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Introduction
Psilocybin is a prodrug of the psychedelic psilocin (4-hydroxy-
N,N-dimethyltryptamine) (Nichols, 2016). Effects include pro-
found alterations in consciousness that last approximately 6 h and 
are characterised by perceptual alterations and synaesthesia, experi-
ences of non-duality and transcendence and profound changes in 
affect (Preller and Vollenweider, 2018). Therapeutic effects of psil-
ocybin have been reported following between one and three moder-
ate-to-high doses (0.025–0.42 mg/kg) in brain-related disorders 
including major depressive disorder (MDD) (Davis et al., 2020), 
treatment-resistant depression (Carhart-Harris et al., 2018), obses-
sive-compulsive disorder (Moreno et  al., 2006), terminal cancer-
associated anxiety (Griffiths et al., 2016), demoralisation (Anderson 
et al., 2020), as well as smoking (Johnson et al., 2017) and alcohol 
addiction (Garcia-Romeu et  al., 2019). Psilocybin is currently in 
phase 2b for the treatment of treatment-resistant depression 
(COMPASS Pathways Ltd., London, UK) and in phase 2a for major 
depressive disorder (Usona Institute, Madison, WI, USA).

Persistent changes in personality and mood have also been 
observed in healthy volunteers following a single medium-to-high 

dose of psilocybin. These include, for example, increases in per-
sonality traits openness and extraversion, decreases in neuroticism 
and increases in mindful awareness (Erritzoe et al., 2018; MacLean 
et al., 2011; Madsen et al., 2020). These therapeutic and personal-
ity effects appear to persist for at least months, and in some cases 
have been reported to last more than a year (Gasser et al., 2014; 
Johnson et al., 2017; MacLean et al., 2011).
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The medicalisation of psychedelic drugs is expanding rapidly 
despite a limited understanding of the neurobiology underpin-
ning therapeutic effects. Psychological theories of psychedelic 
therapy, such as reduced negative affect (Barrett et  al., 2020), 
increased mindfulness (Madsen et al., 2020; Murphy-Beiner and 
Soar, 2020; Smigielski et al., 2019), increased cognitive flexibil-
ity (Murphy-Beiner and Soar, 2020) and reduced experiential 
avoidance (Zeifman et al., 2020) have been proposed, as well as 
increased acceptance and processing of traumatic autobiographi-
cal memories (Sloshower et al., 2020), but these have no current 
grounding in neurobiology. Thus, in order to maximise psilocy-
bin’s safety and efficacy as a potential therapeutic, it is important 
to investigate mechanisms by which psilocybin exerts its effects.

Functional magnetic resonance imaging (fMRI) resting-state 
functional connectivity (RSFC) measures correlations between 
blood-oxygen-level-dependent (BOLD) signals in participants 
instructed to simply let their mind wander (Lee et  al., 2013). 
Despite not being focused on any task, the brain remains organ-
ised into networks (Raichle, 2015), the character of which cor-
relates with personality traits (Cai et al., 2020; Hsu et al., 2018) 
and aligns with known functional and structural topology 
(Straathof et al., 2019). During the psychedelic experience, psilo-
cybin produces a reduction in the synchronised BOLD activity of 
the major hubs of the default mode network (DMN) (Carhart-
Harris et al., 2012; Mason et al., 2020), increases between-net-
work RSFC (Roseman et al., 2014) and increases global RSFC 
across the sensory cortex while decreasing the global connectiv-
ity in associative regions (Preller et al., 2020). Similarly, lysergic 
acid diethylamide (LSD) increases RSFC between high-level 
association cortices, which correlates with subjective reports of 
ego-dissolution (Tagliazucchi et al., 2016). Although understand-
ing the neurological basis of the acute psychedelic experience is 
widely informative, the long-term psychological effects of 
psychedelics may be distinct (Carhart-Harris et al., 2016).

Five studies to date have reported effects on human brain func-
tion after the psychoactive effects of a classical psychedelic have 
subsided: two studies with ayahuasca and three with psilocybin 
(Barrett et  al., 2020; Carhart-Harris et  al., 2017; Pasquini et  al., 
2020; Sampedro et al., 2017; Smigielski et al., 2019). Post-drug 
brain imaging was performed within 24 h after the psychedelic ses-
sion in all but one study (Barrett et al., 2020), during which time 
‘afterglow’ effects and potential residual drug availability con-
founds relating effects to lasting changes (Madsen et  al., 2019; 
Majić et al., 2015). By ‘afterglow’, we allude to the experience of 
‘elevated and energetic mood with a relative freedom from con-
cerns of the past and from guilt and anxiety’ up to 2 weeks after the 
experience, as described as early as during the 1960s and the ‘first-
wave’ of psychedelic research (Grob et al., 1996; Pahnke, 1969). 
More recently, transient elevations in mood have been reported 
(Majić et al., 2015; Murphy-Beiner and Soar, 2020). Barrett et al. 
(2020) reported an increase in the number of significant RSFC 
across the brain in 12 healthy individuals from baseline to 1-week 
and 1-month post-psilocybin, hypothesising that psilocybin may 
increase emotional and brain plasticity. None of these previous 
studies evaluated correlations between change in RSFC and 
change in personality or other psychological traits. Furthermore, 
none of these studies have explored neuromolecular mechanisms 
mediating these effects. The psychoactive effects of psilocybin 
stem from agonism at the serotonin 2A receptor (5-HT2AR) 
(Vollenweider et al., 1998). Positron emission tomography (PET) 

