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Clustered regularly interspaced short palindromic repeats (CRISPR)-associated systems
have revolutionized traditional gene-editing tools and are a significant tool for ameliorating
gene defects. Characterized by high target specificity, extraordinary efficiency, and cost-
effectiveness, CRISPR/Cas systems have displayed tremendous potential for genetic
manipulation in almost any organism and cell type. Despite their numerous advantages,
however, CRISPR/Cas systems have some inherent limitations, such as off-target effects,
unsatisfactory efficiency of delivery, and unwanted adverse effects, thereby resulting in a
desire to explore approaches to address these issues. Strategies for improving the
efficiency of CRISPR/Cas-induced mutations, such as reducing off-target effects,
improving the design and modification of sgRNA, optimizing the editing time and the
temperature, choice of delivery system, and enrichment of sgRNA, are comprehensively
described in this review. Additionally, several newly emerging approaches, including the
use of Cas variants, anti-CRISPR proteins, andmutant enrichment, are discussed in detail.
Furthermore, the authors provide a deep analysis of the current challenges in the utilization
of CRISPR/Cas systems and the future applications of CRISPR/Cas systems in various
scenarios. This review not only serves as a reference for improving the maturity of CRISPR/
Cas systems but also supplies practical guidance for expanding the applicability of this
technology.
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1 INTRODUCTION

In aquatic systems, host–pathogen interactions are meaningful in the ecology and evolution of all
organisms. These interactions are often characterized by a strong immune defense between
prokaryotic cells (archaea) and viruses, leading to their co-evolution (England and Whitaker,
2013). The strong immune defense mechanism utilized by these organisms is known as the clustered
regulatory interspaced short palindromic repeats (CRISPR) system, which is used in prokaryotes to
combat a viral infection. Earlier reports of CRISPR/Cas systems report three different types: I, II, and
III (Makarova et al., 2011). Each type of system is characterized by a signature protein(s). The most
common type, type II CRISPR/Cas9 system, mediates the immune response in three stages as follows:
(1) adaption, (2) expression, and (3) interference (Makarova et al., 2020). In the adaption stage, DNA
fragments of invading plasmids or phages (termed protospacers) are incorporated into the host
CRISPR locus as spacers in the form of CRISPR RNA (crRNA) repeats. In the expression stage, the
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precursor CRISPR RNA (pre-crRNA) molecules are processed by
expressed Cas proteins and cofactors into short, mature crRNA.
Next, in the interference stage, the Cas9 protein recognizes and
targets the crRNA, silencing the foreign sequences (Gasiunas
et al., 2012; Janik et al., 2020). Single-guide RNA (sgRNA)
synthesized by crRNA and tracrRNA then guides the Cas
protein to generate double-strand breaks (DSBs) three base
pairs upstream from the protospacer adjacent motifs (PAM)
(Jinek et al., 2012). Through this mechanism, CRISPR/Cas
systems can also serve as a precise gene-editing tool for
genetic manipulation.

So far, the CRISPR/Cas systems have been divided into six
types (types I–VI), in which type II-A (CRISPR-Cas9), type V-A
(CRISPR-Cas12a or Cpf1), and (CRISPR-Cas12b or C2c1) have
been most widely studied (Adli, 2018; Yao et al., 2018a). More
than 10 different CRISPR/Cas proteins have been repurposed for
genome editing. Among them, some of the most recently
discovered Cas proteins are hotspots for research, such as the
Cas12a proteins from Acidaminococcus sp. (AsCas12a) and
Lachnospiraceae bacteria (LbCas12a). Beyond Cas proteins,
optimization of CRISPR systems has been thoroughly studied,
including sgRNA design, cell enrichment, editing conditions, etc.
With the rapid development and progress of gene editing
technology, CRISPR systems have been shown to be powerful
and highly efficient gene-editing tools in various fields. Through
numerous experiments in model and non-model organisms (Oh
et al., 2010), these systems have been utilized to reveal cancer
mechanisms (Sottnik et al., 2021), define gene function and
phenotypes (Johansen et al., 2017), and treat human diseases
(Torre et al., 2021).

As to traditional editing tools, zinc finger nucleases and
transcription activator-like effector nucleases (TALENs) have
overwhelmingly contributed to developments in biomedical
research and application (Urnov et al., 2005). Their
application is greatly limited, however, due to limitations such
as high cost, low efficiency, and low throughput targeting (Batool
et al., 2021). In contrast, the CRISPR technology has some unique
advantages, including targeted editing of multiple genomic sites
(Zhang and Showalter, 2020), fast generation of mutants (Zhang
and Showalter, 2020), and accessible sgRNA design (Xu et al.,
2020b). These advantages have led to a surge in CRISPR
applications in various fields, such as agriculture (Zheng et al.,
2019), animal husbandry (Liu et al., 2020b), chemical fields (Liu
et al., 2021b), materiology (Demirer et al., 2021), etc. Although
the framework of the structures and functions of CRISPR/Cas
systems has been built, there are still several challenges in this
system (Wang et al., 2016), including off-target effects (Coelho
et al., 2020), variable efficiency (Jin et al., 2020), requirement of
PAM and sgRNA (Heussler et al., 2015; Cameron et al., 2017),
and inactive mutants (Ren et al., 2019). This review proposes
some strategies to overcome these issues by reducing off-target
effects, improving the repair efficiency of the homology-directed
repair (HDR) pathway, choosing the optimal delivery system, and
utilizing variants of Cas proteins. Additionally, regulation of
nuclease-dead mutants of Cas9, anti-CRISPR (Acrs) protein
application, and enrichment of cells and sgRNA may be
effective strategies for the efficacy of CRISPR/Cas systems.

2 STRATEGIES FOR REDUCING
OFF-TARGET EFFECTS

Presently, off-target effects in CRISPR/Cas systems are a major
issue for gene editing. Whether the Cas protein is off- or on-target
to a PAM site is mainly determined by the sgRNA, Cas proteins,
ribonucleoprotein (RNP) concentration, as well as other factors,
such as editing temperature and action time. The off-target
cleavage of CRISPR/Cas systems often originates from the
unsuccessful design or modification of gRNA, low specificity of
Cas proteins, or excessive and prolonged expression of CRISPR/
Cas9. Accordingly, various strategies are proposed to overcome
these issues. Additionally, methods for sgRNA selection with off-
target predictions have been established, such as PEM-seq (Yin
et al., 2019b), CRISPR-PLANT v2 (Minkenberg et al., 2019), and
CRISPR-GE (Xie et al., 2017), which avoid a waste of manpower
and material resources and improve editing efficiency.

2.1 Reasonable Design and Modification of
sgRNA
In CRISPR/Cas systems, the binding of sgRNA to the PAM site is a
critical step in gene editing (Figure 1A). An unsuccessful design of
sgRNAwill result in lower specificity and higher miss rate (Doench
et al., 2016). To avoid this, sgRNA must be accurately designed
using computational tools (Liu et al., 2020a), such as CRISPR-P 2.0
(Liu et al., 2017a), E-CRISP (Heigwer et al., 2014), and CasFinder
(Abby et al., 2014). On the basis of rational design, further
modification of sgRNA can improve the specificity of RNA-
guided Cas9 by truncation or addition of nucleotides to the 5′
or 3′ end (Pattanayak et al., 2013; Lin et al., 2014b). The 5′ end-
truncated sgRNAs (2-3 bp) considerably reduce off-target
mutations, but with the same on-target mutation efficiency as
the full-length sequence (Fu et al., 2014). By decreasing the binding
affinity of the sgRNA, the binding stringency of Cas9 to the target
sequence was increased, and the off-target effect was reduced (Fu
et al., 2014). Since truncated sgRNAs can reduce the off-target
effect of paired Cas9 nickases without compromising the efficiency
of on-target genome editing, their combination results in a much
greater target specificity (Guilinger et al., 2014). Contrarily, the 3′
end-truncated sgRNA or 5′ end-added sgRNA (-GG) can decrease
the on-target activity. Meanwhile, if they consist of 16 nucleotides
or fewer, truncated sgRNAs exhibit lower or undetectable activity
compared to matched full-length sgRNAs. Thus, at least 17-
nucleotide sgRNAs are required for the CRISPR/Cas9 system to
be active during gene editing. Due to the disadvantages of the
traditional enzymatic preparation of sgRNAs, such as complexity,
time consumption, and safety concerns, the direct chemical
synthesis of sgRNAs has been widely accepted, with high
sgRNA stability and low off-target effect. Recently, a potential
strategy has been reported to reduce off-target editing by
DNA–RNA chimera (Yin et al., 2018a). Using the Cas9–sgRNA
complex as a guide, the 5′- and 3′-DNA-replaced crRNA enables
more efficient genome editing—for example, replacing the crRNA
with 10 DNA nucleotides could provide the same level of off-target
site indel formation as the truncated sgRNA. Additionally, the
synthesis cost of DNA bases is much lower (10-fold cheaper) than
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that of native crRNA. In light of this, the DNA–RNA chimera
could provide a novel approach to reduce the cost and off-target
effect of CRISPR/Cas systems.

