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Abstract

Muscle proteins with ankyrin repeats (MARPs) ANKRD1 and ANKRD2 are titin-associated

proteins with a putative role as transcriptional co-regulators in striated muscle, involved in

the cellular response to mechanical, oxidative and metabolic stress. Since many aspects of

the biology of MARPs, particularly exact mechanisms of their action, in striated muscle are

still elusive, research in this field will benefit from novel animal model system. Here we

investigated the MARPs found in zebrafish for protein structure, evolutionary conservation,

spatiotemporal expression profiles and response to increased muscle activity. Ankrd1 and

Ankrd2 show overall moderate conservation at the protein level, more pronounced in the

region of ankyrin repeats, motifs indispensable for their function. The two zebrafish genes,

ankrd1a and ankrd1b, counterparts of mammalian ANKRD1/Ankrd1, have different expres-

sion profiles during first seven days of development. Mild increase of ankrd1a transcript lev-

els was detected at 72 hpf (1.74±0.24 fold increase relative to 24 hpf time point), while

ankrd1b expression was markedly upregulated from 24 hpf onward and peaked at 72 hpf

(92.18±36.95 fold increase relative to 24 hpf time point). Spatially, they exhibited non-over-

lapping expression patterns during skeletal muscle development in trunk (ankrd1a) and tail

(ankrd1b) somites. Expression of ankrd2 was barely detectable. Zebrafish MARPs,

expressed at a relatively low level in adult striated muscle, were found to be responsive to

endurance exercise training consisting of two bouts of 3 hours of forced swimming daily, for

five consecutive days. Three hours after the last exercise bout, ankrd1a expression

increased in cardiac muscle (6.19±5.05 fold change), while ankrd1b and ankrd2 were upre-

gulated in skeletal muscle (1.97±1.05 and 1.84±0.58 fold change, respectively). This study

provides the foundation to establish zebrafish as a novel in vivo model for further investiga-

tion of MARPs function in striated muscle.
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Introduction

The MARP family of stress responsive proteins is composed of three members: cardiac ankyrin

repeat protein (ANKRD1/CARP), ankyrin repeat domain protein 2 (ANKRD2/ARPP) and

diabetes related ankyrin repeat protein (ANKRD23/DARP) [1]. Their expression is mainly

localized to cardiac and skeletal muscles, but to a different extent. In mammals, ANKRD1 and

ANKRD2 proteins are predominantly expressed in cardiac and skeletal muscles, respectively

[2–5], while DARP transcript is equally distributed between these tissues [6]. MARPs are

implicated in a number of functions, ranging from mechanosensing to modulation of different

signaling pathways and transcriptional regulation [1].

In striated muscle these proteins respond to various forms of mainly mechanical stress [7–

14] which affect their expression level and cellular distribution. After prolonged stretch

ANKRD1 and DARP proteins redistribute to the nucleus of fetal rat cardiac myocytes [15],

while Ankrd2 gene expression is upregulated [10, 16]. Shuttling of ANKRD2 to the nucleus

was observed in stressed mouse muscle fibers [17] and myofibers with damaged sarcomeres

[18]. Accordingly, it is proposed that MARPs link the myofibrillar stress-related signaling

pathways and muscle gene expression via stress-induced relocation from the cytoplasm to the

nucleus [15]. ANKRD1 is involved in cardiomyocyte stress-response networks activated by

myocardial infarction or pressure overload that leads to hypertrophy and heart failure [19]. It

appears that ANKRD1 may have a more general role in mediating stress response, since its

level is highly induced during the healing process of skin wounds in mice [20]. Overexpression

of human ANKRD1 has been shown to improve several aspects of wound healing, including

neoangiogenesis [21]. Apart from mechanical stress, oxidative stress was found to regulate

intracellular localization of ANKRD2 [22], causing nuclear shuttling of overexpressed protein.

Stress responsiveness of ANKRD2 is tightly related to its role in coordination of myogenic dif-

ferentiation [23], but little is known about the function of ANKRD2 in mature muscle.

Altered expression of MARPs has been reported in various pathological conditions of the

heart and skeletal muscle, indicating their clinical relevance [24–29]. Elevated expression level

of ANKRD1 mRNA and protein was detected in patients with end-stage heart failure [29], as

well as in dilated, hypertrophic and arrhythmogenic ventricular cardiomyopathies [28, 30–32].

Several studies have linked mutations in the ANKRD1 gene with cardiomyopathies [31–34].

ANKRD2 protein expression is altered in various skeletal muscle pathologies [5, 26, 27] and is

likely associated with transition of muscle fiber types [16]. Recent findings suggest that

ANKRD2 acts as a mediator of the pathological functions of the mutated LMNA gene in

Emery-Dreifuss muscular dystrophy 2 (EDMD2). It was shown that mutated lamin A seques-

ters and mislocates ANKRD2 in the nucleus of EDMD2-affected human myotubes [35].

