.4 \pm 3.9\%$  and  $4.4 \pm 3.2\%$ , respectively.

#### Oxygenation Parameters and EtCO<sub>2</sub>

We recorded the ventilator settings (tidal volume, plateau pressure, and end-expiratory pressure) at baseline. Exhaled  $CO_2$  was continuously measured at the tip of the endotracheal tube using a  $CO_2$  cuvette with an integrated sensor (Drager, Luebeck,

Germany). All parameters were measured on arterial and central venous blood gases. Arterial and venous blood gas levels, the lactate level, the blood hemoglobin concentration, and oxyhemoglobin saturation were assayed using an automated analyzer (ABL800 FLEX, Radiometer, Bronshoj, Denmark). Arterial oxygen content (CaO<sub>2</sub>) and venous oxygen content (CvO<sub>2</sub>) were calculated as follows:  $CaO_2 = 1.34 \times Hb \times SaO_2 + 0.003 \times PaO_2$ ;  $CvO_2 = 1.34 \times Hb \times ScvO_2 + 0.003 \times PvO_2$ , where Hb is the hemoglobin concentration (in g/dL), PaO<sub>2</sub> is the arterial oxygen pressure (in mm Hg), SaO<sub>2</sub> is the arterial oxygen saturation (in %), PvO<sub>2</sub> is the venous oxygen saturation (in %), and 0.003 the solubility coefficient of oxygen. PCO<sub>2</sub> gap was calculated as follow: PCO<sub>2</sub> gap = PcvCO<sub>2</sub> - PaCO<sub>2</sub> (mm Hg).

DO<sub>2</sub> and VO<sub>2</sub> were calculated from arterial and central venous blood gases as follows: DO<sub>2</sub> (mL/min per kg) = (CaO<sub>2</sub> × 10 × CO)/weight; VO<sub>2</sub> (mL/min per kg) = the arteriovenous difference in oxygen content ([C(a – v)O<sub>2</sub>] × CO × 10)/weight. O<sub>2</sub>ER was defined as VO<sub>2</sub>/DO<sub>2</sub> ratio. Arterial and venous CO<sub>2</sub> contents (CaCO<sub>2</sub>, CvCO<sub>2</sub>) were calculated according to Douglas Formula.<sup>16</sup> The alveolar dead space (Vd/Vt) was estimated from EtCO<sub>2</sub> and PaCO<sub>2</sub> as (PaCO<sub>2</sub> – EtCO<sub>2</sub>)/PaCO<sub>2</sub>.<sup>17</sup>

#### **Study Procedures**

The following clinical parameters were recorded: age, gender, weight, and main diagnosis. First, a passive leg-raising (PLR) test was performed in order to evaluate the effects on SV, and assess preload status. After an equilibration period, baseline measurements of HR, SAP, MAP, diastolic arterial pressure (DAP), CVP, SV, CO, EtCO<sub>2</sub>, and arterial/venous blood gas levels were obtained. In the present study, VE always consisted in infusing 500 mL of lactated Ringer solution over 10 min; 10 min after VE, a second set of measurements (SAP, MAP, DAP, HR, CVP, SV, CO, EtCO<sub>2</sub>, and arterial/venous blood gas levels) was recorded. All patients had been sedated via the continuous infusion of propofol and were fully accustomed to mechanical ventilation. All patients underwent mechanical ventilation in volume-controlled mode with a tidal volume set to 7 to 9 mL/kg of ideal body weight, and a positive endexpiratory pressure of 5 to 8 cm H<sub>2</sub>O. Ventilator settings (oxygen inspired fraction, tidal volume, respiratory rate, and end positive pressure) and norepinephrine dosage were not modified during the study period.

#### **Statistical Analysis**

We calculated that a sample of 50 patients would be sufficient to demonstrate a correlation of over 0.7 between EtCO<sub>2</sub>, ERO<sub>2</sub>, VO<sub>2</sub>, DO<sub>2</sub>, and CO. Fifty-five patients were therefore recruited, taking into account the exclusion criteria. The variables' distribution was assessed using a Kolmogorov-Smirnov test. Data are expressed as the proportion (in %), the mean (standard deviation, SD) or the median (interquartile range), as appropriate. We measured the magnitude of EtCO<sub>2</sub> variations during VE by calculating the effect size (the mean divided by the SD).<sup>18,19</sup> The effect size was 0.74. Then, we calculated the coefficient of variation (CV), precision and least significant change (LSC) for EtCO2. LSC is the least amount of EtCO<sub>2</sub> change that can be considered statistically significant; that is, the minimum percentage change between successive measurements that can be considered not due to random error and therefore representing a real change in  $ETCO_2$ . The  $EtCO_2$ CV and LSC were determined in all studied patients at baseline

Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved.

during stable respiratory and hemodynamic conditions. The CV (95% confidence interval [CI]) was 1.8% (0.9-2.7) and the LSC (95% CI) was 2.5% (1.3-3.8). EtCO2 responder was defined as an increase of  $EtCO_2$  of more than 4% in  $EtCO_2$  after VE. EtCO<sub>2</sub> nonresponder was defined as an increase of EtCO<sub>2</sub> of <4% in EtCO<sub>2</sub> after VE. This cut off correspond to LSC with its 95% CI.20 Fluid responder was defined as an increase of more than 15% in the SV during VE.<sup>21</sup> Fluid nonresponder was defined as an increase of <15% in the SV during VE. The nonparametric Wilcoxon rank sum test, Student paired t test, Student t test, and the Mann–Whitney test were used to assess statistical significance, as appropriate. Linear correlations were tested using Pearson or Spearman rank method. A receiveroperating characteristic curve was established for EtCO<sub>2</sub>, with a view to predicting a decrease of over 10% in  $O_2ER$ , and a increase over 10% in ScVO<sub>2</sub>.<sup>22</sup> The threshold for statistical significance was set to P < 0.05. SPSS software (version 21, IBM, New York, NY) was used to perform statistical analysis.

#### RESULTS

Fifty-one postoperative patients were analyzed after inclusion in the study (Figure 1, Table 1). The indications for VE were as follows: arterial hypotension (n = 34), oliguria (n = 4), and clinical signs of hypoperfusion (n = 13). Eighteen (35%) patients had hyperlactatemia. Indications for VE did not differ between EtCO<sub>2</sub> responders and EtCO<sub>2</sub> nonresponders (P > 0.05). Twenty (39%) of the 51 patients were classified as EtCO<sub>2</sub> responders. All EtCO<sub>2</sub> responders were also fluid responders and displayed a mean (95% CI) EtCO<sub>2</sub> of 7% (6–9) during VE (Figure 1). Thirty-one patients were classified as EtCO<sub>2</sub> nonresponders and displayed a mean (95% CI) change in EtCO<sub>2</sub> of 0% (–1 to 1) during VE (Figure 1). Twenty-six of the EtCO<sub>2</sub> nonresponders were fluid responders and 5 were fluid nonresponders. At baseline, prevalence of norepinephrine treatment did not differ between the 2 groups of patients (12 [39%] EtCO<sub>2</sub> nonresponders vs 7 [35%] EtCO<sub>2</sub> responders, P = 0.1). At baseline, SV variations with PLR did not differ between EtCO<sub>2</sub> responders and EtCO<sub>2</sub> nonresponders (P > 0.05, Table 2).

## Effect of VE on Hemodynamic and Blood Gas Parameters

In the study population as a whole, VE led to increases in MAP, CVP, SV, CO, EtCO<sub>2</sub>, DO<sub>2</sub>, PvO<sub>2</sub>, and ScvO<sub>2</sub>, and decreases in HR, PvCO<sub>2</sub>, O<sub>2</sub>ER, and alveolar dead space (Tables 2 and 3). At baseline, MAP, PvO<sub>2</sub>, and ScvO<sub>2</sub> were lower and VO<sub>2</sub> and O<sub>2</sub>ER were higher in EtCO<sub>2</sub> responders than in EtCO<sub>2</sub> nonresponders (regardless of the presence or absence of a fluid response in the latter; Tables 2 and 3).

In EtCO<sub>2</sub> nonresponders, VE led to increases in MAP, SV, CO, CVP, DO<sub>2</sub>, and VO<sub>2</sub>. PvCO<sub>2</sub> decreased during VE. In EtCO<sub>2</sub> responders, VE led to increases in MAP, SV, CO, CVP, EtCO<sub>2</sub>, PvO<sub>2</sub>, DO<sub>2</sub>, and ScvO<sub>2</sub> and decreases in PvCO<sub>2</sub>, PcCO<sub>2</sub> gap,  $O_2ER$ , and alveolar dead space (Tables 2 and 3).