2.2 Cas Variant Application
So far, several highly specific Cas9 variants have been identified,
including eSpCas9 (Slaymaker et al., 2016), SpCas9-HF1
(Kleinstiver et al., 2016), HypaCas9 (Chen et al., 2017), xCas9
(Legut et al., 2020), Sniper-Cas9 (Lee et al., 2018), evo Cas9
(evolved Cas9) (Casini et al., 2018), HiFiCas9 (Vakulskas et al.,
2018), and HeFSpCas9 (Kulcsar et al., 2017). The main
mechanism and characteristics of each variant are
comprehensively summarized in Table 1. Among these
mechanisms, the most common cause of alteration in Cas9
function is amino acid substitution of the critical domain. Due
to the minimum binding energy required to introduce DSBs into
the genome, non-specific interactions between Cas9 and target

DNA were reduced by decreasing the excess energy of wild-type
SpCas9. As shown in Table 1, although they exhibit greater target
specificity, each variant has its own limitations, such as low
activity (Slaymaker et al., 2016), scope limitation (Kleinstiver
et al., 2016), strict dependency on a PAM site (Legut et al., 2020),
etc. Future studies should be conducted to increase the efficiency
of genome editing using Cas9 variants. For a given target
sequence, the optimal variant should be selected based on a
comparison of activity, specificity, and PAM compatibility. By
comparing 13 SpCas9 variants, the results demonstrated that the
overall activity order of high-fidelity variants could be ranked as
SpCas9 ≥ Sniper-Cas9 > eSpCas9 (1.1) > SpCas9-HF1 >
HypaCas9 ≈ xCas9 > evoCas9, whereas their overall specificity
could be ranked as evoCas9 > HypaCas9 ≥ SpCas9-HF1 ≈
eSpCas9 (1.1) > xCas9 > Sniper-Cas9 > SpCas9 (Kim et al.,
2020b). Using established computational models, these results
provide guidance for the selection of Cas9 variants and offer a

FIGURE 1 | Optimization strategies of different steps of the CRISPR/Cas system. (A) The sgRNA sequence was optimally designed and modified by truncation or
addition of 3’ or 5’ end of sgRNA, DNA-RNA chimera, etc. (B)Cas9 protein was optimized for concentration, temperature, and time, as well as application of variants. (C)
Optimization of the RNP complex was conducted for proportion, function conditions, and transformation methods. (D) Donor DNA was optimized for design of the DNA
template, proximity to CRISPR components, and choice of high-efficient delivery system. (E) DNA repair pathway was optimized with inhibition of the NHEJ
pathway, enhancement of the HDR pathway, and modification of other pathways.
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more effective exploration of variants for future research
(Figure 1B).

2.3 Determination of the Optimal RNP
Concentration
In general, the specificity and the activity of enzymes are often
highly dependent on reaction conditions. RNP delivery
produces at least twofold more colonies than plasmid

transfection does (Kim et al., 2014). In the CRISPR/Cas9
system, RNP concentration plays a decisive role in both
specificity and activity. After delivery to cells, RNPs almost
immediately cleave chromosomal DNA and then degrade
rapidly. With a high RNP concentration, the off-target effects
of a CRISPR/Cas system may be amplified (Figure 1C).
Meanwhile, a low RNP concentration leads to a reduction of
on-target cleavage efficiency. Therefore, a suitable
concentration of RNP is of paramount importance to

TABLE 1 | The features of different Cas protein variants.

Cas
variants

Description Mechanisms Target
sequence

Average
indel

frequency

Advantages Limitation Reference

xCas9 Generation of xCas9 by
“phage-assisted
continuous evolution
(PACE)” method

Closing to PAM or the
DNA-sgRNA interface
refines the DNA-RNA
contact region

Refer to the
three lentiviral
libraries (Kim
et al., 2020a)

32% Improve the target
specificity and extend
the target range,
present a higher DNA
specificity and lower off-
target activity

Profoundly diminished
of xCas9 activity at
target sites with
NGH PAM

Nishimasu
et al. (2018)

SpCas9-
HF1

The quadruple
substitution variant
(N497A/R661A/
Q695A/Q926A) of wild-
type SpCas9

Reduce the rate of DNA
cleavage but have no
effect on the rate of DNA
reversion and release

Refer to the
three lentiviral
libraries (Kim
et al., 2020b)

34% A high-fidelity variant
retains on-target
activities comparable to
wild-type SpCas9 with
>85% of sgRNAs

The unclear
mechanism of target
discrimination and
fidelity needs to be
further improved

Kleinstiver
et al. (2016)

eSpCas9 SpCas9 mutants
consisting of individual
alanine substitutions at
32 positively charged
residues within the nt-
groove

Neutralization of positively
charged residues within
this non-target strand
and then weaken non-
target strand binding and
encourage re-
hybridization between the
target and non-target
DNA strands

Refer to the
three lentiviral
libraries (Kim
et al., 2020a)

40% Decrease the off-target
activities and maintain
efficient on-target
editing

The unclear
mechanism of target
discrimination and
fidelity needs to be
further improved

Slaymaker
et al. (2016)

HypaCas9 The quadruple
substitution variant
(N692A/M694A/
Q695A/H698A) of wild-
type SpCas9

The quadruple
substitutions in the REC3
domain of wild-type
SpCas9

Refer to the
three lentiviral
libraries (Kim
et al., 2020b)

30% Higher genome-wide
fidelity without affecting
the on-target genome
editing

Not mentioned Chen et al.
(2017)

Cas9n Inactivating of HNH or
RuvC nuclease domains

Use dual-RNAs for site-
specific DNA cleavage

Two human
genes: C4BPB
and CCR5

75 and 60% Greater target specificity Rational design of
sgRNAs on the plus
and minus strands
within a limited
distance

Trevino and
Zhang
(2014)

Sniper-
Cas9

The quadruple
substitution variant
(F539S/M763I/K890N)
of wild-type SpCas9

Weakening non-specific
interactions between
RNP and its
substrate DNA

Refer to the
three lentiviral
libraries (Kim
et al., 2020a)

46% Retain WT-level on-
target activity with
diminished off-target
effect

Not mentioned Lee et al.
(2018)

evoCas9 The quadruple
substitution variant
(M495V/Y515N/K526E/
R661Q) of wild-type
SpCas9

Weakening non-specific
interactions between
RNP and its
substrate DNA

Refer to the
three lentiviral
libraries (Kim
et al., 2020b)

15% Retain WT level on-
target activity with
diminished off-target
effect

Not mentioned Casini et al.
(2018)

HiFiCas9 The quadruple
substitution variant
(R691A) of wild-type
SpCas9

Weakening non-specific
interactions between
RNP and its
substrate DNA

Five human
genes: HBB,
IL2RG, CCR5,
HEXB, and
TRAC

Similar to
WT Cas9

Retain WT level on-
target activity with
diminished off-target
effect

Not mentioned Vakulskas
et al. (2018)

HeFSpCas9 The quadruple
substitution variant
(N497A/R661A/K846A/
Q926A/K1003A/
R1060A) of wild-type
SpCas9

Combinations of
mutation domain from
both eSpCas9 and
SpCas9-HF1

Not shown Not shown Retain WT level on-
target activity with
diminished off-target
effect

Not mention Kulcsar et al.
(2017)
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minimize nonspecific cleavage (Figure 1E). This can be
achieved by using either low concentrations of plasmids or
different promoters. The former method directly reduces
RNP transcription, while the latter alters the 5′-untranslated
region of the target sequence, ultimately affecting translation
efficiency (Hsu et al., 2013). Therefore, extensive measurements
should be performed with consideration of both Cas9 activity
and specificity. Compared with typical RNP concentrations, on-
target activity will inevitably be inhibited to some extent. By
modifying Cas9 and sgRNA instead (Figure 2A), the intrinsic
specificity of Cas9 can be improved without sacrificing cleavage
efficiency.

