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Abstract
1.	 Despite conservation efforts, large mammals such as tigers (Panthera tigris) and 
their main prey, gaur (Bos gaurus), banteng (Bos javanicus), and sambar (Rusa uni‐
color), are highly threatened and declining across their entire range. The only large 
viable source population of tigers in mainland Southeast Asia occurs in Thailand’s 
Western Forest Complex (WEFCOM), an approximately 19,000 km2 landscape of 
17 contiguous protected areas.

2.	 We used an occupancy modeling framework, which accounts for imperfect detec-
tion, to identify the factors that affect tiger distribution at the approximate scale 
of a female tiger’s home range, 64 km2, and site use at a scale of 1‐km2. At the 
larger scale, we estimated the proportion of sites at WEFCOM that were occupied 
by tigers; at the finer scale, we identified the key variables that influence site‐use 
and developed a predictive distribution map. At both scales, we examined key 
anthropogenic and ecological factors that help explain tiger distribution and habi-
tat use, including probabilities of gaur, banteng, and sambar occurrence from a 
companion study.

3.	 Occupancy estimated at the 64‐km2 scale was primarily influenced by the com-
bined presence of all three large prey species, and 37% or 5,858 km2 of the land-
scape was predicted to be occupied by tigers. In contrast, site use estimated at the 
scale of 1 km2 was most strongly influenced by the presence of sambar.

4.	 By modeling occupancy while accounting for imperfect probability of detection, 
we established reliable benchmark data on the distribution of tigers in WEFCOM. 
This study also identified factors that limit tiger distributions; which managers can 
then target to expand tiger distribution and guide recovery elsewhere in Southeast 
Asia.
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1  | INTRODUCTION

Tigers (Panthera tigris) are highly threatened and declining across 
their entire range. In Thailand, the subspecies, P.t. corbetti, has de-
clined from approximately 500 individuals distributed in 13 forest 
complexes (landscapes) in 1994–1995 (Smith, Tunhikorn, Tanhan, 
& Simcharoen, and Kanchanasaka, 1999) to an estimated 190–
250 in 10 forest complexes in 2004 (Kanchanasaka, Tunhikorn, 
Vinitpornsawan, Prayoon, & Faengbubpha, 2010). By 2015, a single 
large viable population remained in the Western Forest Complex 
(WEFCOM), an approximately 19,000 km2 landscape of 17 con-
tiguous protected areas. Three protected areas, Thung Yai East 
(TYE), Thung Yai West (TYW), and Huai Kha Khaeng (HKK), which 
together form a World Heritage Site (6,400 km2), represent the 
core of WEFCOM. This core area supports the highest density of 
tigers on the landscape (Duangchantrasiri et al., 2016; Simcharoen, 
Pattanavibool, Karanth, Nichols, & Kumar, 2007) and contains one 
of only four remaining source populations of tigers worldwide that 
have, under current management, a high probability of being via-
ble for the next 100 years (Kenney, Allendorf, McDougal, & Smith, 
2014). Elsewhere in Southeast Asia tiger populations are on the 
verge of extirpation.

WEFCOM is part of an even larger conservation landscape in 
the Tenasserim Range, which forms Thailand's western border with 
Myanmar (WEFCOM, 2004). Because of its size and geographic ex-
tent, WEFCOM provides critical habitat for tigers in the region. The 
landscape also supports numerous other threatened wildlife species 
including the tiger's main prey: gaur (Bos gaurus), banteng (Bos ja‐
vanicus), wild water buffalo (Bubalus arnee), and sambar (Rusa uni‐
color) (Simcharoen, Simcharoen, Duangchantrasiria, Bump, & Smith, 
2018). Data from camera‐trapping and radio telemetry suggest that 
HKK alone supports an estimated 35 to 58 tigers (Simcharoen et 
al., 2007; Duangchantrasiri et al., 2016). Female home ranges there 
vary from 35 to 105 km2 (Simcharoen, Savini, Gale, Simcharoen, et 
al., 2014). Elsewhere in WEFCOM, tiger distribution and abundance 
and the quality of habitat are less well known. However, ranger pa-
trols suggest tigers are likely absent from large parts of WEFCOM, 
and their major prey is similarly reduced (Jornburom, 2016). This lack 
of knowledge restricts planning efforts to monitor and manage other 
protected areas in this landscape. To prioritize and strengthen the 
future protection of tigers throughout WEFCOM, it is important to 
determine where tigers occur.