# Correlations Between Hemodynamic, Blood Gas Parameters, and EtCO<sub>2</sub>

In the overall population at baseline, EtCO<sub>2</sub> was correlated with CO, DO<sub>2</sub>, and O<sub>2</sub>ER (r=0.48, P=0.001; r=0.47, P=0.001; and r=-0.42, P=0.005, respectively). O<sub>2</sub>ER was not correlated with arterial lactate levels (r=0.01, P=0.99 but was correlated with PavCO<sub>2</sub> (r=-0.46, P=0.01). Changes in EtCO<sub>2</sub> during VE were correlated with those in CO, PvO<sub>2</sub>, DO<sub>2</sub>, VO<sub>2</sub>, ScVO<sub>2</sub>, and O<sub>2</sub>ER (Table 4). A change of more than 4% in EtCO<sub>2</sub> during VE predicted a decrease of more than 10% in the VO<sub>2</sub>/DO<sub>2</sub> ratio with an area under the curve (95% CI) of 0.88 (0.77-0.96) (P < 0.0001), a positive likelihood ratio of 12, negative likelihood ratio of 0.31, a positive predictive value of 96,



FIGURE 1. Study flow chart.

Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved.

| Age, mean (SD), y                            | 70 (11)   |
|----------------------------------------------|-----------|
| Gender, F/M                                  | 16/35     |
| Heart surgery, n (%)                         |           |
| Valve replacement                            | 22 (43)   |
| CABG                                         | 15 (29)   |
| Mixed                                        | 7 (14)    |
| Other (aortic dissection, atrial myxoma)     | 7 (14)    |
| Respiratory parameters                       |           |
| Tidal volume, mL/kg of predicted body weight | 7.8 (0.5) |
| Respiratory rate, per min                    | 17 (2)    |
| Plateau pressure, cm H <sub>2</sub> O        | 18 (3)    |
| Total PEEP, cm H <sub>2</sub> O              | 7 (2)     |
| Left ventricular ejection fraction, n (%)    | 48 (12)   |
| Patients treated with norepinephrine, n (%)  | 19 (37)   |
|                                              |           |

 TABLE
 1. Characteristics
 of
 the
 Study
 Participants
 on
 Inclusion

**TABLE 2.** Comparison of Hemodynamic Parameters in Nonresponders, EtCO<sub>2</sub> Nonresponders, and EtCO<sub>2</sub> Responders

|                                 | EtCO <sub>2</sub><br>Nonresponders<br>(n=31) | EtCO <sub>2</sub><br>Responders<br>(n = 20) |
|---------------------------------|----------------------------------------------|---------------------------------------------|
| Body temperature, °C            | 36.6                                         | 36.5                                        |
|                                 | (36.1-37.1)                                  | (36.2 - 36.9)                               |
| Variation of SV with PLR, %     | 14 (3-24)                                    | 18 (5-29)                                   |
| HR, beats/min                   |                                              |                                             |
| Baseline                        | 84 (20)                                      | 82 (20)                                     |
| After VE                        | 83 (19)*                                     | $79(18)^*$                                  |
| MAP, mm Hg                      |                                              |                                             |
| Baseline                        | 73 (11)                                      | 64 (16) <sup>†</sup>                        |
| After VE                        | $80(13)^*$                                   | $81(12)^*$                                  |
| CVP, mm Hg                      |                                              |                                             |
| Baseline                        | 9 (5-13)                                     | 7 (3–11)                                    |
| After VE                        | $11(5-17)^*$                                 | $11(7-13)^*$                                |
| SV, mL                          |                                              |                                             |
| Baseline                        | 40 (36-62)                                   | 43 (32-53)                                  |
| After VE                        | 53 (39-75)*                                  | 60 (39-76)*                                 |
| CO, L/min                       |                                              |                                             |
| Baseline                        | 3.4 (2.9-4.9)                                | 3.4 (2.5-4.5)                               |
| After VE                        | $4.3 (3.5-5.4)^*$                            | $4.5(3.1-6.4)^*$                            |
| DO <sub>2</sub> , mL/min per kg |                                              |                                             |
| Baseline                        | 6.4 (4.8-8.3)                                | 7.2 (5.2–9.6)                               |
| After VE                        | 7.5 (4.9–9.5)*                               | 9.5 (6.4–11.5)*                             |
| VO <sub>2</sub> , mL/min per kg |                                              |                                             |
| Baseline                        | 1.9 (1.4-2.3)                                | $2.6 (1.9 - 3.1)^{\dagger}$                 |
| After VE                        | $2.1 (1.4-2.7)^*$                            | 2.5 (1.6-3.2)                               |
| O <sub>2</sub> ER               |                                              |                                             |
| Baseline                        | 0.29                                         | 0.38                                        |
|                                 | (0.22 - 0.36)                                | $(0.29 - 0.49)^{\dagger}$                   |
| After VE                        | 0.28                                         | 0.29                                        |
|                                 | (0.21 - 0.36)                                | $(0.21 - 0.36)^*$                           |
| EtCO <sub>2</sub> , mm Hg       |                                              |                                             |
| Baseline                        | 31 (5)                                       | 26 (5)                                      |
| After VE                        | 31 (6)                                       | 29 (5)*                                     |
| Alveolar dead space             |                                              |                                             |
| Baseline                        | 0.21 (0.09)                                  | 0.26 (0.09)                                 |
| After VE                        | 0.2 (0.10)                                   | $0.20 (0.09)^*$                             |
| Arterial lactate, mmol/L        |                                              |                                             |
| Baseline                        | 1.8 (1.5-2.1)                                | 2.1 (1.6-2.7)                               |
| After VE                        | 1.7 (1.4–2.3)                                | 2 (1.4–2.6)                                 |

Values are expressed as the mean (standard deviation) or the median (interquartile range).