2.4 Suitable Editing Time and Temperature
During gene editing, the efficacy, efficiency, and accuracy of
CRISPR systems are often limited by temperature and time
(Figure 2C). Studies have shown that a longer editing time of
the Cas proteins in cells increases the off-target effects and
negatively impacts outcomes (Ruan et al., 2017). Therefore,
reducing the action time or overexpression of Cas proteins
enhances the efficiency of gene editing. Early reports have
utilized tissue culture-free systems (Manghwar et al., 2020),
DNA-free systems (Kim et al., 2020a), and transient systems
(Canto, 2016) to overcome these limitations. Now, however,
anti-CRISPR proteins and nuclease-dead Cas proteins can be
used to address these limitations. Temperature has been shown
to affect Cas protein activity, but the findings are inconsistent.
Hoyland-Kroghsbo et al. (2018) reported that a lower temperature
ismore effective than a higher one in P. aeruginosaPA14 due to the
greater stability of the CRISPR/Cas complex. Additionally, low
temperatures may enhance interference and adaptation by
increasing the annealing efficiency of the crRNA to its target.
Another report has shown that exposure to heat stress results in a
greater amount of targeted mutations than with exposure to
standard temperature (22°C) (LeBlanc et al., 2018). This is likely
due to the fact that the activities of Cas9 andCas12a at 37 and 34°C,
respectively, are higher than at 28°C, and the expression level of
sgRNA is raised at 39°C (Xiang et al., 2017). The mechanism of the
effect of temperature on CRISPR/Cas systems is still unclear and
should be further elucidated.

2.5 Application of Anti-CRISPR Proteins
In the course of long-term antagonism between bacteria and
phages, the phages have evolved Acr proteins to evade CRISPR/
Cas-mediated immunity. Up to now, a total of 44Acr proteins have
been identified and named (Zhang et al., 2019a). Within the
CRISPR/Cas system subtypes, these Acr proteins are present in
types I, II, and V, but not in other subtypes—for instance, FnCas9
(Green and Hu, 2017) and C2c2 (Zhang et al., 2019a) Acr proteins
were not found in the subtype II-B CRISPR/Cas9 system and the
type VI CRISPR/Cas13a system, respectively. In view of this, the
identification and characterization of a novel Acr is a key focus for
future studies. As natural inhibitors, Acrs protect the host genome
from destruction by inhibiting Cas nuclease activity. This
inhibition can be achieved through the following three
mechanisms: (1) inhibition of Cas9 binding to DNA (Malone
et al., 2020), (2) interference of Cas9 binding to gRNA (Harrington
et al., 2017), and (3) blocking the activity of Cas9 (Harrington et al.,
2017). Currently, only AcrIIA2 and AcrIIA4 have been utilized as
tools to reduce off-target effects. Through competition with the
PAM site and/or other Cas9 sequences, these Acr proteins block
the cleavage activity of Cas9, preventing the excessive and
prolonged expression of CRISPR/Cas9 and thus decreasing off-
target effects (Hoffmann et al., 2019; Liu et al., 2019). Acrs appear
to be a new agent to improve the accuracy and safety of CRISPR-
based therapies. Other special functions of Acr proteins also
deserve attention—for example, AcrII-C3 can precisely regulate
gene expression with dCas9-based tools, which is very helpful for
the development of versatile genome engineering modulators (Liu
et al., 2018c). The optogenetic-controlled AcrIIA4 enables light-

FIGURE 2 | Enrichment strategies for sgRNA and mutants in CRISPR/
Cas systems. (A) The sgRNA was enriched with by PCR or CRISPR. (B) The
optimal vector was selected according to the different host cell and other
factors. (C)Optimization of editing time and temperature was conducted
through application of nuclease-dead mutants of Cas9 and anti-CRISPR
proteins, heat stress method. (D) Transfection-positive cells were enriched
based on fluorescent proteins, antibiotic-resistance genes, and cell-surface
antigens. (E) Nuclear-active cells were enriched using NHEJ-based and SSA-
based surrogate reporters.
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mediated genome and epigenome editing. By inserting the
AsLOV2 domain into the most C-terminal loop of AcrIIA4, the
protein can switch the CRISPR-Cas9 activity according to light/
dark conditions (Bubeck et al., 2018). The mechanisms of other
Acrs, such as AcrIIA5-10 and AcrVA2-3, have yet to be described
(Zhang et al., 2019a).

3 STRATEGIES TO IMPROVE THE
EFFICIENCY OF THE HDR REPAIR
PATHWAY
After Cas9 nuclease cleavage, DSBs can be repaired in a host through
at least one of two different pathways: nonhomologous end joining
(NHEJ)/canonical NHEJ (c-NHEJ) and HDR (Ghezraoui et al.,
2014; Sander and Joung, 2014). While c-NHEJ is the
predominant approach, due to its speed and high efficiency, it is
also prone to error because of leading uncertain inserts or deletions
(indels). Indels contribute to the generation of a targeted knockout
during cell repair (Pawelczak et al., 2018). TheHDRpathway enables
accurate genome editing in a variety ofmanners, such as gene knock-
in, knockout, replacement, and point mutations (Platt et al., 2014;
Zuo et al., 2017; Vakulskas et al., 2018; Lu et al., 2020). However, due
to competition with the NHEJ pathway, the HDR pathway tends to
be less efficient (Liu et al., 2018a). Given this, different approaches
have been established to improve the repair efficiency of the HDR
pathway, including inhibition of the NHEJ pathway (Maruyama
et al., 2015), regulation of HDR-related factors (Paulsen et al., 2017),
cell cycle synchronization (Ferrari et al., 2020), optimal design of the
donor DNA template (Renaud et al., 2016), and optimizing the
proximity of the CRISPR component and donor DNA template (Ma
et al., 2017a). These strategies are discussed in detail in the following
paragraphs.

3.1 Inhibition of Nonhomologous End
Joining Pathway
In theory, because of the competition between the two repair
pathways, the efficiency of the HDR pathway can be boosted by
inhibiting key factors of the NHEJ pathway. Among different
inhibitors of the NHEJ pathway, SCR7 is a key factor that
interferes with the affinity of DNA ligase IV to DSBs
(Srivastava et al., 2012; Chu et al., 2015; Maruyama et al., 2015;
Li et al., 2017; Shao et al., 2017; Hu et al., 2018). Maruyama et al.
(2015) reported that using SCR7 increased the efficiency of HDR-
mediated genome editing by up to 19-fold with themost significant
enhancement effect, primarily due to co-injection of the CRISPR-
Cas9 constructs with SCR7 into zygotes rather than other cells. The
combination of SCR7 with other factors could significantly
improve the efficiency of the HDR pathway by either
downregulating KU expression (Chu et al., 2015), optimizing
the donor template (Hu et al., 2018), or upregulating Rad52
expression and other small molecules (Li et al., 2017; Shao
et al., 2017). Among these methods, the efficiency of the HDR
pathway using Rad52 combined with SCR7 is the highest, reaching
up to 40% (Shao et al., 2017). However, the effect of SCR7 in
enhancing the HDR pathway remains controversial at present

(Greco et al., 2016), with some reporting that embryonic stem
cells tend to occur intrinsically HDR incident, suggesting that the
effect of SCR7 is likely uncertain (Yang et al., 2020). Therefore, the
effect of SCR7 in increasing HDR efficiency needs to be further
explored. Additionally, the use of SCR7 should be extended to
other fields as well instead of being limited to human- and
mammalian-related diseases only, whether used alone or in
combination with other medicines (Manjunath et al., 2021).