Recent studies using occupancy modeling have greatly increased 
understanding of how habitat connectivity, human disturbance, and 
prey availability affect tiger occurrence. Important factors impacting 
tigers include forest type and extent of vegetation cover (Sunarto, 
Kelly, Parakkasi, & Hutajulu, 2015), connectivity of habitat (Joshi, 
Vaidyanathan, Mondol, Edgaonkar, & Ramakrishnan, 2013; Yumnam 
et al., 2014), and anthropogenic impacts such as livestock and human 
settlements (Harihar & Pandav, 2012; Karanth, Gopalaswamy, 
Kumar, Nichol, & MacKenzie, 2011; Sunarto et al., 2015). In most 
of WEFCOM and elsewhere in Thailand, a significant knowledge 

gap remains about the tiger's distribution. Previous tiger–habitat 
relationship studies throughout WEFCOM were limited and used 
inconsistent spatial and temporal scales (Kanchanasaka et al., 2010; 
Rabinowitz, 1993; Smith, Ahern, & McDougal, 1998; WEFCOM, 
2004). They also neglected to account for imperfect detection, which 
can obscure the underlying ecological processes that determine dis-
tribution and habitat relationships, especially when surveys are con-
ducted over a large landscape (Pollock et al., 2002). Therefore, it is 
difficult to reliably compare results across these studies. To establish 
reliable benchmark data on tiger distribution patterns, we conducted 
spatially replicated occupancy surveys throughout WEFCOM, simi-
lar to those being applied across other tiger landscapes (Harihar & 
Pandav, 2012; Hines et al., 2010; Karanth et al., 2011).

Occupancy models applied to multiple spatial scales, with both 
landscape and fine‐scale predictors, have been demonstrated to 
be effective in addressing wildlife conservation needs (Scott et al., 
2002) and have been used specifically to help inform conservation 
strategies of multiple species, including tigers (Wikramanayake et al., 
2011). At a regional level, landscape‐wide assessment of tiger dis-
tribution facilitated the identification of source populations, meta‐
population structure, and functional corridors that allow individuals 
to move through habitat impacted by human disturbances (Karanth 
et al., 2011; Ranganathan, Chan, Karanth, & Smith, 2008; Smith et 
al., 1998). At a finer scale, space‐use patterns in source areas provide 
insights into local factors driving habitat use, which can help inform 
local management options (Sunarto et al., 2015; Vinitpornsawan, 
2013). In summary, analyses that include multiple spatial scales 
can improve understanding of tiger–habitat relationships (Johnson, 
1980; McDonald, Erickson, Boyce, & Alldredge, 2012).

In this study, we seek to: (a) identify how anthropogenic pres-
sures, landscape features, and prey occupancy determine tiger distri-
bution and habitat use, (b) estimate the proportion of area occupied 
(true occupancy) by tigers at a landscape scale using a 64 km2 grid, 
(c) model habitat relationships of tigers at a 1‐km2 scale to determine 
drivers of habitat use, and (d) develop a predictive distribution map 
for tigers based on spatially explicit site use models. We conclude 
by providing guidance on possible alternative management options.

2  | MATERIALS AND METHODS

2.1 | Study area

From November 2010 to December 2012, Thailand's Department of 
National Parks, Plants, and Wildlife Conservation (DNP), the Wildlife 
Conservation Society (WCS, Thailand), and the World Wildlife Fund 
(WWF, Thailand) conducted an occupancy survey that included el-
ephants (Elephus maximus), tigers and the main prey of tigers: ban-
teng (Bos javanicus), gaur (Bos gaurus), and sambar (Rusa unicolor) in 
the Western Forest Complex (WEFCOM) (Figure 1). Collectively, 
these three large ungulates comprise 88%–95% of the tiger's prey in 
WEFCOM (Pakpien et al., 2017; Simcharoen et al., 2018). This land-
scape covers 19,600 km2 and consists of 17 contiguous protected 
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areas making it the largest intact protected area in Thailand and all 
of southern Asia (Figure 1).