Although murine MARP proteins are not essential for development and function of cardiac

and skeletal muscles, MARP triple knockout mice display mild changes in skeletal muscle sar-

comere structure, as well as in performance, particularly in the case of eccentric contractions

[36, 37].

To gain further insight into the functions of MARPs in developing and mature striated mus-

cle, we studied these genes in zebrafish, an animal model system with well-known advantages

in genetic manipulation and in vivo analysis [38]. Here we report characterization of zebrafish

MARP genes and proteins: their structure, comparison to the mammalian orthologs, expres-

sion profiles and localization during early development. In addition, we find differential upre-

gulation of MARPs gene expression in striated muscle of adult zebrafish following endurance

exercise. This study provides a foundation for further functional characterization of the MARP

proteins in zebrafish development and stress response.
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Materials and methods

Fish

The zebrafish (Danio rerio) AB strain was maintained on a 14 h light/10 h dark cycle at 28.5˚C.

Embryos obtained from wild-type fish were visually examined for proper development [39]

and collected at several time points post fertilization. For in situ hybridization (ISH) experi-

ments embryos older than 24 hpf were treated with 0.003% 1-phenyl 2-thiourea (PTU, Sigma-

Aldrich, Merck KGaA, Darmstadt, Germany) to prevent pigmentation. Thirty two adult fish

were used for exercise experiments and expression analysis. Zebrafish husbandry was per-

formed under standard conditions in accordance with institutional and national ethical and

animal welfare guidelines. Experiments were approved by the Veterinary Department, Darm-

stadt Regional Council, Germany and the Veterinary Directorate, Ministry of Agriculture, For-

estry and Water Management, Republic of Serbia.

Exercise protocol

Adult zebrafish (8 months old) were exercised in a 5L glass beaker (external diameter 170

mm) with a 60x10 mm stir bar, filled with 4L of fish water and placed on a magnetic stir-

rer, similarly to the Spinning Task described by Blazina et al [40]. Maximum number of

fish in one beaker was 10. In order to adapt to the new conditions fish were pre-exercised

for two days, 3 hours per day. Stirrer speed was adjusted to generate a 2 cm deep vortex.

On the third day the rotation speed was increased to generate a 10 cm deep vortex and

experiment was continued if 8 good swimmers remained. Fish that were able to swim con-

tinuously, while avoiding the vortex, were subjected to a regime consisting of two sets of 3

hours swimming, with 1 hour resting and feeding in between, for 5 consecutive days.

Organs were harvested 3 hours after the last exercise bout. Skeletal muscles were sampled

individually or pooled by two, while two hearts were pooled in each sample. Experimental

groups contained at least 6 animals. Movie showing zebrafish swimming during exercise

is given as supplemental file (S1 Movie), while detailed protocol is available at dx.doi.org/

10.17504/protocols.io.sa2eage.

RNA isolation and cDNA synthesis

Prior to RNA isolation embryos were mechanically dechorionated. Embryos and tissues of

adult fish (axial skeletal muscles and whole hearts) were homogenized in Trizol (Life Technol-

ogies, Thermo Fisher Scientific, Waltham, Massachusetts, USA) using a Bullet Blender (Next

Advance, Troy, New York, USA) or TissueLyser II (QIAGEN, Hilden, Germany). Total RNA

from embryos was purified using RNeasy Mini Kit (Qiagen, Hilden, Germany), while RNA

from adult tissues was isolated according to the standard manufacturer protocol for Trizol

reagent. Isolated RNA was treated with Dnase I (Thermo Fisher Scientific, Waltham, Massa-

chusetts, USA). Concentration and purity of RNA were determined by spectrophotometry

using a NanoDrop 2000c (Thermo Fisher Scientific, Waltham, Massachusetts, USA). RNAs

with A260/A280 ratio of 1.8–2.0 were used for downstream applications. Random hexamer-

primed cDNA was synthesized by reverse transcription from 500 ng (for embryos) or 2 μg (for

adult tissues) of total RNA using SuperScript III First-Strand Synthesis System (Invitrogen,

Thermo Fisher Scientific, Waltham, Massachusetts, USA), iScript cDNA Synthesis Kit (Bio-

Rad, Hercules, California, USA) or High Capacity cDNA Reverse Transcription Kit (Thermo

Fisher Scientific, Waltham, Massachusetts, USA).
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Quantitative real-time PCR (qPCR)

qPCR was performed in technical triplicate for each sample on a CFX Connect Real-Time

Detection System (Bio-Rad, Hercules, California, USA) or 7500 Real Time PCR System

(Thermo Fisher Scientific, Waltham, Massachusetts, USA), using DyNAmo ColorFlash SYBR

Green Master Mix (Thermo Fisher Scientific, Waltham, Massachusetts, USA) or Hot FIREPol

EvaGreen qPCR Mix Plus (Solis BioDyne, Tartu, Estonia), respectively. The transcript of 60S

ribosomal protein L13a gene (rpl13a) served as an internal reference to normalize the mRNA

levels in different samples. The rpl13a mRNA expression level was not affected by the exercise

or at any stage during development. The primers are listed in Table 1. Reaction conditions

were as follows: initial denaturation at 95˚C for 10 min, 40 cycles of denaturation at 95˚C for

15 s, annealing and elongation at 60˚C for 20 s when SYBR Green was used, and annealing at

60˚C for 32 s followed by 20 s of elongation at 72˚C when EvaGreen chemistry was used.