Aside from SCR7, other approaches also improved the efficiency
of the HDR pathway—for instance, by downregulating KU protein
expression via siRNA silencing, the frequency of the HDR pathway
can be increased at least slightly (Li et al., 2018a). This method raised
the affinity of downstream NHEJ enzymatic components by
attaching to DNA termini upstream of the NHEJ pathway
(Mateos-Gomez et al., 2017). The combination of multiple
inhibitors can further increase the inhibitory effect on the NHEJ
pathway—for example, M3814 combined with trichostatin A inhibits
theNHEJ pathway 3-fold (Fu et al., 2021). NU7441 andKU-0060648,
inhibitors of a key NHEJ pathway factor, DNA-PK, caused a 2-fold
increase in HDR efficiency in HEK-293T cells (Robert et al., 2015).
Due to the fact that the NHEJ pathway is crucial for the stabilization
of the genome, excessive inhibition of the NHEJ pathway may
eventually lead to the accumulation of unrepaired DSBs in cells,
inducing cell death or embryonic lethality (Beumer et al., 2013).
Therefore, it is worth noting that the safety of these inhibitors needs to
be carefully evaluated in future work.

3.2 Regulation of HDR-Related Factors
Alternatively, compared with inhibition of the NHEJ pathway,
direct regulation of HDR-related factors can result in more
precise editing and improve the efficiency of the HDR
pathway. Several HDR-related factors have been well studied,
including Rad51 (Ma et al., 2020), Rad52 (Shao et al., 2017),
C-terminal-binding protein interacting protein (CtIP)
(Charpentier et al., 2018), and RS-1 (Song et al., 2016). All of
these factors enhance a link in the HDR pathway, thereby
boosting repair efficiency. Among these, the overexpression of
Rad proteins and the application of CtIP result in superior
outcomes. In the HDR pathway, Rad51 proteins search for a
DNA donor template to perform reconstitution through the
formation of filaments on the DNA (Symington, 2014). As a
back-up for Rad51, Rad52 is involved in the formation of Rad51
(Lok and Powell, 2012). When Rad52 fuses with any other factor
or factors, HDR efficiency can be boosted at least 2- to 7-folds and
sometimes much more (Paulsen et al., 2017; Shao et al., 2017;
Tran et al., 2019)—for example, Rad52 fused with Cas9 yielded an
approximately 3-fold increase in the efficiency of the HDR
pathway, while Rad52 combined with SCR7 increased the
HDR efficiency by about 40% (Shao et al., 2017). In the early
stage of the HDR pathway, a key protein, CtIP, initiates the
resection process and then creates 3′ single-stranded overhangs
with exonuclease 1 and bloom syndrome protein complex
(Symington, 2014). When combined with Cas9 or the MS2
system, CtIP can shift the ratio of the HDR/NHEJ pathway
activities by a factor of 14.9 (Tran et al., 2019). A minimal
N-terminal fragment of CtIP can also be used as an HDR
enhancer, which is sufficient to stimulate the HDR pathway
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and improve repair efficiency by at least 2-fold (Charpentier et al.,
2018). Other small molecules, such as L755507 and resveratrol,
can also increase HDR efficiency 2- to 3-fold (Li et al., 2017).
Almost all key factors of the HDR pathway were upregulated after
treatment with the small molecules mentioned above, but a high
concentration of resveratrol (more than 50 μM) resulted in severe
cytotoxicity, significantly reducing cell viability and slightly
upregulating the expression of the NHEJ factor. Therefore, the
application of these factors needs to be further explored to
improve the efficiency of the HDR pathway.

The selection of the NHEJ or HDR pathway plays a pivotal role
in DNA repair. As an inhibitor of the HDR pathway, the tumor
suppressor p53-binding protein 1 (53BP1) blocks DNA end
resection and simultaneously inhibits BRCA1 recruitment to
DSB sites (Panier and Boulton, 2014; Zimmermann and de
Lange, 2014). By means of fusing, inhibiting, and binding
53BP1, HDR repair frequency can be increased from 20 to
86% (Paulsen et al., 2017; Canny et al., 2018; Jayavaradhan
et al., 2019). Compared with a control, the correction
frequency of the HDR pathway increased by nearly 20% when
RAD52 was ectopically co-expressed with dominant-negative
53BP1 (dn53BP1) (Paulsen et al., 2017). Interestingly,
dn53BP1 itself did not improve HDR efficiency unless
combined with Rad52, suggesting that this fragment may not
effectively promote the HDR pathway. To avoid the unwanted
effects of global NHEJ inhibition, the fusion of DN1S and
dn53BP1 significantly blocked NHEJ events locally while
improving the correction frequency of HDR up to 86%
(Jayavaradhan et al., 2019). This effect was likely due to the
restrictively suppressive effect of dn53BP1 around the DSB site,
which makes the CRISPR-Cas9-DN1S system a far more effective
and stable approach in clinical treatments with high HDR
frequency. Inhibition of 53BP1 is another indispensable
strategy for regulating different repair pathways—for instance,
utilization of 53BP1 inhibitor (i53) resulted in up to a 5.6-fold
gene conversion and demonstrated an effective impact on the
conversion mediated by single-stranded oligodeoxynucleotides
(ssODN) compared to canonical modality double-stranded DNA
(dsDNA) donors (Canny et al., 2018). However, the unknown
toxicities or adverse incidents of i53 need to be carefully
considered before its use. Moreover, the direct binding of
related proteins to 53BP1 is a new target for enhancing the
HDR pathway. A typical example is the TIRR protein, which
acts similar to i53 and provides strong suppression by binding
directly to 53BP1 (Anuchina et al., 2020). Since the function of
TIRR is unclear, more studies should focus on its mechanism and
the potential effects on the HDR pathway. TIRR may hold
promise as a new target for enhancing the HDR pathway in
genome editing.

3.3 Synchronization of Cas9 Activity and
HDR-Active Cell Cycle
Since HDR repair activity is restricted to the S and G2 phases of
the cell cycle, synchronizing cells in these phases can significantly
enhance the repair activity. In terms of a single aspect of cell cycle
synchronization, chemicals that maintain the cell cycle in the S

and G2 phases containing nocodazole (Yiangou et al., 2019),
ABT-751 (Yang et al., 2016), and RO-3306 (Sunada et al., 2021)
have been commonly used in CRISPR systems and increased the
HDR efficiency by a factor of 1.38–6 (Lin et al., 2014a; Yang et al.,
2016; Wienert et al., 2020). ABT-751 and nocodazole arrest the
cells in the G2/M phase by inhibiting microtubule polymerization
(Vasquez et al., 1997; Hande et al., 2006). Meanwhile, RO-3306
can transiently arrest cells at the transition fromG2 toM phase by
inhibiting the CDK1 function, enriching the number of cells in
the S and G2 phases (Vassilev, 2006). Recently, Lomova et al.
reported that the transient suppression of Cas9 activity and
synchronization of the HDR-active cell cycle may have a
prominent effect on the HDR pathway. RO-3306 combined
with Cas9, which nuclease activity is reduced in the G1 phase,
can improve the HDR/NHEJ ratio 20-fold, thereby limiting
unnecessary NHEJ events (Lomova et al., 2019). In addition,
the timed delivery of pre-assembled Cas9 RNP and chemical
synchronization agents can also enhance the HDR rates by up to
38% (Lin et al., 2014a). Thus, synchronizing the cell cycle paired
with controlled timing of Cas9 activity might be more practical
and safer than synchronizing the cell cycle alone. In conclusion,
more efficient synchronization agents for in vitro application
need to be further studied. Agents with lower toxicity should also
be explored for in vivo application in subsequent research. More
importantly, there is no doubt that the combination of multiple
technologies, such as controlled timing of Cas9 activity and cell
cycle synchronization, will result in better outcomes.