The study area ranges in elevation from 200 to 2,180 m but 
the dominant elevation varies from 600–1,000 m, and slopes were 
generally moderate (15%–30%). The major vegetation types include 
mixed deciduous + bamboo (MD 48.3%), dry evergreen (DE 27.5%), 
tropical hill evergreen forest (HE 9.6%), savannah grassland (GR 
7.3%), agriculture (AG 4.0%), and dry dipterocarp forest (DD 2.2%) 
(WEFCOM, 2004). Additionally, activities from 139 human commu-
nities inside and <3 km from WEFCOM borders greatly affect the 
complex (WEFCOM, 2004). Evidence indicates these human set-
tlements reduce abundance or led to shifts in distribution of large 
mammals (Duengkae, Maneerat, Pattanavibool, & Marod, 2004). 
Despite establishment of 149 ranger stations in WEFCOM, poach-
ing, illegal logging, and harvesting of non‐timber forest products 
continue to negatively impact the distribution and abundance of 
tigers and other large mammals (Duangchantrasiri et al., 2016).

2.2 | Tiger occupancy survey

Our data were collected as part of a multispecies large mammal sur-
vey that included elephants, tigers and gaur, banteng, and sambar, 
the main prey of tigers. We used a 64 km2 grid, the approximate size 
of a female tiger home range, to determine tiger occupancy. Within 
each grid cell, linear survey routes, composed of 1‐km spatial repli-
cates, were delineated with the number of replicates proportional to 
the amount of forest habitat within the grid cell. A maximum route 
length of 15 km per 64‐km2 grid cell was used if the entire cell was 
forested and contained no villages or agricultural land. Grid cells with 
<10% forest cover were not surveyed under the assumption that 
they were unlikely to be occupied by tigers. To determine habitat 
use in addition to occupancy, each 1‐km survey unit was divided into 
100‐m spatial replicates. Thus, to estimate occupancy there were a 
maximum of 15 1‐km replicates and to estimate habitat use within 
1‐km2 grid cells there were ten 100‐m replicates. Detections (e.g., 

F I G U R E  1  Study area and designed 
sample units of tiger in Western 
Forest Complex (WEFCOM), Thailand 
(2010–2012). The map shows the spatial 
distribution of surveyed grid cells (those 
with >10% forest cover). Inset: location of 
the study area in Thailand is outlined by a 
red box. NP: National Park; WS: Wildlife 
Sanctuary.



2452  |     DUANGCHATRASIRI et al.

direct sightings, scats, pugmarks/tracks, carcasses, scent marks, and 
vocalizations) were recorded in each 100‐m subsegment on typical 
tiger travel routes that included wildlife trails, mineral licks, forest 
roads, and river banks. Additionally, in each 100‐m subsegment, 
substrate condition, habitat type, human activities, and evidence of 
domestic animals were recorded. Because of the high logistic cost of 
traveling to random transects, we adopted the widely used modifi-
cation that reduced travel time by surveying linked replicates along 
a linear route (Aing, Halls, Oken, Dobrow, & Fieberg, 2011; Hines et 
al., 2010). Surveys were conducted in the dry season (January–May, 
October–December) to ensure that scat persistence was consistent. 
Surveying during the dry season also helps reduce heterogeneity in 
detection probability induced by rainfall variation (Royle & Nichols, 
2003).

This sampling design allowed us to analyze occupancy at two 
spatial scales or second‐order habitat selection and site use or third‐
order habitat selection (Johnson, 1980). For occupancy, we used 
64‐km2 grid cells as “sites” and 1‐km segments as spatial replicates. 
For site use, 1‐km2 grid cells were used as sites and 100‐m segments 
were used as spatial replicates.

2.3 | Selection of ecological and 
anthropogenic variables

We extracted Geographic Information System (GIS)‐based ecologi-
cal covariates from GIS public domain data and DNP's WEFCOM da-
tabase. To predict occupancy and site use of tigers, we considered 
five groups of factors: (a) availability of prey, (b) human disturbance, 
(c) forest covers (d) distance to streams, and (e) terrain (for sources 
and further details see Supporting Information Tables S1–S13).