with the radiotracer [11C]Cimbi-36 enables the quantification of 
brain 5-HT2AR levels in humans in vivo, which has been previ-
ously associated with aspects of the psychedelic experience (Ettrup 
et  al., 2014, 2016; Finnema et  al., 2014; Madsen et  al., 2020; 
Stenbæk et al., 2020). Combining [11C]Cimbi-36 PET with RSFC 
would provide insight into the neuromolecular mechanisms associ-
ated with psychedelic effects on brain connectivity.

In the current study, we evaluated the effect of a single psilo-
cybin dose on RSFC in 10 healthy psychedelic-naïve individuals 
at 1 week and 3 months after administration, evaluating changes 
in within- and between-network RSFC. Further, we sought to 
replicate a previous finding of changes in region-to-region RSFC 
(Barrett et  al., 2020). Lastly, in an exploratory analysis, we 
assessed correlations between network RSFC change and varia-
bles associated with increased well-being. These included per-
sonality measures, well-being and mindfulness, which we 
recently showed were altered 3 months after psilocybin, as well 
as correlated with change in the neocortex 5-HT2A binding 
(Madsen et  al., 2020). Additionally, the baseline neocortex 
5-HT2A binding was related to the temporal character of the psy-
chedelic experience (Stenbæk et al., 2020). Finally, we examined 
whether the self-reported experience was correlated with long-
term changes in brain connectivity.

Materials and methods

Participants

Detailed information about participants and protocol are described 
in a previous study (Madsen et  al., 2020) and one more study, 
which included these and other participants (Stenbæk et al., 2020). 
The study was approved by the Danish Medicines Agency 
(EudraCT ID: 2016-004000-61, amendments: 2017014166, 
2017082837, 2018023295) and by the ethics committee for the 
capital region of Copenhagen (journal ID: H-16028698, with 
amendments). The study was preregistered at ClinicalTrials.gov 
(identifier: NCT03289949). Six male and four female participants 
took part in this study (mean ± SD age = 28.3 ± 3.4 years).

Participants were recruited from a list of individuals who 
expressed interest in participating in a psilocybin brain scanning 
study. After obtaining the informed consent, participants under-
went screening for somatic illness, including a medical examina-
tion, an electrocardiogram (ECG), blood screening for somatic 
disease, and screening for psychiatric disorders using Mini 
International Neuropsychiatric Interview, Danish translation ver-
sion 6.0.0 (Sheehan et al., 1998). Exclusion criteria were: (1) pre-
sent or previous primary psychiatric disease (DSM axis 1 or 
WHO ICD-10 diagnostic classifications) or in first-degree rela-
tives; (2) present or previous neurological condition/disease, sig-
nificant somatic condition/disease; (3) intake of drugs suspected 
to influence test results; (4) non-fluent Danish language skills; 
(5) vision or hearing impairment; (6) previous or present learning 
disability; (7) pregnancy; (8) breastfeeding; (9) magnetic reso-
nance imaging (MRI) contraindications; (10) alcohol or drug 
abuse; (11) allergy to test drugs; (12) significant exposure to 
radiation within the past year (e.g. medical imaging investiga-
tions); (13) intake of QT-prolonging medication or ECG results 
indicative of heart disease, (14) blood donation less than 3 months 
before project participation; (15) bodyweight less than 50 kg; and 
(16) low plasma ferritin levels (<12 µg/L).
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Experimental procedures

Figure 1 provides an overview of the study design. Prior to inclu-
sion, participants were informed about the study, including safety 
precautions and potential effects and side effects of psilocybin. 
Before the psilocybin session, all participants met at least one of 
the two staff members present on the psilocybin intervention day. 
A urine test was used to screen for common drugs of abuse 
(Rapid Response, BTNX Inc., Markham, ON, Canada) on base-
line imaging days. At baseline, participants filled out question-
naires including the NEO Personality Inventory-Revised (NEO 
PI-R) (Costa and McCrae, 2008; Skovdahl-Hansen et al., 2004) 
and the mindfulness attention and awareness scale (MAAS) 
(Brown and Ryan, 2003; Jensen et al., 2016) and completed an 
magnetic resonance imaging (MRI) scan session.