3.4 Increasing the Proximity of CRISPR
Components to the Donor DNA Template
At the time of DNA cleavage, if the donor DNA template is in
closer proximity to the CRISPR components or has a higher
concentration in the nucleus, the efficiency of the HDR pathway
can be significantly increased (Devkota, 2018). Based on this
hypothesis, many studies have demonstrated its feasibility and
potential value in clinical applications (Liang et al., 2017). By
attaching the donor DNA template to modified sgRNA, a
S1mplex strategy improves the enhancement of the HDR
pathway. In this system, the modified S1m-sgRNA adds an
aptamer, which binds the streptavidin protein. Biotinylated
ssODN linked to the streptavidin then increases proximity.
Through this powerful S1mplex strategy, the ratio of HDR
increased 18-fold compared with the unlinked components
(Carlson-Stevermer et al., 2017). By virtue of the affinity
between avidin and biotin, Ma et al. devised a Cas9 variant
that was fused to avidin via a flexible linker and bridged with
biotin-modified ssDNA to increase the proximity. This system
achieved ~20% HDR frequency in mouse embryos (Ma et al.,
2017a). HUH endonuclease is a bridge that is also capable of
forming robust covalent bindings with unmodified donor DNA
templates (Lovendahl et al., 2017). Utilizing this convenient
technique could create a stable Cas9 RNP–ssODN complex
(Aird et al., 2018). Additionally, Natasa et al. linked ssODN to
Cas9 through SNAP-tag technology, allowing O6-benzylguanine-
labeled ssODN to covalently bind to SNAP-tag fusion proteins
(Savic et al., 2018). Both SNAP-tag and HUH-tag enable the
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spatio-temporal co-localization of the donor templates at DSBs,
thus achieving 24- and 30-fold enhancement of HDR efficiency,
respectively. In addition to ssODN attachment to sgRNA in the
S1mplex system, other experiments use a variety of ways to attach
ssODN to Cas9 protein. Among them, the HUH-tag strategy
displayed a more promising prospect due to the superior ease of
use and lower cost associated with modifying donor DNA. As
noted above, Cas9 RNP complexes can connect with donor DNA
templates through a variety of chemical modifications, all of
which significantly enhance the transient expression of the
HDR pathway. Furthermore, Cas9 and sgRNA delivered in the
RNP format also exhibited a lower frequency of unwanted
mutations and off-target effects (Svitashev et al., 2016),
suggesting that the RNP format may be a promising approach
in the broad field of gene editing.

3.5 Selection of the Donor DNA Template
To a considerable extent, the repair efficiency of the HDR
pathway depends on the selection of donor DNA, including
DNA modality, length, and flanking homologous sequences
(Song and Stieger, 2017; Renaud et al., 2016). Generally, the
modality of a DNA template can be divided into three forms:
plasmid, ssODN, and linear dsDNA (Figure 1D). As the most
common form of genetic material, circular plasmids are widely
used in gene editing but will not be discussed in this review
(Bosch et al., 2020; Sondergaard et al., 2020; Yoshimi et al., 2021).
Compared with other donor DNA templates, ssODNs have the
advantages of ease of design, lower time investment, less
illegitimate random integration (introducing less than 200
nucleotides), and site-specific modification for precise editing
(Yang et al., 2013; Miura et al., 2018). By comparing the
modification efficiency of CRISPR/mRNA and CRISPR/
nuclease for a target gene, the results have shown that the 36-
nt length of ssODN with the CRISPR/nuclease form achieved the
optimal condition for modification of the target gene, with a slight
advantage over the CRISPR/mRNA approach (Kumita et al.,
2019). Currently, ssODNs have become a routine editing tool
both in vitro and in vivo, especially in multigene knock-in
experiments (Yoshimi et al., 2016; Miura et al., 2018; Lim
et al., 2020). For large sequence DNA modifications, linear
dsDNA templates (up to 11 kb) were commonly used for
CRISPR systems with homology arms of 500–800 bp (Yang
et al., 2013). The targeted integration of linearized
dsDNA–CRISPR can increase the knock-in efficiency 12-fold
by injecting PCR-amplified donor DNA, Cas9 mRNA, and
sgRNA (Yao et al., 2018b). Therefore, optimal editing
outcomes can be obtained by selecting the suitable donor
DNA modality according to experimental requirements.

4 SELECTION OF A HIGHLY EFFICIENT
DELIVERY SYSTEM

So far, numerous delivery systems to deliver drugs and genes have
been developed (Figure 2B). In this section, we have selected the
current delivery systems with high delivery efficiency, potential
for development, high biological safety, and strong tissue

specificity for overview. According to their biological
characteristics, they can be classified as either bioactive or
abiotic. In bioactive systems, common CRISPR delivery
systems contain viral vectors (Jarrett et al., 2018; Boucher
et al., 2020; Lee et al., 2021), extracellular vehicles (Yao et al.,
2021), cell-penetrating peptides (CPPs) (Ramakrishna et al.,
2014b), or lipid nanoparticles (Cheng et al., 2020). In abiotic
systems, gold nanomaterials (Wang et al., 2018), polymers (Lv
et al., 2018), and graphene oxide (Yue et al., 2018) had a better
effect on CRISPR system delivery. Several prominent reviews
have comprehensively described the mechanisms, efficiency,
challenges, and future directions for each of these systems
(Yin et al., 2017; Li et al., 2018b; Glass et al., 2018; Wilbie
et al., 2019; Zhang et al., 2021). The current status of these
delivery systems will be exposited in the following paragraphs.
Conventional physical delivery methods, such as electroporation
(Shi et al., 2018), microfluidics (DiTommaso et al., 2018), and
microinjection (Xu, 2019), possess unique advantages, including
high local tissue transfection efficiency and extensive cellular
adaptability (Mashel et al., 2020). They are not good candidates
for this review, however, as they can also cause cell damage and
potentially substantial cell death. Therefore, we did not repeat
their descriptions in this article.

4.1 Bioactive Delivery Systems
4.1.1 Viral Vectors
In recent years, viruses have been represented as an essential and
powerful tool for CRISPR due to their efficient gene delivery and
long-term stable transgenic expression (Heckl et al., 2014). The
most commonly utilized viral vectors are derived from adeno-
associated virus (AAV) (Jarrett et al., 2018), lentivirus (LV) (Lee
et al., 2021), adenovirus (Boucher et al., 2020), and baculovirus
(Yin et al., 2021). These viral vectors have been widely used to
deliver CRISPR/Cas9 elements for remedying genetic defects, like
hearing loss (Omichi et al., 2019), neurological disorders (Pena
et al., 2020), muscular dystrophies (Crudele and Chamberlain,
2019), and cystic fibrosis lung disease (Wold and Toth, 2013; Hart
and Harrison, 2017). Several excellent reviews concerning
different aspects of viral vectors for CRISPR-based genome
editing have been published, covering topics such as viral
mechanisms (Xu et al., 2019), viral vector application (Song
et al., 2021), and viral vector progress (DiCarlo et al., 2017).
Although highly efficient, viral vectors are presently hindered by
their inherent disadvantages of carcinogenesis, insertion size
limitation, immune response, genotoxicity, cytotoxicity, and
difficulties of large-scale production (Matrai et al., 2010;
Kotterman et al., 2015; Chen and Goncalves, 2016; Chen et al.,
2020a; Shirley et al., 2020). These viral vectors have been
improved in other aspects, such as pseudotyped LV and dual-
AAV systems. When delivering cargo into cells, LVs need to
interact with a cellular receptor to trigger the fusion of the viral
envelope with the cell membrane. The envelope glycoprotein on
the LV surface is exchanged with a heterologous glycoprotein in a
process known as pseudotyping. Pseudotyped LVs consist of
virus particles bearing glycoproteins derived from other
enveloped viruses. Thus far, a variety of viral glycoproteins,
including vesicular stomatitis virus (Liu et al., 2017c; Sena-
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Esteves and Gao, 2018; Rust et al., 2020), baboon endogenous
retrovirus (Belot et al., 2019), and feline endogenous retrovirus
(Zucchelli et al., 2017), have been incorporated into LVs to
improve their infectivity and confer a more selective tropism.
The versatile tropism of pseudotyped LVs has been utilized in the
treatment of tumors (Lee et al., 2021) and gene modification
(Gutierrez-Guerrero et al., 2020). AAV vectors are hindered by
their relatively low packaging capacity (Wu et al., 2010), with a
packaging range of no more than 5 kb, making them
inappropriate for the delivery of larger Cas9 variants (Mali
et al., 2013). To address this issue, dual-AAV systems have
been explored, in which one encodes Cas9 and another
encodes gRNA, resulting in a large target gene transfer (Zhi
et al., 2022). It needs to be pointed out, however, that the
disadvantages of this system limit its clinical application, such
as low probability of delivering both viral vectors to the same cell
and insufficient expression efficiency.