CO = cardiac output, CVP = central venous pressure,  $DO_2 =$  oxygen delivery,  $EtCO_2 =$  end-tidal carbon dioxide pressure, HR = heart rate, MAP = mean arterial pressure,  $O_2ER =$  oxygen extraction, PLR = passive leg raising, SV = stroke volume, VE = volume expansion,  $VO_2 =$  oxygen consumption.

 $^*P < 0.05$  within groups (between baseline and VE).

 $^{\dagger}P < 0.05$  for EtCO<sub>2</sub> nonresponders vs EtCO<sub>2</sub> responders.

nonresponders did not differ in terms of DO<sub>2</sub>, the EtCO<sub>2</sub> responders had a higher VO<sub>2</sub> and thus a higher O<sub>2</sub>ER and lower ScVO<sub>2</sub>. VE led to an increase in CO (and thus DO<sub>2</sub>) and a decrease in PvCO<sub>2</sub> in fluid responders. Nevertheless, VE in EtCO<sub>2</sub> responders led to a recovery of DO<sub>2</sub> in consistent with oxygen needs: the decrease in O<sub>2</sub>ER resulted in an increase in PvO<sub>2</sub> and ScvO<sub>2</sub>. In contrast, EtCO<sub>2</sub> nonresponsiveness was associated with an increase in DO<sub>2</sub> and VO<sub>2</sub> because baseline

## Values are expressed as the mean $\pm$ SD or the number (%).

CABG = coronary artery bypass graft, PEEP = positive end-expiratory pressure, SD = standard deviation.

and a negative predictive value of 62. In the same way, change in EtCO<sub>2</sub> during VE predicted an increase of more than 10% in ScVO<sub>2</sub> with an area under the curve (95% CI) of 0.90 (0.78– 0.97), P < 0.0001.

#### DISCUSSION

Our results demonstrated that during VE, the occurrence of concomitant increases in  $EtCO_2$  and CO depends on the relationship between VO<sub>2</sub> and DO<sub>2</sub>; an increase in CO was not necessarily accompanied by an increase in  $EtCO_2$ . Only patients with a high extraction ratio (i.e., low  $ScvO_2$  values) will display an increase in  $EtCO_2$ . Thus, changes in  $EtCO_2$  during VE reflect changes in  $O_2ER$  in response to a rise in  $DO_2$ . Hence, during VE,  $EtCO_2$  may be a useful noninvasive indicator of changes in systemic oxygen supply dependency when fixed ventilation is maintained.

Several preclinical and clinical studies have demonstrated that EtCO<sub>2</sub> can be used as a noninvasive, continuous measure of CO during low-flow states (cardiac arrest, hemorrhagic shock, cardiopulmonary resuscitation, circulatory shock, etc.). $^{9-11}$ Similarly,  $EtCO_2$  has been shown to reflect changes in  $VO_2$  and  $VCO_2$  during hemorrhagic shock.<sup>12,13</sup> Our present results demonstrated that EtCO<sub>2</sub> may reflect changes in systemic oxygen supply associated with changes in CO during VE in nonseptic patients. All the patients in our study were postoperative sedated and nonhypothermic. Alveolar ventilation procedures and norepinephrine dosage did not change over the study period, and CO increased during VE. Even then, only 50% of fluid responders displayed an increase in EtCO<sub>2</sub>, thus EtCO<sub>2</sub> was poorly correlated with changes in CO. Our results confirm previous findings in the operating theatre, where EtCO2 and CO were rather low.<sup>14</sup> To determine the mechanisms by which increase in CO increase EtCO<sub>2</sub> during VE, 1 would have to consider the study population and the effects of increase CO on blood gas parameters.