On a separate day, open-label psilocybin sessions were con-
ducted including two supporting psychologists familiar with 
effects of psilocybin, safety precautions and interpersonal sup-
port methods (Johnson et al., 2008). Psilocybin was administered 
in the morning; a number of 3 mg capsules were taken with a 
glass of water to approximate dose (dose: 0.2 mg/kg (n = 4) and 
0.3 mg/kg (n = 6)), considered ‘medium’ and ‘high’ doses, respec-
tively (Hasler et al., 2004). Participants listened to a standardised 
music playlist, adapted from one kindly provided by Prof. Roland 
Griffiths, Johns Hopkins Medicine. Music was played using a 
stereo system. Subjective drug intensity (SDI) was measured 
every 20 min using a 0–10 Likert scale (question: ‘How intense is 
your experience right now?’ 0=‘Not at all’, 10=‘Very much’). 
Measurements were obtained from the time of drug administra-
tion to the end of the session. Participants responded orally and 
the supporting psychologists noted their responses. At the end of 
psilocybin session days, participants completed questionnaires 
aimed to quantify aspects of the psychedelic experience, includ-
ing the 11-dimensional altered states of consciousness (11D-
ASC) questionnaire (Studerus et al., 2010), the revised mystical 
experience questionnaire (MEQ30) (Barrett et al., 2015), and the 
ego-dissolution inventory (EDI) (Nour et  al., 2016) (median 

[range]: 6.4 [5.9–7.4] h after psilocybin intake). One week and 
3 months after psilocybin administration, participants returned 
for MRI scan sessions identical to the baseline scan session. At 
3 months, participants filled out questionnaires including the 
NEO PI-R, MAAS and persisting effects questionnaire (PEQ) 
(Griffiths et  al., 2006, 2011), which measures psychological 
changes (both positive and negative) that are subjectively per-
ceived to be due to the psilocybin experience. Number of days 
between psilocybin sessions and follow-up questionnaires: mean 
(SD) [range] = 97.8 (11.9) [79–120 days]).

Positron emission tomography

The PET data used in this analysis are the same as those reported 
previously (Madsen et al., 2020; Stenbæk et al., 2020). For a more 
in-depth description of the PET methods, please refer Madsen et al. 
(2020). [11C]Cimbi-36 is an agonist radioligand selective for seroto-
nin (5-HT) 2A (5-HT2AR) and 2C receptors (Ettrup et al., 2014). 
Participants completed 120-min scans on a high-resolution research 
tomograph (HRRT) PET-scanner (CTI/Siemens, Knoxville, TN, 
USA) at baseline and 1 week following psilocybin administration. 
Regional time-activity curves were extracted using Pvelab (Svarer 
et al., 2005) from a neocortex and cerebellum region for estimation 
of non-displaceable binding potential (BPND) using the simplified 
reference tissue model (Ettrup et  al., 2016; Innis et  al., 2007). 
Neocortex [11C]Cimbi-36 binding predominantly reflects 5-HT2AR 
binding (Finnema et  al., 2014). The neocortex and cerebellum 
regions of interest (ROIs) were defined a priori in Pvelab (Svarer 
et al., 2005). The neocortex ROI comprises occipital, orbitofrontal 
and parietal cortex as well as pre/post central, middle/inferior fron-
tal, middle/inferior temporal, superior frontal and superior temporal 
gyri. A composite neocortex ROI was used because the signal is 
very highly correlated between these regions (Spies et al., 2020). 
Subcortical [11C]Cimbi-36 binding was not considered because the 
signal is low and noisy. The cerebellum ROI encompasses only the 
grey matter of the cerebellum.

Figure 1.  Flowchart describing study design. Note that not all data collected at a single time point was collected on a single day. Time lengths 
(mean ± SD) describe time between MRI scan sessions and psilocybin session.
EDI: ego-dissolution inventory; MAAS: mindful attention awareness scale; MEQ: mystical experience questionnaire; MRI: magnetic resonance imaging; NEO-PI-R: revised 
NEO personality inventory; PEQ: persisting effects questionnaire; SDI: subjective drug intensity.
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Magnetic resonance imaging scan parameters

Participants completed three identical MRI scan sessions: baseline, 
1-week, and 3-month post-psilocybin. The MRI data were acquired 
on a 3T Prisma scanner (Siemens, Erlangen, Germany) using a 
64-channel head/neck coil. A high-resolution 3D T1-weighted 
structural image was acquired: inversion time = 900 ms, echo 
time = 2.58 ms, repetition time = 1900 ms, flip angle = 9°, in-plane 
matrix = 256 × 256, in-plane resolution = 0.9 × 0.9 mm, 224 slices, 
and a slice thickness of 0.9 mm, no gap. Ten minutes of resting-
state BOLD fMRI data was acquired: repetition time = 2000 ms, 
echo time = 30 ms, flip angle = 90°, 32 axial slices with a slice 
thickness of 3 mm, 0.75 mm gap, in-plane resolution: 3.6 × 3.6 mm, 
iPAT acceleration factor = 2. A gradient-echo field map of the same 
spatial dimensions was acquired to resolve spatial distortions due 
to inhomogeneities in the magnetic field (repetition time = 400 ms, 
echo times = 4.92 and 7.38 ms). Prior to the resting-state scan ses-
sions, participants were instructed to close their eyes, let their mind 
wander freely and to not to fall asleep. Resting-state scan sessions 
were acquired after structural image acquisition (~15–20 min after 
scanning onset) and prior to task-related fMRI measures not 
described here.