Amplification was followed by the melting curve/dissociation analysis. The qPCR data were

analyzed using the 2(−ΔΔCt) method.

In situ hybridization

Templates for synthesis of ISH probes were generated by PCR amplification using cDNA of 72

hpf embryos. Primer sets are given in Table 1. Amplicons were cloned into the pGEM-T easy

vector (Promega, Madison, Wisconsin, USA) and verified by sequencing. Labeled RNA probes

were synthesized using mMESSAGE mMACHINE SP6 or T7 kits (Thermo Fisher Scientific,

Waltham, Massachusetts, USA) and digoxigenin RNA labeling nucleotide mix (Roche, Basel,

Switzerland), with linearized plasmids as templates. Probes were analyzed by agarose gel elec-

trophoresis and purified using RNA Clean and Concentrator-5 kit (Zymo Research, Irvine,

California, USA). Probe for myod1 was synthesized directly from PCR fragments amplified

using primers containing T3 and T7 promoter sequences and cDNA of 48 hpf embryos.

Whole mount ISH was performed according to the protocol of Thisse and Thisse [41]. Hybrid-

ization was carried out overnight at 67˚C, with 300 ng of each probe. myod1 probe was used as

positive control (S1 Fig). Whole-mount embryo imaging was performed on a Nikon SMZ25

stereomicroscope (Nikon, Tokyo, Japan).

Bioinformatics (protein sequence analysis, phylogeny and synteny)

The protein sequences of MARPs from different species were retrieved from the Ensembl data-

base (http://www.ensembl.org/index.html). A list of accession numbers is shown in the S1

Table. Protein sequences were aligned using the Clustal Omega algorithm available on the EBI

webserver [42]. Protein motifs for zebrafish, human and mouse MARPs were identified via the

SMART database [43, 44]. PEST motifs and NLS sequences were identified using ePESTfind

(http://emboss.bioinformatics.nl/cgi-bin/emboss/epestfind) and NLStradamus [45] web-based

servers for sequence prediction, respectively. Analyses were conducted using the default

parameters.

A phylogenetic tree was constructed using the maximum likelihood method of the PhyML

algorithm (v3.0) [46], with bootstrapping value of 1000, via the ATGC webserver [47]. MARP

protein sequences from zebrafish (Danio rerio), blind cave fish (Astyanax mexicanus), frog

(Xenopus tropicalis), chicken (Gallus gallus), mouse (Mus musculus) and human (Homo sapi-
ens) were analyzed. The genome assemblies are listed in S1 Table.

Synteny analysis of zebrafish and human genes was performed using Genomicus v87.01

genome browser synchronized with genomes from the Ensembl database [48].
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Nomenclature

Zebrafish gene and protein symbols are written according to 2018 ZFIN zebrafish nomencla-

ture conventions. The zebrafish protein symbol is the same as the gene symbol, but non-italic

Table 1. List of primers used for in situ hybridization and quantitative PCR.

amplicon forward primer 50 - 30 reverse primer 50 - 30 size (bp)