At baseline,  $EtCO_2$  responders had a lower MAP than  $EtCO_2$  nonresponders, whereas the 2 groups did not differ significantly in terms of preload status (i.e., variations in SV during PLR) and CO. Although  $EtCO_2$  responders and  $EtCO_2$ 

|                             | EtCO <sub>2</sub><br>Nonresponders<br>(n = 31) | $EtCO_2$ Responders $(n = 20)$ |
|-----------------------------|------------------------------------------------|--------------------------------|
| Hemoglobin, g/dL            |                                                |                                |
| Baseline                    | 10.9 (1.5)                                     | 11.8 (1.4)                     |
| After VE                    | $10.7 (1.5)^*$                                 | $11.2(1.3)^*$                  |
| SaO <sub>2</sub> , %        |                                                |                                |
| Baseline                    | 97.6 (1.7)                                     | 98.2 (1.1)                     |
| After VE                    | 97.9 (1.5)                                     | 98.1 (1.3)                     |
| SvO <sub>2</sub> , %        |                                                |                                |
| Baseline                    | 68.9 (9.2)                                     | 59.9 $(10.5)^{\dagger}$        |
| After VE                    | 70.1 (10.2)                                    | 70.3 (10.6)*                   |
| PaO <sub>2</sub> , mm Hg    |                                                | × ····                         |
| Baseline                    | 126 (96-152)                                   | 121 (114-149)                  |
| After VE                    | 126 (92-152)                                   | 124 (110–151)                  |
| PvO <sub>2</sub> , mm Hg    | · · · · ·                                      | · · · · · ·                    |
| Baseline                    | 40 (37-44)                                     | 35 (29-42) <sup>†</sup>        |
| After VE                    | 40 (37-45)                                     | $40(34-47)^*$                  |
| PaCO <sub>2</sub> , mm Hg   |                                                |                                |
| Baseline                    | 39 (6)                                         | 36 (6)                         |
| After VE                    | 39 (5)                                         | 36 (6)                         |
| PvCO <sub>2</sub> , mm Hg   |                                                |                                |
| Baseline                    | 47 (6)                                         | 47 (7)                         |
| After VE                    | $46(5)^*$                                      | 45 (7) <sup>*</sup>            |
| pCO <sub>2</sub> gap, mm Hg |                                                |                                |
| Baseline                    | 8 (5-10)                                       | $11 (9-13)^{\dagger}$          |
| After VE                    | 6 (4-9)                                        | 9 (6-11)*                      |
| CaO <sub>2</sub> , mL       |                                                |                                |
| Baseline                    | 14.6 (2.1)                                     | 15.9 (1.9)                     |
| After VE                    | $14.4 (2.2)^*$                                 | $15(1.7)^*$                    |
| CvO <sub>2</sub> , mL       |                                                |                                |
| Baseline                    | 10.3 (2.2)                                     | 9.8 (2.3)                      |
| After VE                    | 10.4 (2.5)                                     | $10.8 (2.1)^*$                 |
| DavO <sub>2</sub> , mL      |                                                |                                |
| Baseline                    | 4.3 (1.4)                                      | $6.1 (1.6)^{\dagger}$          |
| After VE                    | $4(1.3)^{*}$                                   | 4.2 (1.7) <sup>*</sup>         |
| CaCO <sub>2</sub> , mL      |                                                |                                |
| Baseline                    | 51 (6.1)                                       | 49.8 (7.9)                     |
| After VE                    | 51.3 (6.2)                                     | 49 (7.0)                       |
| CvCO <sub>2</sub> , mL      |                                                |                                |
| Baseline                    | 55.2 (5.6)                                     | 55.5 (9.2)                     |
| After VE                    | 53.6 (6.8)                                     | 52.3 (7.5)                     |

**TABLE 3.** Comparison of Blood Gas Parameters in EtCO<sub>2</sub> Nonresponders and EtCO<sub>2</sub> Responder Groups

Values are expressed as the mean (standard deviation) or the median (interquartile range).

 $CaCO_2 = arterial CO_2$  contents,  $CaO_2 = arterial O_2$  contents,  $CvCO_2 = venous CO_2$  contents,  $CvO_2 = venous O_2$  contents,  $DavO_2 = arterio-venous O2$  content difference,  $EtCO_2 = end$ -tidal carbon dioxide tension,  $PaCO_2 = carbon$  dioxide arterial pressure,  $PaO_2 = oxygen$  arterial pressure,  $pCO_2$  gap = central venous-arterial  $pCO_2$  difference,  $PvCO_2 = carbon$  dioxide venous pressure,  $PvO_2 = oxygen$  venous pressure,  $SaO_2 = arterial$  oxygen saturation,  $SvO_2 = central venous oxygen saturation, VE = volume expansion.$ \*P < 0.05 within groups (between baseline and VE).

 $^{\dagger}P < 0.05$  for EtCO<sub>2</sub> nonresponders vs EtCO<sub>2</sub> responders.

 $O_2ER$  did not rise. Thus, concomitant increases in EtCO<sub>2</sub> and CO may result from several different mechanisms.