Resting-state fMRI pre-processing

Resting-state fMRI data were pre-processed using SPM12 (Penny 
et al., 2007). This process included slice-timing correction, rea-
lignment and unwarping, co-registration of the high-resolution 
T1 structural image to the fMRI data, segmentation of the high-
resolution T1 structural image, applying warping parameters 
estimated for the high-resolution T1 into MNI space to fMRI data 
and smoothing with an 8-mm full width at half maximum 
(FWHM) Gaussian filter. Additional denoising of time-series 
data was performed using CONN (version 17.c) (Whitfield-
Gabrieli and Nieto-Castanon, 2012). Time series were filtered 
using a bandpass filter from 0.008 to 0.09 Hz. Additionally, we 
performed an estimation of physiological noise sources using 
anatomical component correction (aCompCor): regressing out 
the time series (and first derivative) of the first five principal 
components from a decomposition of the time series from white-
matter and cerebrospinal fluid voxels, separately. Additionally, 
we regressed the time series for the six motion parameters (and 
first derivatives) (Behzadi et  al., 2007; Whitfield-Gabrieli and 
Nieto-Castanon, 2012). Individual outlier volumes were identi-
fied and censored using the Artifact Detection Tools (ART) 
(global variance threshold = 4 and composite motion thresh-
old = 2) (http://web.mit.edu/swg/software.htm). Mean denoised 
time series were extracted from ROIs for further analysis. We 
calculated the between-region correlation across the entire time 
series. The Pearson’s rho correlation estimates were transformed 
using Fisher’s r-to-z transform (i.e. r-to-z = 0.5 × (ln((1+r)/
(1−r))), where r is the Pearson’s rho and ln represent taking the 
natural logarithm). These r-to-z values were included in the sta-
tistical analyses related to the connectivity strength.

Brain atlases

Regions of interest and networks were defined using an a priori 
defined atlas (Raichle, 2011)⁠. This atlas defines 36 regions belong-
ing to seven canonical resting-state networks: network (DMN), 

dorsal attention network (DAN), executive control network (ECN), 
salience network (SN), sensorimotor network (SMN), visual net-
work (VN) and auditory network (AN). Montreal Neurological 
Institute (MNI) coordinates for each network can be found in 
Raichle (2011) and in Supplemental Table S1. Within-network 
connectivity was defined as the mean connectivity between each 
unique pair of ROIs comprising a given network. Henceforth ECN 
integration and disintegration refer to increased and decreased 
mean within-network connectivity, respectively. Between-network 
connectivity was defined as the mean connectivity between all 
ROIs from two networks, where each pair of ROIs contained a 
region from each network. To draw comparisons with a similar 
previous study, we also evaluated a 268-region atlas (https://www.
nitrc.org/frs/?group_id=51) described previously (Barrett et  al., 
2020; Shen et al., 2013).

Statistical analysis

All statistical analyses were calculated in R (v4.0.2) (R Studio 
Team, 2020). Plots were constructed using the ggplot2 package 
(Wickham, 2016).

Paired t-tests were performed to investigate if there were any 
significant differences in ART censored volumes between time 
points (1 week vs. 3 months). Effects of time (1 week vs. baseline 
or 3 months vs. baseline) were compared separately using paired 
t-tests to determine the effect of time on within- and between-
network connectivity and related estimates. The p-values across 
the 28 within- and between-network comparisons at each time 
point were adjusted using the Bonferroni–Holm method, which 
controls the family-wise type-I error rate (Holm, 1979). 
Unadjusted p-values are denoted punc, whereas adjusted p-values 
are denoted pFWE. Where an effect of psilocybin on connectivity 
exceeded our statistical significance threshold (pFWE < 0.05), 
exploratory post hoc analyses were performed. We report the 
Cohen’s d value for each post hoc effect evaluated. Due to lim-
ited statistical power stemming from a small sample, we do not 
draw inference on statistical significance for post hoc analyses, 
but instead report standardised effect sizes and 95% confidence 
intervals.

Correlations.  The post hoc Pearson’s product–moment correla-
tions were performed between change in ECN connectivity and 
change in MAAS, change in neocortex 5-HT2AR (i.e. [11C]
Cimbi-36 BPND) (Madsen et al., 2020) as well as measures of the 
acute psychedelic experience (SDI, EDI, MEQ and 11-D-ASC) 
and change in personality (NEO-PIR). Change in ECN RSFC 
was also compared with the PEQ using a linear latent variable 
model capturing shared covariance in individual behavioural 
change measures using the lava package (v. 1.6.8 in R (Holst and 
Budtz-Jørgensen, 2013)).