4.1.2 Extracellular Vesicles
Whether in vitro or in vivo, extracellular vesicles (EVs) have been
widely used to efficiently deliver genes or drugs (Choi et al., 2016;
Montagna et al., 2018; Campbell et al., 2019; Mangeot et al., 2019;
Gee et al., 2020). As natural cell-derived membrane vesicles, EVs
serve the function of cell-to-cell communication with outstanding
biocompatibility and immune-privileged characteristics. EVs are
also hardly cleared by the immune system, avoiding the
occurrence of hypersensitivity reactions (Zhang et al., 2014).
Since EVs do not contain viral genomes, they have significant
biosafety without the risk of endogenous virus recombination
(Fuenmayor et al., 2017). Additionally, EVs transmit Cas9 with
transient exposure, reducing the off-target chance triggered by
Cas9 overexpression (Wu et al., 2014). All these advantages
demonstrate an excellent potential for EVs as endogenous
nano-vehicles in various fields. However, a major obstacle for
EVs is the lack of robust tissue-specific delivery to specific cells.
Targeted ligand modification on the surface of EVs is a promising
avenue to ameliorate this weakness (Mathieu et al., 2019)—for
instance, valency-controlled tetrahedral DNA nanostructures
(TDNs) conjugated with DNA aptamers can be anchored on
the EV surface via cholesterol, improving cell-specific delivery
(Zhuang et al., 2020). The 3D tetrahedral steric superiority of
TDN DNA aptamers can minimize lateral interactions among
DNA, resulting in increased receptor–ligand binding and greatly
enhancing tissue specificity. Compared with a control group, the
TDN1-EVs-RNP group maximally restrained tumor growth in
terms of tumor weight, volume, and percentage of tumor cells,
demonstrating that the modified group accomplished a 2-fold
increase in indel rate (up to 30%). Recently, EVs have been used
in chimeric-antigen receptor (CAR) T-cell therapy to deliver
CRISPR components to target cells precisely. By expressing
chimeric-antigen receptors on vesicles derived from T cells,
the anti-CD19-CAR-EVs preferentially accumulated in tumors
compared to the liver, kidney, and other healthy tissues.
Nevertheless, normal EVs were more evenly distributed
throughout the body (Xu et al., 2020a). In addition to
delivering CRISPR/Cas9 components, EVs also show great
potential for drug delivery (Mateescu et al., 2017; Yang et al.,

2018), anticancer therapy (Pascucci et al., 2014; Saari et al., 2015),
and antigen delivery for vaccine development (Rabu et al., 2019).

4.1.3 Lipid Nanoparticles
Lipid nanoparticles (LNP) as CRISPR delivery vehicles have
attracted the interest of scientists (Yin et al., 2014; Kulkarni
et al., 2019). They not only help CRISPR components cross
cell membranes but also protect them from enzymatic
degradation and immune responses (Liu et al., 2018b; Noll
et al., 2018). Due to the advantages of excellent controlled
release, targeting, and high stability, LNPs have been widely
used as a CRISPR delivery vector for all kinds of cargo
modality, such as plasmid DNA, mRNA, and RNP complexes
(Li et al., 2018c; Li et al., 2019). Theoretically, endocytosis is
considered to be the key to cell internalization for almost all
common LNP materials. To improve tissue specificity and
delivery efficacy, several new strategies have been reported in
recent years. Firstly, based on the hypothesis that charge
adjustment can mediate tissue-specific delivery, a new strategy
termed selective organ targeting (SORT) has been established. By
adding DOTAP (a permanently cationic lipid) and constantly
regulating its proportion to the original composition of LNP, we
can control the charge for tissue-specific delivery (Cheng et al.,
2020). The results show that this SORT strategy can achieve high
organ selectivity for CRISPR cargos delivered in the lung, spleen,
liver, and other organs. Among these organs, delivery to
hepatocytes has the highest specificity at 93%. Secondly,
ultrasound has been reported to facilitate the delivery of
CRISPR components (Shen et al., 2016; Yoon et al., 2017).
Ultrasound at specific locations can cause microbubbles to
create local membrane deformations and pore formation in
response to acoustic energy (Taniyama et al., 2011; Zhou
et al., 2012). LNP released by microbubbles can then be
transferred directly into the cytoplasm by diffusion. The
results show that LNP incorporated with microbubbles can
effectively facilitate cargo to the target site for RNP delivery,
and the editing efficiency of Cas9 RNP was improved by 71.6%
(Ryu et al., 2020). Thirdly, under optimized synthetic conditions,
microfluidic device-designed lipid nanoparticles achieved
intracellular RNP delivery with 97% gene disruption and 23%
base substitution without any apparent cytotoxicity (Suzuki et al.,
2020). In short, optimizing the formulation of LNP or integrating
other technologies into the delivery system will be a crucial
direction for achieving tissue-specific and efficient systems.
Lipid-based formulations, however, do have some
disadvantages. Once nanoparticles pass through the surface of
cells, they are typically encased within an endosome. The encased
contents then enter the lysosomal pathway directly and are
eventually degraded. Therefore, coating polymers on the LNP
surface or developing other unique chemical modifications to
facilitate cellular uptake and disrupting endosomal membranes
are promising directions that could prompt endosomal escape
and avoid detection by the immune system.

4.1.4 Cell-Penetrating Peptides
As short stretches of amino acids, CPPs are polycationic,
amphipathic, or non-polar in nature and possess an intrinsic
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ability to translocate across cell membranes (Suresh et al., 2017).
Owing to the advantages of low cytotoxicity, better biological
tolerance, less off-target effect, and no chemical reagent, CPPs
have been exploited to deliver different cargos into cells in vitro
and in vivo (Liu et al., 2014; Gagat et al., 2017). When delivering
RNP complexes, CPPs conjugated with RNP to form CPPs–RNP,
which can improve cellular uptake and/or fusion. However, few
studies have been reported on CPP-mediated CRISPR
component delivery at present. Moreover, both delivery
efficiency and subsequent editing efficiency were usually at a
low level of just 10–20% (Ramakrishna et al., 2014b; Yin et al.,
2018b; Del’Guidice et al., 2018; Yin et al., 2019a). This likely stems
from the indefinite mechanism of CPP internalization and
requirement for extensive optimization for targeting each type
of cargo and cell. As the major CPP cargo is trapped in
endosomes, they end up being recycled or degraded in a
targeted manner instead of releasing cargo to the specific
destination. Thus, enhancing endosomal escape would be a
potential approach to improve the efficiency of delivery and
editing (LeCher et al., 2017).

4.2 Abiotic Delivery Systems
As an alternative, abiotic vectors may offer tantalizing
possibilities for CRISPR/Cas9 delivery systems due to their low
immunogenicity, larger delivery gene payload, ease of large-scale
production (Li et al., 2015), and absence of endogenous virus
recombination. Many excellent delivery systems with new
properties have been established in various fields, such as gold
nanomaterials (Wang et al., 2018), polymers (Lv et al., 2018), and
other systems. The characteristics of each material are described
in detail in the following sections.