Under steady-state conditions, alveolar  $CO_2$  elimination and therefore  $EtCO_2$  depend on several factors:  $CO_2$  production (VCO<sub>2</sub>, due to metabolism), alveolar ventilation (mechanical

| TABLE 4.  | Correlations | Between   | Variations | in   | EtCO <sub>2</sub> , | Hemo- |
|-----------|--------------|-----------|------------|------|---------------------|-------|
| dynamic P | arameters, a | and Blood | Gas Paran  | nete | ers Duri            | ng VE |

|                                | Variation in EtC             | Variation in EtCO <sub>2</sub> |  |  |
|--------------------------------|------------------------------|--------------------------------|--|--|
|                                | r (95% CI)                   | P Value                        |  |  |
| Variation in CO                | 0.54 (0.35-0.73)             | 0.0001                         |  |  |
| Variation in PaO <sub>2</sub>  | -0.15 (-0.41 to -0.13)       | 0.2800                         |  |  |
| Variation in PvO <sub>2</sub>  | 0.75 (0.59-0.85)             | 0.0001                         |  |  |
| Variation in PaCO <sub>2</sub> | 0.17 (-0.11  to  0.42)       | 0.2400                         |  |  |
| Variation in PvCO <sub>2</sub> | -0.25 ( $-0.49$ to $-0.03$ ) | 0.0700                         |  |  |
| Variation in DO <sub>2</sub>   | 0.39 (0.13-0.61)             | 0.0040                         |  |  |
| Variation in $VO_2$            | -0.33 ( $-0.59$ to $-0.13$ ) | 0.0050                         |  |  |
| Variation in O <sub>2</sub> ER | -0.75 ( $-0.85$ to $-0.6$ )  | 0.0001                         |  |  |
| Variation in ScVO <sub>2</sub> | 0.84 (0.73-0.91)             | 0.0001                         |  |  |

 $CI = confidence interval, CO = cardiac output, DO_2 = oxygen delivery, EtCO_2 = end-tidal carbon dioxide tension, O_2ER = oxygen extraction ratio, PaCO_2 = carbon dioxide arterial pressure, PaO_2 = oxygen arterial pressure, PvCO_2 = carbon dioxide venous pressure, PvO_2 = oxygen venous pressure, ScVO_2 = central venous saturation, VE = volume expansion, VO_2 = oxygen consumption.$ 

ventilation), pulmonary perfusion (CO), and V/Q matching. VCO<sub>2</sub> depends on pulmonary elimination and metabolic production of CO<sub>2</sub>. The changes in EtCO<sub>2</sub> in our population could not be explained by metabolic production of CO<sub>2</sub> for several reasons. In a model of hemorrhagic shock, Dubin et al<sup>13</sup> demonstrated that VCO<sub>2</sub> could decrease EtCO<sub>2</sub> during the period of VO<sub>2</sub> supply dependency at low CO. The alterations in VCO<sub>2</sub> were statistically significant for changes in CO, DO<sub>2</sub>, and VO<sub>2</sub> values that were greater than those observed in our study. A further mechanism might be related to removal of peripheral tissue CO<sub>2</sub> produced under anaerobic conditions.<sup>23</sup> In the present study, the baseline O<sub>2</sub>ER values were below critical literature values at which tissue hypoxia was associated with anaerobic metabolism.<sup>24</sup> Moreover, no inter and intra group difference was shown for CaCO2 and CvCO2. One can hypothesize that decrease (increases) in O2ER (ScVO2) and CO will decrease the venous blood's capacity to carry CO<sub>2</sub> at a given PvO<sub>2</sub>, which in turn will offset the increase in CO<sub>2</sub> delivery when CO rises.<sup>2</sup>

Thus, an increase in  $DO_2$  may decrease  $PvCO_2$  and increase  $CO_2$  delivery to the lung. At the same time, alveolar Vd/Vt fell in EtCO<sub>2</sub> responders (despite constant minute ventilation) as a result of 2 mechanisms. The increases in  $PvO_2$  and CO may have improved alveolar perfusion pressure and the ventilation–perfusion ratio of the lung, which would tend to decrease  $PaCO_2$ .<sup>26,27</sup> In our population, changes in EtCO<sub>2</sub> had good correlation with changes in  $PvO_2$  and  $ScVO_2$  whereas they were not associated to those in  $PaCO_2$  or  $PvCO_2$ . These mechanisms may explain (at least in part) why EtCO<sub>2</sub> did not change in EtCO<sub>2</sub> nonresponders, whereas CO did.