in situ hybridization

ankrd1a AGGGTGGGAGAAAGTGCTTGT CAAATGCTGAAAAGTTGTTCATCTG 902

ankrd1b CTTCAAGCAACTGAAGTCCA AATATGCAGGCTCATAATATCTCA 466

ankrd2 AGGCGTGAGATTGTTGATCTAGG CTTTAGTGTCAAACTGCCACTGCT 664

myod1 CATTAACCCTCACTAAAGGGAATTCTACGACGACCCTTGCTT TAATACGACTCACTATAGGGTTTCCAGCAGTGGATCAAAA 902

quantitative PCR

ankrd1a GAAGGGTGGGAGAAAGTGCT TTTGGCTTCAGTTCACTTGG

ankrd1b CATCACAGGTGGAAACACAGA CCGCTGAGAATGACTTCACC

ankrd2 AGGGCATTACAGCCACTGAA GTGCATCCCCAAGTGTTTGT

rpl13a TCTGGAGGACTGTAAGAGGTATGC AGACGCACAATCTTGAGAGCAG

tnni2b.2 AGGTGGACAGAGTTAATTACATGG TCAGATCCTCAATCTCTTTGTCAC

tmod4 CGCAACAGATGCTGAAATGTG TTTCACCACACTGTTGATGCC

casq1a CTTCTTCAAGAGCAACAAATCC GTTAATATCGTCTTCCCAGATCTC

casq1b ATAACACAGAGAATCCTGACCT CCAGATACTCTCAGCATCATCC

tgfb2l CAGACACCTCCATATGCACAC CACAGGTAAGGACAGTTCCC

mstnb CATGGCCACAGAACCTGACC CCGGTCTCAGATGAACCCAG

col8a2 AGGGTGAGTTTGTAATCTTGTGAC CGTACTTCATCTGAGGCATAGG

lamc3 CTAAAGATGCCAAAGCCTCCT GAAGAAACCATGTCCTCCTCTG

cpt1b GCATTTCAGTTCACCGTCAC AACACTGTTCTTAAAGCGGATGG

pfkma TCATGTCAGCAAAGGTAAGATCAC AGTCTGTGCCAATAGTCATGTC

pdk2b GAATGAGCAACAGTTTGAAGGAG AGAGTTTCCACAAATTCTGCGA

fbxo32 CATTCAATCGCTTGGACTTCTG TTGCTGATCATCGAGAACTTTCTG

dcn AAATTCCACTTGATACCACTCTCC CCAAGATGAGCGTTTGGAGAC

aplnrb CATATTCTCTGATTCCCGTGCT GAGCCAGGTTTCCAATGTAGAC

aplnra TAATGACTCTGGGTGTGACTACTC GTTGCCGATATAAACATCTGCC

cs AGACCTCGTCCCTAAAGAACAG CTCATTCCTCCATAAACCATGTCC

ppargc1a ACCCAGGTATGACAGCTATGAG CTCGCCTCTCCTCTATTGCT

igf1 TTATTTCAGCAAACCGACAGGA GTTGTGCTCGTAGAGATCGT

il6r AGTGGATTTATAATGTGGACCCGA CAGAAGGAGGATCTTGTCGAG

cxcl12b TTCCAAGTCATTGCCAAGCTG CTTTAGAGATTCTCCGCTGTCC

igfbp2a CTAAACAGAGCCAGTGCCAG CCACGATAGCCATTCACTGAC

casq2 AACTTCCCATTGCTCATTCC CTCGTCATCATTGGGTATCTC

sparc GAACTACAACATGTACATCTTCCC CGACATCCTGCTCTTTGATCC

gys1 AGAGTCAAAGTGATCTTCCATCC AAACAGCCAAACCCAGACAG

ctrb1 GATACAATGCTCCCGATACTC ACACGATACCAACCAAAGTC

col1a1a GCTTCCAGTTCGAGTATGGC GTGACACTGTATGTGAAGCGG

gpib CGCTTTCTACCAGCTCATCC CAACAGAATCTTGTGGTGAAGG

lpl TCCATTATCAAGTGAAGGTCCA GTTCAAAGTAGGCATAATGTAGGG

nppa CCAAGCTCAAGAGCTTGCTG CTGCTTCCTCTCGGTCTCTG

pkmb CACACTCGGACCTGCTTCAC ACGGACACTCTTGATGGTTTCAG

aldocb GAACCGCCGTCTTTACCGTC ACACCTTTGTCAACCTTGATTCCT

ldha TGTTGGAATGGTAGGAATGGCTG GCGGTCACACTGTAATCTTTATCC

https://doi.org/10.1371/journal.pone.0204312.t001

Muscle ankyrin repeat proteins in zebrafish (Danio rerio)

PLOS ONE | https://doi.org/10.1371/journal.pone.0204312 September 25, 2018 5 / 21

https://doi.org/10.1371/journal.pone.0204312.t001
https://doi.org/10.1371/journal.pone.0204312


and the first letter is uppercase. Human and mouse gene and protein symbols are written in

accordance with HUGO and MGI nomenclatures, respectively. Human protein and gene sym-

bols are both uppercase, and gene symbol is italic. Mouse protein symbol is uppercase, while

gene symbols are italicized, with first letter uppercase.

Statistical analysis

Developmental qPCR data were analyzed using one-way ANOVA followed by Tukey’s multi-

ple comparison test. Expression levels in adult tissues were compared using the statistical t-

test. Results were presented as mean ± SD, level of significance was P<0.05.

Results

Alignments, phylogenetic and synteny analysis of the zebrafish MARP
genes

The Ensembl database contains entries for three MARP genes in the zebrafish genome:

ankrd1a, ankrd1b and ankrd2. First two are paralog genes, counterparts of the mammalian

ANKRD1/Ankrd1. No gene corresponding to ANKRD23/Ankrd23 was found in the zebrafish

genome. The conserved structure of human, mouse and zebrafish MARP genes showing that

all of them have nine exons is presented in Fig 1A.