Barrett replication analysis.  We attempted to replicate a previ-
ously described analysis framework applied to the Shen268 atlas 
(Barrett et  al., 2020). As described, we applied a one-sample 
t-test to all ROI-to-ROI connectivity estimates and retained only 
those edges with a statistically significant non-zero mean con-
nectivity after the Bonferroni correction for 35,778 edges tested 
at each time point (i.e. punc < 1.4 × 10−6). Paired t-tests evaluating 
change from baseline at 1 week or 3 months were performed for 
each edge surviving correction. Suprathreshold edges were 

http://web.mit.edu/swg/software.htm
https://www.nitrc.org/frs/
https://www.nitrc.org/frs/
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identified as either increases or decreases in connectivity follow-
ing psilocybin.

In our view, the type-I error for the test of interest (i.e. effect of 
psilocybin) is inflated by the initial ‘edge filtering’ step consider-
ing each time point separately and further inflated by not adjusting 
for the family of tests of interest (695 reported in Barrett et al., 
2020). Accordingly, we report paired t-tests evaluating changes 
from baseline to 1 week or 3 months, adjusting p-values using the 
Bonferroni–Holm method for the set of edges tested.

The R Notebook containing code used in the production of this 
manuscript is available at https://github.com/Pneumaethylamine/
LastingPsilocybinRSFC

Results

Population

Acute psychedelic effects were well tolerated in all participants, 
and no serious adverse events occurred. Based on self-report SDI 
scores throughout the sessions, the psychedelic experiences were 
characterised by three distinct phases, the onset, peak plateau and 
descent (Stenbæk et al., 2020). As previously reported, partici-
pants in this study self-reported changes in personality, including 
increased trait openness and mindfulness (Madsen et al., 2020). 
Self-reported increases in positive attributes from the PEQ 
(including spirituality) were 25.9% ± 21.5% (mean ± SD), 
whereas increased negative attributes reported were 1.4% ± 1.7%. 
Time between baseline and psilocybin intervention was 
15.3 ± 9.3 days, intervention and 1 week rescan was 6.5 ± 1.4 days 
and intervention and 3 month rescan was 101.5 ± 9.9 days 
(mean ± SD).

Lasting psilocybin effects on network 
connectivity

Within- and between-network RSFC structure was as expected, 
for example, high within-network connectivity and relatively 
lower between-network connectivity (Figure 2(a)). Mean com-
posite motion and censored volumes were low (3.5 ± 4.0 vol-
umes; mean ± SD) and not statistically significantly different 
between scan times (punc > 0.05).

ECN within-network connectivity was statistically signifi-
cantly decreased at 1 week (punc = 0.00039, pFWE = 0.010, Cohen’s 
d = −1.73; Figures 2(b) and 3). Nine of 10 participants showed 
numerically reduced ECN RSFC at 1 week. Examination of indi-
vidual ECN edges showed that nine of 10 edges had decreased 
connectivity across the 10 participants. At 3 months, ECN RSFC 
remained numerically decreased as compared to baseline, but this 
effect was not statistically significant (punc = 0.23, pFWE = 1, Cohen’s 
d = −0.4). No other within- or between-network connectivity esti-
mates were statistically significantly altered at 1 week or 3 months 
(Supplemental Table S2). Additional network connectivity effects 
with a |Cohen’s d| > 0.5 include at 1 week, SMN–SMN, ECN–VN 
and DAN–AN connectivity decreased (Cohen’s d = −0.6), whereas 
DMN–ECN connectivity increased (Cohen’s d = 0.5). At 3 months, 
ECN–VN and DAN–AN connectivity remained decreased 
(Cohen’s d = −0.6 and −0.5, respectively). A Cohen’s d magnitude 
>0.5 represents a ‘medium’ effect size (Ferguson, 2009).

Replication of previous study

Later, we attempted to replicate previously reported findings from 
a similar study (Barrett et al., 2020). Of the 35,778 edges defined 
by the Shen268 atlas, 405 showed evidence for significant con-
nectivity based on the strategy described by Barrett and colleagues, 
who reported 695 suprathreshold edges. RSFC was altered in 25 
edges at 1 week (19 increased and six decreased) and 18 edges at 
3 months (12 increased and six decreased) at a statistical threshold 
of punc < 0.05. Two of these edges were altered in the same direc-
tion at both time points (one increased and one decreased). 
Although we observed fewer total edges showing evidence for sig-
nificant connectivity, we observed a similar proportion of edges 
showing a time effect (i.e. 25/405 and 18/405 are approximately 
similar to 48/695 and 29/695, respectively). None of the 25 nor 18 
edges remained statistically significant after controlling the type-I 
error for the 405 tests using the Bonferroni–Holm method.