The covariates chosen for modeling were selected based on a pri-
ori knowledge of prey and habitat preferences of tigers (Smith et al., 
1998; Wegge, Odden, Pokharel, & Storaas, 2009; Harihar & Pandav, 
2012). Previous studies in Thailand found that banteng, gaur, and 
sambar were principal components of tiger diets (Simcharoen et al., 
2018). We considered three prey predictors (a) bovidae: gaur + ban-
teng, (b) sambar, and (c) all prey species combined (Jornburom, 2016). 
Prey covariates were obtained from a companion analysis that es-
timated probabilities of habitat use (ψ) at the site scale of (1‐km2), 
while estimating detection (p) at the scale of 0.1 km. All prey was the 
probability of use by at least 1 of the 3 large prey species. Further, 
we hypothesized that tigers would be less likely to occur in parts 
of WEFCOM that experience high human disturbance. We also ex-
pected human activity would have a greater impact on occupancy 
than correlates related to habitat heterogeneity. To assess the im-
pact of human activities, we included a measure of relative abun-
dance of domestic animals (domestic), distance from villages (village), 
and distance from roads (road). Forest areas that have been con-
verted to shifting cultivation (agri) inside WEFCOM were considered 
as a measure of habitat degradation.

For habitat‐related covariates, we used Thematic Mapper™ 
data to calculate the proportion of forest (forest), and four separate 
continuous variables: percentage of hill evergreen forest (HE), dry 

evergreen forest (DE), mixed deciduous forest (MD), and dry dip-
terocarp forest (DD) (WEFCOM, 2004). For geophysical variables, 
we used a digital elevation model to obtain elevation, slope, and ter-
rain ruggedness. In addition, distance to rivers and streams (stream) 
and low slope areas (<10% slope) within 1‐km or 3‐km buffers along 
streams (flat1km or flat3km) were also included as covariates that re-
flect habitat quality near streams (Linkie, Chapron, Martyr, Holden, 
& Leader‐Williams, 2006). These spatial covariates were calculated 
using ArcMap 10.3 (ESRI) and ERDAS IMAGINE 2013 software.

Field‐based covariates were collected by surveyors as they 
walked transects searching for signs of humans and domestic an-
imals including tracks, tree cutting, gun shells, and campfires. 
Substrate condition (SUB), which was hypothesized to impact detec-
tion, was recorded as soft soil, hard soil, or leaf litter. The presence 
of domestic animals (domestic animal) was a binary variable coded as 
“1” for presence or “0” for absence.

2.4 | Data analyses

We applied a first‐order Markovian model (Hines et al., 2010; 
Karanth et al., 2011) to account for spatial dependence between 
adjacent replicates. This model compensates for the lack of spatial 
independence of replicate surveys by including segment‐level oc-
cupancy (parameterized by θ0, θ0 and θπ) and detection probability 
(p) conditional on neighboring segment‐level occupancy. The spatial 
dependence in segment‐level occupancy (θ) is captured by θ0 if the 
species is present locally but was not present in the previous spatial 
replicate, θ1 if the species is present locally and was present in the 
previous spatial replicate, and θπ for the first replicate where there is 
no prior information to inform segment‐level occupancy.

We developed models depicting habitat relationships at two spa-
tial scales to better understand tiger ecology and to address conser-
vation needs (Johnson, 1980). We used different subscripts on 𝜓̂ to 
differentiate estimates at these two scales; 𝜓̂64 refers to occupancy 
probability at the home‐range (64‐km2) scale, whereas 𝜓̂1 refers to 
probability of site use at the 1‐km2 scale. We modeled probabilities 
of occupancy (ψ)and detection (p) of tigers at both scales as linear 
functions of the above‐mentioned covariates using a logit link func-
tion (MacKenzie et al., 2002).

2.4.1 | Model development

To analyze occupancy and site use, we used a sequence of four 
steps described in more detail below. First, we examined all poten-
tial covariates and eliminated highly correlated variables. Next, we 
grouped ecological correlates into five categories and selected one 
covariate in each category for subsequent analysis. These variables 
were additive with no interaction terms. These five variables served 
as a global occupancy model (Burnham & Anderson, 2002; Duren, 
Buler, Jones, & Williams, 2011). Third, we held the global model 
constant to select the most important detection covariate for each 
scale. Finally, we used the best detection model from step 3 to ex-
amine our candidate set of models to identify the most important 
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predictors for occupancy and site use (Karanth et al., 2011; Royle & 
Nichols, 2003).

To select the appropriate covariates to develop occupancy mod-
els, we first explored the correlations among ecological variables to 
avoid collinearity. We considered correlation coefficients <0.7 as ac-
ceptable to include two ecological variables (Dormann et al., 2013). 
For correlated variables ≥0.7, we selected the covariate considered 
most representative based on its ecological relevance and availabil-
ity across a wider area (Fieberg & Johnson, 2015; Giudice, Fieberg, 
& Lenarz, 2012).