The protein sequence alignment of human, mouse and zebrafish MARP orthologs shows

substantial sequence similarities across species, particularly in the regions of ankyrin repeats

(Fig 1B). BLAST comparison of zebrafish Ankrd1a, Ankrd1b and Ankrd2 with their human

counterparts reveals 56%, 46% and 51% of identical amino acids (aa), respectively. Zebrafish

Ankrd1a and Ankrd1b proteins show 47% identity. Zebrafish and mammalian MARP proteins

also show similarities in other protein domains and motifs (Fig 1C). Ankyrin repeats, involved

in protein-protein interactions, and PEST sequences, required for rapid intracellular proteoly-

sis, are identified in all zebrafish MARPs. Protein oligomerization motif, coiled coils are pre-

dicted in Ankrd1a, but not in Ankrd1b and Ankrd2, while Ankrd1b lacks NLS. The position

of these conserved functional domains within zebrafish MARP proteins is shown in S2 Table.

To investigate the evolutionary relationship, the phylogenetic tree based on Clustal Omega

protein sequence alignment of MARP homologs was generated using the PhyML algorithm, with

1000 bootstraps (Fig 2). The tree topology segregates ANKRD1 and ANKRD2 homologs in two

distinct groups. The Ankrd1b protein, present only in teleost, is closely related to Ankrd1a.

Syntenic analysis demonstrated that zebrafish MARP genes display a conserved genetic

neighborhood with their human counterparts. Comparisons of chromosomal regions contain-

ing human ANKRD1 and zebrafish ankrd1a and ankrd1b genes show that despite the rear-

rangements at the macrosyntenic level, neighboring genes and their homologs have kept their

relative location throughout evolution (Fig 3). Regarding ankrd2, neighboring genes remained

close but their orientation is inverted in comparison to human orthologs.

Overall, zebrafish MARPs are similar to their mammalian counterparts in terms of gene

organization, primary protein sequence and identified key domains.

Expression of the MARP genes in developing zebrafish

We analyzed the temporal and spatial expression of MARP transcripts in the developing zebra-

fish embryos by qPCR and whole mount ISH. qPCR was performed using four independent

batches of twenty embryos or larvae at each developmental stage tested. In general, although

very low, the expression of all MARPs was increasing up to the seventh day of development

(Fig 4 and S3 Table). A mild increase of ankrd1a expression was observed at 72 hpf (1.74-fold
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Fig 1. Gene organization, protein sequence alignment and domain structure of MARP family members from different species. (a) Exon-intron

structure of human (Hs) ANKRD1 and ANKRD2 and their counterparts in mouse (Mm) and zebrafish (Dr). Exons (boxes) and introns (lines) are

drawn to scale. White boxes indicate 5’ and 3’ UTRs. The numbers on the right indicate the length of the genomic region. (b) Amino acid sequence

alignment of human, mouse and zebrafish proteins. (c) Schematic representation of the structural domains of human, mouse and zebrafish proteins.

The predicted domains are indicated by colored boxes. Domain positions are listed in S2 Table.

https://doi.org/10.1371/journal.pone.0204312.g001
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increase relative to 24 hpf time point), after which the levels did not change significantly up to

168 hpf. The most prominent change was shown for ankrd1b expression, with average of

92.18-fold increase in the first 72 hpf. Levels of ankrd2 transcript were very low during first

seven days of development and changes were not statistically significant. Among all MARP
genes, ankrd2 was the least expressed, as confirmed by the analysis of qPCR amplicons by aga-

rose gel electrophoresis (Fig 4 and S3 Table).

As demonstrated by ISH, ankrd1a expression preceded that of the ankrd1b (Fig 5). First

transcripts of ankrd1a were observed at 24 hpf, in the ventral part of the developing somites.

At later stages expression of ankrd1a was more spatially restricted, concentrated in the apex of

the chevron-shaped somites. Conversely, ankrd1b expression was first observed at 36 hpf in

the tail somites. As development progresses, ankrd1b gene expression expands caudally, being

more pronounced in the most ventral and dorsal parts of the somites. We were not able to

detect any signal for ankrd2 even after prolonged staining, consistent with qPCR results.

In conclusion, during development, ankrd1a and ankrd1b are expressed in somites, in a

non-overlapping pattern, and at relatively low levels.