In summary,  $EtCO_2$  responders had a low  $DO_2$  with regard to their  $VO_2$  resulting in higher  $O_2ER$  (lower  $SeVO_2$ ). VE restored the relationship between  $VO_2/DO_2$  through CO changes and increasing  $PvO_2$  and  $CO_2$  delivery to the lung, which improved the patients' ventilation-perfusion ratio and thus increased  $EtCO_2$ .

The present study had a number of limitations. The study population (patients after heart surgery) may have differed

from septic shock patients. Most of our patients suffered from acute circulatory failure as a result of perioperative hypovolemia, whereas septic patients generally have acute circulatory failure that combines hypovolemia, changes in microvascular perfusion and cellular dysoxia. A patient's response to VE, the relationship between DO2 and VO2, and the extent of anaerobic metabolism may depend on the etiology of acute circulatory failure.  $^{28-30}$  We measured blood gas parameters from a central venous catheter and not from a pulmonary artery catheter. Although ScVO<sub>2</sub> cannot give a precise absolute estimate of SvO<sub>2</sub>, it can serve as a guide to changes in SvO<sub>2</sub> and VO<sub>2</sub>.<sup>30,31</sup> Monnet et al used blood gas parameters from a central venous catheter to assess VO2, DO2, and their changes over time during fluid expansion in septic patients.<sup>31</sup> In our study, changes in ScVO<sub>2</sub> (measured) and O<sub>2</sub>ER (calculated) had good correlation (r = -0.89, P < 0.0001). Moreover, predictive values of EtCO<sub>2</sub> changes during VE did not differ to predict an increase of ScVO<sub>2</sub> or a decrease of VO<sub>2</sub>/DO<sub>2</sub> ratio. Since we performed repeated measurements of blood gas levels, mathematical coupling cannot be ruled out. But De Backer et al demonstrated that during controlled conditions, VO<sub>2</sub> calculated from hemodynamic data is a valid alternative to VO<sub>2</sub> derived from respiratory gas measurements.<sup>30,32</sup> The method used to calculate alveolar dead space was not standardized and may have introduced bias into the determination. The difference between EtCO<sub>2</sub> and PaCO<sub>2</sub> is altered in patients with altered ventilation/ perfusion ratios (due to atelectasis, chronic heart failure, acute respiratory distress syndrome, etc.). In the present study, patients with chronic pulmonary disease or acute lung injury were excluded to limit this bias. Furthermore, these results cannot be extrapolated to  $\rm EtCO_2$  changes that result from the administration of vasopressor drugs.  $^{33}$   $\rm EtCO_2$  changes seem small but they are similar to those used to predict fluid responsiveness.<sup>34</sup> Lastly, given that we did not measure VCO<sub>2</sub>, we cannot rule out the occurrence of changes in metabolic production of CO2 during the VE-induced increase in CO.

### CONCLUSIONS

During VE, an increase in CO was not necessarily accompanied by an increase in  $EtCO_2$ . Only patients with a high  $O_2ER$ (i.e., low  $ScvO_2$  values) display an increase in  $EtCO_2$ . Thus,  $EtCO_2$  changes during fluid challenge predict changes in  $O_2ER$ (i.e.,  $ScVO_2$ ) in response to an increase in  $DO_2$ .  $EtCO_2$  may be a useful noninvasive indicator of changes in systemic oxygen supply dependency in operative patients when fixed ventilation is maintained.

#### REFERENCES

- Vincent JL, De Backer D. Oxygen transport—the oxygen delivery controversy. *Intensive Care Med.* 2004;30:1990–1996.
- Schumacker PT, Cain SM. The concept of a critical oxygen delivery. Intensive Care Med. 1987;13:223–229.
- 3. Dantzker DR, Foreman B, Guittierez G. Oxygen supply and utilization relationships. *Am Rev Resp Dis.* 1991;143:675–679.
- Ronco JJ, Fenwick JC, Tweeddale MG, et al. Identification of the critical oxygen delivery for anaerobic metabolism in critically ill septic and non septic humans. *JAMA*. 1993;270:1724–1730.
- Gutierrez G, Pohil RJ. Oxygen consumption is linearly related to oxygen supply in critically ill patients. J Crit Care. 1986;1:45–53.
- Edwards JD. Oxygen transport in cardiogenic and septic shock. Crit Care Med. 1991;19:658–663.