Exploratory associations with ECN functional 
connectivity

Lastly, we explored the association between change in ECN 
RSFC at 1 week and self-report measures of the psychedelic 

Figure 2.  Psilocybin effects on within- and between-network resting-state connectivity: (a) mean within- and between-network functional 
connectivity, cell values and colour scale represent mean r-to-z values across participants, (b) change in connectivity from baseline to 1-week 
rescan, (c) change in connectivity from baseline to 3 month rescan. Cell values and colour scale in (b) and (c) represent effect size (Cohen’s d).
* denotes change that is statistically significant after adjustment across 28 tests (i.e. pFWE < 0.05).

https://github.com/Pneumaethylamine/LastingPsilocybinRSFC
https://github.com/Pneumaethylamine/LastingPsilocybinRSFC
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experience acquired immediately after the experience, change in 
neocortex 5-HT2AR (at 1 week), change in personality (at 
3 months) and self-reported persisting effects of the psychedelic 
experience (3 months). A summary of correlations can be found 
in Supplemental Table S3.

The most promising associations were observed between 
changes in ECN functional connectivity at 1 week and 3 months 
with self-reported change in MAAS at 3 months (r [95% 
CI] = −0.65 [−0.91, −0.04]) and (r [95% CI] = 0.71 [0.15, 0.93]) 
respectively, that is, the greater the decrease in ECN connectivity 
at 1 week, the greater the increase in MAAS score at 3 months 
(Figure 4). A smaller ECN connectivity change from baseline to 
3 months was associated with a greater increase in MAAS score.

Neocortex 5-HT2AR.  Change in neocortex 5-HT2AR binding 
measured with [11C]Cimbi-36 BPND at 1 week was not correlated 
with change in ECN connectivity at 1 week (r [95% CI] = 0.52 
[−0.15, 0.87]). However, change in neocortex 5-HT2AR at 1 week 
correlated more strongly with the ECN RSFC change at 3 months 
(r [95% CI] = −0.67 [−0.91, −0.06]). In other words, greater disin-
tegration of the ECN correlated with more neocortex 5-HT2AR.

Persisting effects questionnaire.  The positive subscales of the 
PEQ loaded strongly onto a single latent construct, indicating 
high shared correlation (p < 10−6). Change in ECN RSFC at 
1 week was negatively associated with the underlying latent vari-
able (−19.9 [−41.7, 1.93], units: change in Life Positivity PEQ 
per 0.1-unit change in ECN RSFC; Figure 5). Individual esti-
mates are reported in Figure 5.

Discussion
Our results show that psilocybin, when administered to healthy 
volunteers in a controlled environment, statistically significantly 

decreases ECN RSFC at 1 week, but not at 3 months. We observed 
correlations between ECN RSFC changes and changes in MAAS, 
neocortex 5-HT2AR and positive aspects of the PEQ, implicating 
alterations in ECN connectivity as a potential mechanism under-
lying the clinical and behavioural effects of psilocybin. No other 
network connectivity estimates were statistically significantly 
affected at 1 week or 3 months. Our study is small, but neverthe-
less implicates a candidate brain system underlying lasting psilo-
cybin effects that can be examined in future studies in healthy 
and patient populations.

Executive control network connectivity

A single psilocybin administration decreased ECN RSFC; nine 
out of 10 participants showed decreased ECN RSFC and nine out 
of 10 ECN edges showed decreased RSFC across all participants. 
This distributed effect is consistent with this representing a net-
work-wide effect not driven by a specific participant or edge. 
Executive functions include, for example, cognitive flexibility, 
goal setting, attentional control and information processing 
(Niendam et al., 2012). This is consistent with qualitative reports 
in addiction patients who report persistent changes in attentional 
control and goal setting following psilocybin intervention 
(Nielson et al., 2018; Noorani et al., 2018). Though little research 
has been performed on ECN RSFC and its association with trait 
changes in executive functions, one study reported lower FC 
within the ECN in long-term tai-chi practitioners relative to con-
trols. These practitioners also showed increased trait mindfulness 
and performed better on emotion regulation tasks (Liu et  al., 
2018), aligning with our finding that decreased ECN connectivity 
predicted increased trait mindfulness. Change in ECN connectiv-
ity was not associated with any measures of the acute experience 
(Supplemental Table S3), suggesting it might not simply be 
mediated by brain psilocin concentration (Madsen et al., 2019).

Psilocybin has been shown in small open-label trials to be 
efficacious in the treatment of depression (Cohen’s d = −2.1 and 
−2.5 at 5-week post-administration) (Carhart-Harris et al., 2018; 
Davis et al., 2020), a disorder, which is partly characterised by 
deficits in executive functions (Snyder, 2013). Our finding that 
psilocybin decreased ECN RSFC is consistent with a recent 
study reporting that unmedicated, first-time MDD patients dem-
onstrated hyper-connectivity between the left dorsolateral pre-
frontal cortex (PFC) and frontal and parietal regions, nodes 
which commonly constitute cognitive control networks (Shen 
et al., 2015). However, another study reported that MDD is char-
acterised by reduced frontoparietal control system connectivity 
(Kaiser et al., 2015). Although it is intriguing that in healthy indi-
viduals we observe an effect of psilocybin on a resting-state net-
work that displays pathological connectivity in depressed 
patients, future studies are necessary to more clearly establish 
this network’s relation to treatment-induced changes in measures 
of personality and well-being. Additionally, it remains to be 
established whether psilocybin-induced changes in connectivity 
would produce the well-being states described by such connec-
tivity signatures in healthy, untreated individuals.