Endurance exercise differentially upregulates expression of the MARP
genes in adult zebrafish heart and skeletal muscle

Since human ANKRD1 and ANKRD2 genes are differentially expressed in cardiac and skeletal

muscles, we investigated relative expression of zebrafish genes in these two organs in adult

Fig 2. Phylogenetic tree of MARP homologs generated by PhyML algorithm. The GeneBank accession numbers of

the sequences are listed in S1 Table. Species abbreviations: Hs, Homo sapiens; Mm, Mus musculus; Gg, Gallus gallus; Xt,
Xenopus tropicalis; Dr, Danio rerio; Am, Astyanax mexicanus. Confidence of nodes is indicated by numbers on

individual branches.

https://doi.org/10.1371/journal.pone.0204312.g002
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animals. Under basal conditions, all MARP genes are expressed at low levels (S4 Table),

ankrd1a being the most abundant. There is more ankrd1a transcript in the skeletal muscle,

compared to the heart, while ankrd1b and ankrd2 show no significant difference in distribu-

tion between analyzed tissues (Fig 6).

In order to analyze the responsiveness of zebrafish ankrd1a, ankrd1b and ankrd2 genes to

increased muscle activity we quantified their mRNA levels in whole hearts and skeletal muscle

after one week of endurance exercise. To validate that employed exercise protocol is able to

cause changes in cardiac and skeletal muscle gene expression comparable to those observed

after tunnel swimming, we measured expression of exercise-responsive genes listed in S5

Table. Majority of these genes were selected based on their reported altered expression in zeb-

rafish after tunnel swimming of varying duration [49–52]. Additionally, several genes from

mammalian model organisms and humans were included in the analysis [53–55]. Among the

tested genes, four in the heart (col1a1a, lpl, gys1 and ctrb1) and four in skeletal muscle

(ppargc1a, aplnra, aplnrb and igf1) showed significant change in expression after exercise (Fig

7). These results recapitulate known effects of swim tunnel exercise and support the expected

activation of muscles.

Endurance exercise caused significant increase in ankrd1a mRNA level (fold change

6.19 ± 5.08 compared to non-exercised control fish) in adult hearts (Fig 8). No change was

observed for ankrd1b and ankrd2 transcripts levels in the heart. However, a slight upregulation

of ankrd1b and ankrd2 expression in skeletal muscles was detected (1.97±1.05 and 1.84±0.58,

respectively) in exercised animals. These results indicate that, like in mammals, zebrafish

MARPs are responsive to increased load imposed on striated muscle.

Fig 3. Synteny comparisons between human (Hs) and zebrafish (Dr) gene loci. ANKRD1/ankrd1a/ankrd1b (a) and

ANKRD2/ankrd2 (b) genes, depicted in orange polygons, are presented with nearest neighbors (colored polygons,

orthologs have the same color). The transcriptional orientation of the gene is indicated by the angled end of each

polygon corresponding to the 3´ end. Image style was adapted from Genomicus.

https://doi.org/10.1371/journal.pone.0204312.g003
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Discussion

In this study we investigated protein structure, evolutionary conservation, spatiotemporal

expression profiles and responsiveness to increased muscle activity of zebrafish MARP genes

ankrd1a, ankrd1b and ankrd2. As suggested by the phylogenetic tree topology, the former two

are paralog genes, orthologous to mammalian ANKRD1/Ankrd1, most probably originating

from a duplication event in the teleost lineage. This notion is further supported by the synteny

analysis which shows similarities shared by the two loci in regard to the genomic context.

The primary sequences of MARP proteins in all compared taxa are modestly conserved,

with identical residue percentage being around 50% in all pairwise comparisons. Protein

sequences of the two zebrafish paralogs, Ankrd1a and Ankrd1b, show more divergence in the

N-terminal region, with the former being more similar to its orthologs in other species.

Despite showing 50% aa identity to human and mouse orthologs, there are notable differences

in the N-terminal region of the zebrafish Ankrd2 protein.

Most of the protein sequence identity is shared between the ankyrin repeats, a motif all

MARPs have in common, which is indispensable for their interactions with other proteins [1].

The coiled-coil domain, essential for homo- and heterodimerization of MARP proteins in

antiparallel fashion [56, 57], is present in Ankrd1a, but missing from Ankrd1b and Ankrd2.

The NLS is predicted in Ankrd1a and Ankrd2, but not in Ankrd1b. The identified structural

similarities of zebrafish MARP family members to their relatively distant mammalian counter-

parts suggests that their function is conserved. Further experimental work is needed to charac-

terize zebrafish MARPs at the protein level in cardiac and skeletal muscle, including their

relative amounts and subcellular distribution.