4.2.1 Gold Nanomaterials
Due to their tunable surface functionalization, non-toxic
nature, favorable size, optical properties, biocompatibility,
and photothermal effect, inorganic gold nanocarriers have
proved to be a promising platform for systemic gene
delivery (Ghosh et al., 2008; Ma et al., 2017b). They are
mainly characterized by their photothermal effect and ease
of functionalization for delivering CRISPR components. As
photothermal transducers, gold nanomaterials can regulate the
conditional control of Cas9 activity through different optical
means (Nihongaki et al., 2015). In locally specific tissues, heat
converted by the second near-infrared optical window (1,000
to 1,700 nm) induces endonuclear transformation of the heat-
shock factor (HSF) from an inactive monomer to an active
trimer. Under the action of active HSF, the combined
transfection of a cationic polymer-coated Au nanorod, Cas9
plasmid, and a heat-inducible promoter HSP70 can result in
90% GFP-positive cells, which is much higher than that of
Lipofectamine 2000 or 25-kDa polyethyleneimine (Chen et al.,
2020b). In the LACM system, the protective DNA-modified
gold nanorod hybridizes with the target binding domain of
sgRNA to protect sgRNA. Upon NIR laser irradiation, heat
subsequently denatures the hybridized DNA and sgRNA,
accomplishing the controlled release of sgRNA into cells
(Peng et al., 2020). Thus, gold nanomaterials act as an

optogenetic switch to regulate the expression and activity of
Cas9 proteins with high spatial specificity.

Tunable surface functionalization is another outstanding feature
of gold nanocarriers that accelerates the entry of foreign genes into
cells. Various biomolecules, such as proteins, DNA, peptides, and
polymers, can endow gold nanomaterials with tremendous functions
for surface bioengineering (Miao et al., 2018). Protamine, as a natural
protein that originates from sperm, has intrinsic cell-penetrating
properties and nucleus-targeting abilities and can be used for the
efficient delivery of the Cas9–sgRNA plasmid. Protamine can form a
compact structure with anionic DNA and then deliver the DNA to
the egg nucleus (Biju et al., 2012; Priya et al., 2014). Nanocomplexes
of Cas9-gRNAEGFP and protamine-functionalized gold nanoclusters
disrupt the EGFP gene effectively and convert approximately 30% of
the EGFP-positive transformants to EGFP-negative cells (Tao et al.,
2021). Meanwhile, AuNCs can be functionalized by electrostatic
action to control the self-assembly process. In a highly pH-
dependent manner, AuNCs assembled with Cas9 protein
(SpCas9–AuNCs) can deliver SpCas9 into the cell and nucleus in
physiological conditions (Ju et al., 2019). The self-assembled
SpCas9–AuNC nanoparticles effectively transfect HPV18 E6
sgRNA into cervical cancer cells, knocking out the E6 oncogene
at a rate of 34%. More importantly, self-assembled SpCas9–AuNCs
had little effect on normal cells, showing a considerable potential for
clinical application. However, concerning the application of gold
nanomaterials, cytokine production, the extensive modification
requirement, fewer in vivo experiments, and potential toxicity
need to be fully considered (Dykman and Khlebtsov, 2017). Gold
nanomaterials are potentially an excellent delivery system and a
bright prospect for improving CRISPR systems. Additionally, they
can be extensively applied to bioimaging, optical and electrochemical
sensing, and medical diagnostics (Chen et al., 2016). The
multifunctional integrated gold nanomaterial platform may make
great contributions to biological research in the future.

4.2.2 Polymers
Polymers can also be used to deliver RNP complexes to target sites
with many distinct advantages, such as ease of synthesis, structural
and component flexibility, functionalization, and degradability (Chen
et al., 2016). Their significant flexibility is themost fascinating feature,
resulting in multifunctionality by the reasonable and convenient
design of the chemical structure (Hsu and Uludag, 2012; Zhang
et al., 2019b). Currently, commonly used polymers to deliver drugs or
RNP include polylysine, chitosan nanoparticles, poly-(β-amino ester)
s, and dendrimers. The first two kinds are commonly used for drug
delivery, while the latter two aremostly used for RNPdelivery. Studies
of drug delivery with polymers have been described in detail in other
reviews (Huo et al., 2017; Hasheminejad et al., 2019). For awide range
of unmet therapeutic needs and personalized medicine, poly-(β-
amino esters), as a class of amphiphilic and pH-sensitive
polymers, can efficiently bind to cargo proteins to facilitate
efficient intracellular RNP delivery via hydrogen bonding as well
as hydrophobic and ionic interactions (Dwivedi et al., 2012). This
characteristic allows them to be customized specifically to overcome
delivery barriers in varied applications (Karlsson et al., 2020).
Dendrimers are a class of synthetic polymer with a spherical and
hyperbranched structure, whose surface is functionalized with a high
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density of phenylboronic acid moieties to ensure that RNPs are
efficiently bound to the dendrimer scaffold and transmit RNP to
specific cells (Dixit et al., 2014). As a novel therapeutic tool for genetic
disorders, dendrimers allow the efficient delivery of RNP targeting
multiple genetic loci in different cell lines, proving to be a useful
material for the delivery of genome-editing tools with broad
biomedical applications (Taharabaru et al., 2020). Several issues
exist with RNP delivery using polymers, however, such as low
efficiency, high cytotoxicity, and narrow application range, which
need to be overcome in the future.

5 CRISPR REGULATION WITH
NUCLEASE-DEAD CAS PROTEINS

Through the same mechanism mentioned above, sgRNA-
directed dCas9 binds to specific DNA sequences. When dCas9
binds specifically to a genomic locus, it can sterically block or
activate RNP progression to downstream genes. These two
dCas9-based strategies are called CRISPR interference
(CRISPRi) (Ji et al., 2020) and CRISPR activation (CRISPRa),
respectively (Larson et al., 2013). Both strategies can precisely
regulate the expression of the sgRNA module or dCas9 via an
inducible expression system. As of yet, several dCas9-based
CRISPRa methods have been established, including dCas9-
P65AD (Gilbert et al., 2013), dCas9-VPR (Chavez et al., 2015),
dCas9-p300 (Hilton et al., 2015), and dCas9-TET (Xu et al.,
2018). Some CRISPRimethods have also been reported, including
dCas9-KRAB (Abudayyeh et al., 2017), dCas9-LSD1/KDM1A
(Gilbert et al., 2013), and dCas13-YTHDF2 (Rauch et al., 2018).
Several excellent reviews concerning different dCas-based
CRISPRi and CRISPRa strategies describe their mechanism
and principle in detail (Kampmann, 2018; Xu et al., 2020b).
Currently, they are utilized to screen cellular genomes, including
for cell survival/proliferation, sensitivity to drugs or toxins,
fluorescent reporters, and single-cell transcriptomes
(Kampmann, 2018). They are expected to precisely regulate
editing time to reduce off-target effects.