The observed effect on ECN RSFC may also align with psilo-
cybin’s potential effects on obsessive-compulsive disorder 
(OCD) (Moreno et al., 2006) and addiction (Bogenschutz et al., 
2015; Johnson et al., 2017), disorders broadly characterised by 
aberrant control of behaviour. The OCD patients display greater 

Figure 3.  Executive control network (ECN) connectivity by participant. 
Spaghetti plot showing individual changes in mean ECN connectivity 
scores (y-axis) and time point (x-axis). Error bars represent 
mean ± standard deviation. Colours represent individual participants. 
ECN connectivity is significantly decreased at 1 week but not at 
3 months.
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connectivity in ECN regions, including dorsolateral PFC (Chen 
et al., 2016), suggesting that reducing ECN connectivity could be 
therapeutically beneficial. Although individuals with addiction 
disorder show neuropsychological impairment in brain regions 
associated with cognitive control (Goldstein et al., 2004), RSFC 
investigations of control networks in addiction have so far uti-
lised alternative network definitions, and thus are not directly 
comparable to these findings (Sutherland et al., 2012).

As we only see a significant change in ECN connectivity at 
1 week and not at 3 months, this change may underlie the ‘after-
glow’ effect. Despite the lack of long-term effects, the association 
between the 1 week effect and long-term measures of well-being 
suggests a role for this period in mediating long-term effects on 
well-being, the neural correlates of which were not detected in 

this study. Detailed quantitative characterisation of the ‘after-
glow’ phenomenon could enable optimisation around this poten-
tially clinically important phase of psychedelic psychotherapy 
by, for example, informing best practice surrounding post-ses-
sion integration.

Additional effects on connectivity

Besides ECN RSFC at 1 week, all other standardised effect sizes 
for psilocybin induced change in RSFC (within- and between-
network) were small to medium (i.e. |Cohen’s d| < 0.5). This sug-
gests that future studies evaluating similar effects of psilocybin 
on RSFC would require sample sizes >60 to be adequately sta-
tistically powered (i.e. (1−β) > 0.8). Thus, our findings argue 

Figure 4.  Correlations between executive control network (ECN) connectivity and mindful attention awareness scale (MAAS). Scatter plots with 
linear regressions between MAAS score (y-axis) and (a) change in ECN connectivity at 1 week, and (b) change in ECN connectivity at 3 months. Blue 
lines represent lines of best fit and black dots denote observed data. 

Figure 5.  Linear latent variable model linking change in executive control network (ECN) connectivity at 1 week and persisting effects questionnaire 
(PEQ) responses at 3 months. The green box denotes observed change in ECN connectivity at 1 week. The red box denotes the latent variable 
(‘positive drug change’). The yellow boxes denote observed PEQ scores. Hatched orange lines between ‘mood-positivity’ and ‘altruism’ indicate 
additional shared covariance. Hatched lines denote model components estimated with error. The loading parameter, β, reflecting the correlation of 
the score with the latent variable for each model path is noted in respective boxes (95% confidence intervals indicated for estimates between latent 
variable and PEQ subscale scores). Significance of the estimated effect of the ECN change on the latent variable is also noted.
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against large-scale changes in network connectivity structure 
insofar as we have quantified them here. This is notable consider-
ing participants report substantive changes in personality and 
well-being lasting for at least 1 year (Erritzoe et  al., 2018; 
MacLean et  al., 2011; Madsen et  al., 2020) that are likely not 
entirely explained by ECN changes.

Our results suggest a small effect of psilocybin on DMN 
RSFC (Cohen’s d = 0.19). This is noteworthy because DMN dis-
integration has been reported when scanning participants during 
the psychedelic experience (Carhart-Harris et  al., 2012; Preller 
et al., 2020) and may be implicated in the therapeutic effects of 
psilocybin as DMN connectivity is elevated in a range of condi-
tions and is reduced following administration of psilocybin to 
experienced meditators (Smigielski et  al., 2019; Whitfield-
Gabrieli and Ford, 2012). Although we do not see a persistent 
effect on DMN connectivity, acute disruption of the DMN may 
still be therapeutically relevant (Carhart-Harris and Friston, 
2019; Mason et  al., 2020). Intake of both Salvinorin-A, a 
5-HT2AR-independent hallucinogen, and 3,4-methylenediox-
ymethamphetamine (MDMA), which has a subjective effect pro-
file distinct from serotonergic psychedelics (Doss et  al., 2020; 
Müller et al., 2020; Roseman et al., 2014), leads to a reduction in 
DMN connectivity. Reduced DMN connectivity is not associated 
with ego-dissolution in response to psilocybin (Lebedev et  al., 
2015). This muted effect on DMN RSFC after the psychedelic 
session is consistent with a study that scanned MDD individuals 
1 day after the psychedelic experience (Carhart-Harris et  al., 
2017) and healthy volunteers 1 week and 1 month after psilocybin 
(Barrett et  al., 2020). Thus, convergent evidence indicates that 
persistent alterations in DMN RSFC are unlikely to be a critical 
mechanism underlying lasting psilocybin effects.