Profiles of basal expression of ankrd1a, ankrd1b and ankrd2 genes in developing and adult

zebrafish mostly differ from those observed for their mammalian counterparts. During cardio-

genesis, murine Ankrd1 transcript and protein are expressed specifically in the myocardium

and slightly stronger in the atrium than in the ventricle [3, 58]. Human ANKRD1 was found

to be strongly expressed in the fetal heart, diffusely distributed throughout the atria and ventri-

cles, while ANKRD2 was detectable at trace levels [4, 59]. During the first five days of zebrafish

development, none of the MARP transcripts were detected in the heart by in situ hybridization,

indicating no or very low expression, undetectable by this method. Expression of mouse fetal

Ankrd2 transcript is restricted to skeletal muscle [10], in contrast to Ankrd1, which is not

detected in this organ during development [3]. In humans, both ANKRD1 and ANKRD2 were

detected in fetal skeletal muscle [4]. Zebrafish ankrd1a and ankrd1b transcripts were only

found in developing axial muscles. Absence of ankrd2 expression suggests no important role

during early zebrafish development. Our results are in accordance with the data in the EMBO

Expression Atlas on ankrd1a and ankrd1b expression [60]. Gene expression analysis by qPCR

revealed that ankrd1b mRNA levels increased during development, peaking at 72 hpf. Simi-

larly, ankrd1a expression was detected during embryonic stages, observing a significant

increase in larvae at 72 and 168 hpf. Interestingly, our ISH analysis shows that at larval stages

the number of ankrd1a expressing cells is reduced. A possible explanation is that, despite

being present in lower number than at earlier stages, these cells express higher levels of

Fig 4. Quantification of zebrafish MARP transcripts during development. Expression levels of ankrd1a, ankrd1b
and ankrd2 at indicated time points after fertilization were obtained using qPCR. The housekeeping gene rlp13a served

as internal reference. Data (mean ± SD) are combined from four biological replicates and normalized to the 24 hpf

time point. � denotes P<0.05 in comparison to control group (by one-way ANOVA/Tukey’s multiple comparison

test). Agarose gels showing qPCR products for ankrd1a, ankrd1b, ankrd2 and rlp13a are also presented. Average Ct

±SD values for MARP and reference (rpl13a) genes during zebrafish development at indicated time points are given in

S3 Table.

https://doi.org/10.1371/journal.pone.0204312.g004
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Fig 5. Spatiotemporal expression of zebrafish ankrd1a and ankrd1b during development, from 24 to 120 hpf.

Representative images of whole mount ISH using probes detecting ankrd1a (a-f) and ankrd1b (h-m) transcripts at

designated time points. Control staining for ankrd1a (g) and ankrd1b (n) was performed in 48 hpf embryos. Lateral

and one dorsal (c) views are shown, anterior to the left.

https://doi.org/10.1371/journal.pone.0204312.g005
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ankrd1a. On the other hand, contribution of other larval cells expressing low amounts of

ankrd1a, not detectable by ISH staining, cannot be excluded. Differential spatial expression

patterns suggest that ankrd1a and ankrd1b expression may be regulated by trunk and tail mus-

cle specific regulators. Development of zebrafish trunk and tail muscle domains is controlled

by different mechanisms. Trunk domains are established via Nodal signaling, whereas the tail

domain requires BMP during early development [61]. A spatial expression pattern similar to

that of ankrd1a and ankrd1b was observed for myosin heavy chain isoforms coded by fmyhc1.2
and fmyhc2.1 whose differential expression in trunk and tail, respectively, is coordinated by

retinoic acid and Wnt signaling [62]. Use of gene knockout, overexpressing and reporter zeb-

rafish lines will help in deciphering regulatory mechanisms of ankrd1a and ankrd1b expression

and their distinct functions during zebrafish development.

Expression of MARPs in adult mammalian skeletal muscle and the heart is well docu-

mented [3–5, 59, 63]. In humans, ANKRD1 and ANKRD2 were detected mostly in the heart

and skeletal muscles, respectively. Contrary to human homologs, adult zebrafish MARP genes

have low expression under basal conditions. While ankrd1b and ankrd2 transcripts are equally

distributed between heart and skeletal muscles, ankrd1a is preferentially expressed in skeletal

muscle, similarly to avian ANKRD1 gene [64]. Low levels of ankrd1a and ankrd1b expression

in the adult zebrafish heart, detected by qPCR, is in line with results obtained during transcrip-

tome analysis of zebrafish genes homologous to dilated cardiomyopathy-associated human

genes [65].

Mammalian MARPs are known to be upregulated by various stress stimuli. Endurance

exercise and eccentric contractions [9, 11, 13, 66], hypertrophic overload of skeletal muscle

Fig 6. Expression of the zebrafish MARP genes in adult heart and skeletal muscle. Quantification of ankrd1a,

ankrd1b and ankrd2 expression was done by qPCR, using mRNA isolated from the hearts of 8 fish, pooled in 4 groups

and the skeletal muscles of 4 fish. Relative level of transcripts in adult heart is normalized to the transcript level in the

skeletal muscle, set as 1. Bars represent the mean ± SD. � denotes P<0.05 in comparison to control group (by t-test).