- Boyle MS, Bennett M, Keogh GW, et al. Central venous oxygen saturation during high-risk general surgical procedures—relationship to complications and clinical outcomes. *Anaesth Intensive Care*. 2014;42:28–36.
- Jakob S, Bracht H, Eigenmann V, et al. Collaborative study group on perioperative ScvO<sub>2</sub> monitoring: multicentre study on peri- and postoperative central venous oxygen saturation in high-risk surgical patients. *Crit Care.* 2006;10:R158.
- 9. Schmitz BD, Shapiro BA. Capnography. *Respir Care Clin N Am.* 1995;1:107–117.
- Petrucci N, Muchada R. End-tidal CO<sub>2</sub> as a predictive index of regional perfusion and its relation to aortic flow. A clinical study during peripheral vascular surgery. *Minerva Anestesiol*. 1993;59:297–305.
- Gudipati CV, Weil MH, Bisera J, et al. Expired carbon dioxide: a noninvasive monitor of cardiopulmonary resuscitation. *Circulation*. 1988;77:234–239.
- Guzman JA, Lacoma FJ, Najar A, et al. End-tidal partial pressure of carbon dioxide as a noninvasive indicator of systemic oxygen supply dependency during hemorrhagic shock and resuscitation. *Shock*. 1995;8:427–431.
- Dubin A, Murias G, Estenssoro E, et al. End-tidal CO<sub>2</sub> pressure determinants during hemorrhagic shock. *Intensive Care Med.* 2000;26:1619–1622.
- Guinot PG, Godart J, de Broca B, et al. End-expiratory occlusion manoeuvre does not accurately predict fluid responsiveness in the operating theatre. Br J Anaesth. 2014;112:1050–1054.
- Von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. *Ann Intern Med.* 2007;147:573–577.
- Douglas AR, Jones NL, Reed JW. Calculation of whole blood CO<sub>2</sub> content. J Appl Physiol. 1985;65:473–477.
- Nunn JF, Hill DW. Respiratory dead space and arterial to end-tidal CO, tension difference in anesthetized man. *J Appl Physiol.* 1960;15:383–389.
- Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.
- Cecconi M, Rhodes A, Poloniecki J, et al. Bench-to-bedside review: the importance of the precision of the reference technique in method comparison studies-with-specific reference to the measurement of cardiac output. *Crit Care.* 2009;13:201.
- Guinot P-G, Urbina B, de Broca B, et al. Predictability of the respiratory variation of stroke volume varies according to the definition of fluid responsiveness. *Br J Anaesth.* 2014;112:580–581.
- Ousmane ML, Lebuffe G, Vallet B. Utilisation de la SvO<sub>2</sub>. *Reanimation*. 2003;12:109–116.
- West JB. Ventilation-perfusion relationships. Am Rev Respir Dis. 1977;116:919–943.
- Farhi LE, Rahn H. Dynamics of changes in carbon dioxide stores. Anesthesiology. 1960;21:604–614.
- Cain SM, Adams RP. Appearance of excess lactate in anesthetized dogs during anemic and hypoxic hypoxia. *Am J Physiol.* 1965;209:604–608.
- Douglas CC, Haldane JS. The absorption and dissociation of carbon dioxide by the human blood. J Physiol. 1914;48:244–271.
- Domino KB, Wetstein L, Glasser SA, et al. Influence of mixed venous oxygen tension (PvO<sub>2</sub>) on blood flow to atelectatic lung. *Anesthesiology*. 1983;59:428–434.
- Bishop MJ, Cheney FW. Effects of pulmonary blood flow and mixed venous O<sub>2</sub> tension on gas exchange in dogs. *Anesthesiology*. 1983;58:130–135.

Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved.

- Haupt MT, Gilbert EM, Carlson RW. Fluid loading increases oxygen consumption in septic patients with lactic acidosis. *Am Rev Respir Dis.* 1985;131:912–916.
- Lugo G, Arizpe D, Domínguez G, et al. Relationship between oxygen consumption and oxygen delivery during anesthesia in highrisk surgical patients. *Crit Care Med.* 1993;21:64–69.
- Monnet X, Julien F, Ait-Hamou N, et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. *Crit Care Med.* 2013;41:1412–1420.
- Reinhart K, Rudolph T, Bredle DL, et al. Comparison of centralvenous to mixed-venous saturation during changes in oxygen supply/ demand. *Chest.* 1989;95:1216–1221.
- De Backer D, Moraine JJ, Berre J, et al. Effects of dobutamine on oxygen consumption in septic patients. Direct versus indirect determinations. *Am J Resp Crit Care Med.* 1994;150: 95–100.
- 33. Gilbert EM, Haupt MT, Mandanas RY, et al. The effect of fluid loading, blood transfusion, and catecholamine infusion on oxygen delivery and consumption in patients with sepsis. *Am Rev Respir Dis.* 1986;134:873–878.
- 34. Monge García MI, Gil Cano A, Gracia Romero M, et al. Noninvasive assessment of fluid responsiveness by changes in partial end-tidal CO<sub>2</sub> pressure during a passive leg-raising maneuver. Ann Intensive Care. 2012;2:9.