6 ENRICHMENT OF MUTANTS

Due to off-target effects, not all genetically modified cells are
equipped with positive mutants in vitro. The selection of mutants
from original gene-edited cells is still a challenge at present (Ren
et al., 2015). Thus, new strategies need to be investigated for
enrichment and selection (Figure 2C). The most common
selection markers to enrich positive cells are fluorescent
proteins, antibiotic resistance genes, cell surface antigens, and
so forth. Due to the merits of visualization, time saving, and
decreased labor, fluorescent proteins are widely utilized in
CRISPR/Cas systems (Ren et al., 2019). For a variety of
cellular and environmental contexts, the variety of fluorescent
genes gives scientists immense flexibility in choosing tailored
reporters, such as green fluorescent protein, red fluorescent
proteins (Liu et al., 2021a), and fluorescent proteins (Cao
et al., 2019). Nevertheless, isolated cells are easily damaged by

the solid lasers and hydrostatic pressure of flow cytometry.
Compared to fluorescent proteins, the antibiotic-based method
offers an alternative strategy that does not require expensive
equipment but needs more time (Moriarity et al., 2014; Liesche
et al., 2016). Although numerous antibiotic resistance genes have
been applied in various fields, such as hygromycin (Moriarity
et al., 2014), neomycin (Gu et al., 2021), zeocin (Kobayashi et al.,
2019), gentamicin (Mulsant et al., 1988) and puromycin (Pandey
et al., 2021), marker-free strategies are the preferred method,
ameliorating public concerns for the biosafety of antibiotic
resistance genes. Another non-fluorescence activated cell
sorting-based enrichment method is antigen gene H-2Kk,
which has a high enrichment efficiency with magnetic bead
separation (Wei et al., 2001). However, when insertions or
deletions are generated at the target sequences, these reporter
systems express H-2Kk and hygromycin resistance protein,
respectively, enabling the efficient enrichment of mutants
without flow cytometry (Kim et al., 2013).

However, no matter what efficient strategies are used to select
mutants, mutant enrichment alone cannot classify all stable and
highly expressed mutants (Figure 2D). Thus, to select nuclear-active
mutants, two surrogate reporters based on the NHEJ and single-
strand annealing (SSA) have been published (Pattanayak et al.,
2013). Nuclease triggers a DSB on the target sequence within the
surrogate reporter construct, resulting in the formation of small
random indels by the error-prone NHEJ repair pathway and leading
to the correction of reporter genes with 1/3 frequency. Compared
with unsorted cells, the enrichment efficiency of mutants can be
increased up to 8.6- and 18-fold with the first and second generation
of NHEJ-based surrogate reporters, respectively (Ramakrishna et al.,
2014a). The second surrogate reporter has the capacity to identify
more nuclease-positive cells via SSA. Due to its higher sensitivity,
this reporter significantly increases the possibility of obtaining the
desired genetically modified cell clones (Yasuda et al., 2016).
Although DNA repair pathways are influenced by cell type and
the nature of broken DNA ends, genomic modification within
mutants may be independent of repair pathways in surrogate
reporters (Ren et al., 2015). On the basis of transfection-positive
cells, these two surrogate reporter strategies can produce highly
efficient, nuclease-active cells.

7CONCLUSIONAND FUTUREPROSPECTS

Aside from the above-mentioned approaches, other strategies can
also significantly improve the editing efficiency of CRISPR/Cas
systems. Firstly, owing to the fact that the nucleosome poses a
strong barrier to Cas9, restoring Cas9 access to nucleosomes
through the chromatin remodeling enzyme yChd1 therefore
results in high efficiency editing. Nucleosome organization
represents only one aspect of eukaryotic chromatin, however;
thus, future research on how chromatin affects Cas9 activity
needs to be done (Horlbeck et al., 2016). Secondly, cytosine base
editors (CBE) and adenine base editors (ABE) have been utilized
to change C/G to T/A and A/T to G/C. CBE deaminates cytosine
to uracil, which is recognized by the cell replication machinery as
thymine, resulting in a C/G to T/A transition. ABE-mediated
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DNA editing operates under a similar mechanism as that of CBE
(Koblan et al., 2018; Richter et al., 2020). Despite efforts to
improve DNA base editors, base editing is confined to
transition mutations (incapable of transversion mutation) and
is not capable of inducing indel mutations. Next, by combining
reverse transcriptase with prime editors gRNA and Cas-nickase
nuclease, prime editing technology can edit or “search and
replace” bases in a genome (Anzalone et al., 2019). It can also
be used as an alternative genome editing tool to investigate
various challenges, such as editing large genes, targeting
autosomal dominant diseases, and editing premature stop
codons and splice-site variants (Kantor et al., 2020). When
prime editors are undesirable and the base editing window is
well defined, base editors are typically more efficient than prime
editors. On the contrary, when prime editors are acceptable and
multiple editable bases are within a defined editing window,
prime editors offer unsurmountable advantages.

In the last few years, we have seen the extraordinary growth and
expansion of gene editing, particularly in the field of gene therapy.
Based onCRISPR technology, a series of highly efficient and targeted
transcription factor components has been developed and used to
construct intelligent gene circuits, making tumor gene therapy
possible (Zhou et al., 2019). In cardiovascular medicine, CRISPR-
based tools have multiple applications, with a primary focus on
direct therapeutic interventions to treat inherited cardiac disorders
(Vermersch et al., 2020). CRISPR also represents a breakthrough
advance in genetically engineered immune cells (Huang et al., 2020),
personalized cancer medicine (Li and Kasinski, 2020), and
modification of human embryos (Tang et al., 2017). Even in the
current novel coronavirus (COVID-19) outbreak, CRISPR-based
technology has shown strong application value. All-in-one dual
CRISPR-Cas12a is instrumental in the detection of COVID-19,
offering the advantages of being instrument-free, rapid, sensitive,
one-pot, and point-of-care (Ding et al., 2020). Applications in
microbiology are still being newly discovered and improved,
specifically in the identification and modification of industrial-
related lactobacilli and streptococci as well as foodborne
pathogens, including E. coli (Altenbuchner, 2016), Saccharomyces
cerevisiae (Biot-Pelletier and Martin, 2016), and thermophilic fungi
(Liu et al., 2017b). As a new generation of precision gene editing
tools, the great success of CRISPR/Cas systems in various fields
shows that these have a wide range of application and wonderful
prospects.

Collectively, knowledge and technologies of genome editing
are ceaselessly developing in intricately interwoven fields and are
creating huge synergies. With the recent developments in
CRISPR/Cas systems, they are becoming increasingly accurate,
efficient, and reliable. Although massive advances have been
achieved, the CRISPR/Cas systems are far from their optimal
state. Among various challenges, off-target effects are still the
foremost barrier in CRISPR/Cas systems. We have listed above
several strategies for reducing off-target effects. Among them,
special attention should be paid to optimizing time and
temperature, which are often inadvertently neglected. The
CRISPR/Cas systems have other limitations, including inactive
mutants, variable efficiency, requirement of PAM and sgRNA,
fault-prone programmed DNA repair pathways, and the lack of
an efficient and safe delivery system. Apart from these, future
research will involve the enhancement of Cas9 activity,
application of ACR proteins, and determination of the optimal
Cas9 and sgRNA ratio so as to further improve the efficiency of
CRISPR systems. Simultaneously, continuous optimization of
external measures, including dCas9 regulation, delivery vector
development, mutant enrichment, etc., will help to further
improve the efficiency. Although we are far from eliminating
off-target effects completely, we are confident that CRISPR
technology will continue to be perfected to meet the demands
of different fields by adopting the aforementioned strategies.
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GLOSSORY

CRISPR clustered regulatory interspaced short palindromic repeats

ZFNs zinc finger nucleases

TALENs transcription activator-like effector nucleases crRNA

PAM proto-spacer adjacent motifs

sgRNA single guide RNA

DSBs double-strand breaks

PCR Polymerase chain reaction

Acr anti-CRISPR

NHEJ nonhomologous end joining

c-NHEJ canonical NHEJ

HDR homology-directed repair

53BP1 tumor suppressor p53-binding protein 1

CtIP CtIP C-terminal-binding protein interacting protein

dn53BP1 dominant-negative 53BP1

ssODN single-stranded oligodeoxynucleotides

dsDNA double-stranded DNA

EVs extracellular vehicles

CPPs cell-penetrating peptides

AAV adeno-associated virus

LV lentivirus

AdV adenovirus

GO graphene oxide

TDNs tetrahedral DNA nanostructures

CAR chimeric-antigen receptor

LNP lipid nanoparticles

NIR near-infrared

HSF heat-shock factor

AuNR gold nanorods

AuNCs gold nanoclusters

CRISPRi CRISPR interference

CRISPRa CRISPR activation

eGFP enhanced green fluorescent proteins

RFP red fluorescent proteins

FPs fluorescent proteins

CBE cytosine base editors

ABE adenine base edito
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