Average Ct±SD values for MARP and reference (rpl13a) genes in adult zebrafish heart and skeletal muscle are given in

S4 Table.

https://doi.org/10.1371/journal.pone.0204312.g006
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[67], chronic immobilization of leg muscles in a stretched position [10, 16], submaximal

exhaustive exercise [14] and fatiguing jumping exercise [12] all increase expression of mam-

malian ANKRD1/Ankrd1 and/or ANKRD2/Ankrd2. Here we demonstrated evolutionary con-

servation of MARPs responsiveness to endurance exercise which differentially upregulated

ankrd1a in heart and ankrd1b and ankrd2 in skeletal muscle. Differential response of ankrd1a
and ankrd1b paralogs to endurance exercise suggests their non-redundant functions. Gener-

ally, after gene duplication, one of the paralog genes is often lost from the genome due to

redundancy [68], while if duplicated genes acquire non-redundant functions, both are likely to

be retained [69]. In the case of ankrd1a and ankrd1b it is possible that a functional specializa-

tion in the cardiac and skeletal muscle occurred.

Alterations in expression of cardiac and skeletal muscle genes after exercise were mostly

studied in fish subjected to linear tunnel swimming [49–51, 70, 71] and their transcriptomic

response to endurance exercise was determined by microarray analysis [49, 51]. The exercise

method used in this study is similar to published set-ups with varying swimming conditions,

employed to study motor coordination [40] and swim performance [72]. To demonstrate that

our swimming protocol caused the activation of striated muscle in adult zebrafish, we analyzed

the expression of selected exercise responsive genes from different functional categories: mus-

cle growth and development, muscle contraction, extracellular matrix, protein synthesis and

Fig 7. Effects of swimming exercise on heart and skeletal muscle genes expression. mRNA expression levels of

chymotrypsinogen B1 (ctrb1), glycogen synthase 1 (gys1), lipoprotein lipase (lpl) and type I collagen, alpha 1a (col1a1a) in heart,

and apelin receptor a (aplnra), apelin receptor b (aplnrb), peroxisome proliferator-activated receptor gamma, coactivator 1 alpha
(ppargc1a) and insulin-like growth factor 1 (igf1) in skeletal muscle of exercised fish expressed as a fold change over non-

exercised controls set to 1. Bars represent the mean ± SD. � denotes P<0.05 and �� denotes P<0.005 in comparison to control

group (by t-test). Fold change ± SD values for all tested cardiac and skeletal muscle genes of trained and control adult

zebrafish are given in S5 Table.

https://doi.org/10.1371/journal.pone.0204312.g007
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degradation, metabolism, and myokines [49–51]. Recapitulation of known aspects of tunnel

swimming training suggests that exercise method used in this study is a valuable tool for inves-

tigating muscle response to increased load in zebrafish, as an affordable alternative to costly

swim tunnels. It is worth noting that exercise as short as the one used in this study induces the

expression of MARPs, demonstrating their early responsiveness in zebrafish striated muscle to

increased activity. Since response of mammalian MARP genes vary depending on the type,

intensity and duration of the exercise and recovery period, expression studies after various

forms and regimes of exercise are needed. The zebrafish model provides a tool to asses MARPs

function in stressed striated muscle by virtue of the protocol we used, which is adjustable to

facilitate various exercise regimes.

Differential upregulation of zebrafish MARP genes in cardiac and skeletal muscles after one

week of endurance exercise training suggests their possible muscle-type specific role in physio-

logical remodeling and may be a reflection of differences between mechanisms of cardiac and

skeletal muscles adaptation to increased workload. It was already demonstrated that endurance

exercise differentially stimulates development of heart and axial muscle in zebrafish [70]. The

phenotype of axial muscles was shifted towards a slow aerobic, while heart muscle gained a

faster phenotype, but does not become more aerobic.

Despite differences in primary structure, gene number and expression patterns between

zebrafish and mammalian MARPs, their responsiveness to increased muscle activity is

Fig 8. Zebrafish MARP genes are differentially upregulated in adult heart and in skeletal muscle after endurance

exercise. Adult fish were subjected to endurance exercise for one week. Relative expression of MARP genes in zebrafish

heart and skeletal muscle is expressed as fold change to non-exercised controls. Bars represent the mean ± SD. �

denotes P<0.05 in comparison to control group (by t-test).

https://doi.org/10.1371/journal.pone.0204312.g008
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encouraging for including zebrafish as a model organism for further functional studies of

these genes in mature muscles. It is worth mentioning that ankrd1a has been identified in

recent studies as an early response gene in regeneration of injured zebrafish heart [73–75].

These and our data point to remodeling of skeletal muscles and cardiac regeneration as pro-

cesses in which the role of zebrafish MARPs warrants further investigation.

Conclusions

The expression profiles of ankrd1a and ankrd1b indicate an active role in the development of

somites, while upregulation of gene expression of all zebrafish MARPs after relatively short

endurance exercise suggests that their function in response to increased activity in striated

muscles is conserved. This initial study provides a foundation from which the zebrafish could

be established as a novel model organism for further functional studies of MARPs in mature

striated muscle.
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