Associations with executive control network 
change

Through exploratory analyses, we observed three notable asso-
ciations with change in ECN RSFC. Firstly, a greater decrease in 
ECN RSFC at 1 week and a lesser decrease in ECN RSFC at 
3 months both correlated with increased mindfulness score at 
3 months. This could reflect that ECN disintegration followed by 
reintegration produces lasting increases in mindful awareness, a 
trait that is associated with reduced stress and better mood 
(Brown and Ryan, 2003). Secondly, building on our previous 
finding that change in 5-HT2AR correlated negatively with 
change in mindfulness (Madsen et al., 2020), we observed that a 
greater decrease in ECN RSFC 1 week and a lesser decrease in 
ECN RSFC at 3 months was associated with decreased 5-HT2AR 
at 1 week. Although speculative, our findings suggest that indi-
vidual change in neocortex 5-HT2AR following psilocybin 
administration may effect a change in mindfulness that is medi-
ated by changes in ECN connectivity. Thirdly, decrease in ECN 
at 1 week was positively associated with a latent construct of 
positive persisting effects, reflecting positive items from the 
PEQ, at 3 months. This effect was particularly pronounced 
regarding ‘behavioural positivity’, aligning with qualitative 
reports from patients in clinical trials (Nielson et  al., 2018; 
Noorani et al., 2018). Although exploratory, these observations 
provide a framework for linking brain and behavioural changes 
effected by psilocybin administration in future studies in healthy 
and clinical cohorts. Although we see changes in personality-trait 

openness, neuroticism and conscientiousness in this sample 
(Madsen et  al., 2020), these changes were not correlated with 
change in ECN RSFC (Supplemental Table S3).

Barrett replication

Replication is critical for identifying reliable brain markers of 
psilocybin effects. Here, we sought to replicate recently reported 
findings from a study very similar to ours (Barrett et al., 2020). 
We replicated the scale of region-to-region RSFC estimates that 
were affected by psilocybin. However, none of these effects 
remained statistically significant when controlling for multiple 
comparisons. Ours and the previous study have small sample 
sizes, which exacerbate the statistical power limitations of an 
exploratory region-to-region RSFC analysis strategy. Without 
substantively larger samples, this analysis framework would 
likely benefit from a hypothesis-driven evaluation of specific 
region pairs. Notably, the Shen268 atlas does not describe an 
ECN, and thus these results cannot be compared with our ECN 
finding using the Raichle atlas. This heterogeneity highlights a 
case for co-ordination of spatial parcellation within this corner of 
neuroimaging.

Limitations

As noted previously, our sample size of 10 individuals limits sta-
tistical power. Nevertheless, the data reported here provide a 
firmer foundation for future studies in clinical and healthy 
cohorts with larger samples. Although psilocybin seems to have 
positive behavioural and mood effects in healthy individuals, it is 
not clear how closely our observed effects on brain connectivity 
would generalise to clinical cohorts. Additional studies in patient 
groups are needed to delineate the neurobiological basis of thera-
peutic effects of serotonergic psychedelics including psilocybin. 
There is variation across resting-state atlases in how cognitive 
control networks are defined, limiting our ability to draw firm 
conclusions with previous related studies (Raichle, 2015; 
Schaefer et  al., 2018; Shen et  al., 2020). Alternative analytic 
strategies (e.g. dynamic functional connectivity and entropy 
analyses) or task-based fMRI may reveal more pronounced 
effects on brain function and connectivity than those reported 
here. Future studies integrating fMRI with PET markers may 
offer deeper insights into the neurobiological mechanisms medi-
ating psilocybin effects on behaviour (Fisher and Hariri, 2012). 
Although the observed effect on ECN may be related to individ-
ual differences in pharmacodynamics (i.e. drug availability and 
metabolism), we did not measure individual plasma psilocin lev-
els (Madsen et al., 2019).

Conclusion
In conclusion, we report effects of a single psilocybin administra-
tion on RSFC networks at 1 week and 3 months in a cohort of 10 
individuals. Although a small sample, we identified a statistically 
significant reduction in ECN RSFC at 1 week but not at 3 months 
(although numerically decreased). Exploratory correlations with 
change in ECN at 1 week suggest that it may be associated with 
change in neocortex 5-HT2AR at 1 week as well as change in 
mindfulness and persistent positive psychological effects at 
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3 months. Nevertheless, future studies are necessary to more 
thoroughly map psilocybin effects on to changes in brain func-
tion and connectivity that may mediate its lasting clinical and 
behavioural effects.
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