We grouped variables into five categories: availability of prey, 
human disturbance, forest cover, proximity to stream, and terrain 
(Table 1). To select the factors included in our “global model,” we 
modeled covariates in each category in a univariate fashion and 
chose the factor with the lowest AIC value in each category to incor-
porate into our global model.

We then used the global model for occupancy to evaluate vari-
ables that influenced detection. Detection probability (p) was mod-
eled as a function of substrate type, presence of domestic animals, 
and area of low slope (<10% slope) within 1 km or 3 km from streams. 
In this step, we held occupancy constant using the “global model” 
(MacKenzie et al., 2006).

The final step was to use the best model for detection to eval-
uate a set of models to predict occupancy at the 64 km2 scale and 
site use at 1 km2 scale (Karanth et al., 2011). For these models, we 
kept θ0, θ1, and θπ constant (Karanth et al., 2011; Thapa & Kelly, 
2017). Estimates of coefficients and standard errors (β, SE(β)) were 
used to determine effect sizes and direction of influence of covari-
ates on the probabilities of occupancy, site use, and detection. Prior 
to modelling, all continuous covariates were centered and scaled, 
(xi− x̄i)∕SD(xi), to facilitate estimation of parameters using numerical 
optimization techniques (Donovan & Hines, 2007) and to facilitate 
comparisons among competing variables.

Estimates of regression parameters and the associated variance–
covariance matrix derived from program PRESENCE version 12.7 
(Hines, 2006) were used to explore the effect of individual covariates 

while holding all other covariates constant. We calculated variances 
of predicted values using the delta method as implemented in the 
CAR package in R (Fox, 2016).

2.4.2 | Estimation of overall tiger occupancy

To estimate overall tiger habitat occupancy (𝜓̂64) within WEFCOM 
(total proportion of the landscape occupied by tigers taking into ac-
count imperfect detection), we used the top ranked model (Burnham 
& Anderson, 2002) and averaged predictions from all 309 grid cells. 
Because our sampling was a near‐complete survey of the WEFCOM 
landscape with 309 grids of 64 km2, we were able to estimate 
overall tiger occupancy in the WEFCOM as �̄Ψ=

∑309

i=1
ai𝜓̂i

15,672
 where ai is 

the forested area in cell i (i.e., total area of potential tiger habitat 
is 15,672 km2) (Karanth et al., 2011; Srivathsa, Karanth, Jathanna, 
Kumar, & Karanth, 2014). We used a parametric bootstrap (Efron & 
Tibshirani, 1994) to compute covariance and the standard error of 
overall tiger occupancy (𝜓̂64).

To map tiger distribution, we employed our best‐supported model 
for tiger site use (1 km2) to help managers identify the key factors 
impacting spatial distribution of tigers (Lakshminarayanan, Karanth, 
Goswami, Vaidyanathan, & Karanth, 2015). Mapping at the scale of 
occupancy (64 km2) or use (1 km2) produced very similar maps, but 
the finer‐scale map provides better visualization of habitat use that 
managers need in making decisions. We used a probability of use >0.6 
as a convenient metric to indicate high‐quality tiger habitat.

3  | RESULTS

We surveyed a total of 3,517 1‐km segments distributed in 309 
(64 km2) grid cells across WEFCOM to determine occupancy. 
Further, each segment was subsampled to produce 35,170 100‐m 
subsegments to evaluate habitat use at a fine scale. We detected 
tiger sign in 82 of 309 grid cells, which yielded naïve occupancy of 
0.27.

TA B L E  1  Model selection results and estimated coefficients (β(SE)) for best‐supported models of tiger occupancy estimates at 64‐
km2scale (ψ64) and 1‐km

2 scale (ψ1)

Modela 
Tiger ψ64 ωib Kc Dev.d β0 (SE)e

Estimated  β (SE)e

Prey Forest Elevation
Domestic 
animal Stream

(All prey + forest + elev +  
domestic + stream)

0.58 11 1,318.84 −2.08 (0.49) 1.20 (0.37) 1.19 (0.51) 0.72 (0.30) −0.85 (0.17) −1.59 (0.32)

Modela 
Tiger ψ1 ωib Kc Dev.d β0 (SE)e

Estimated β (SE)e

Sambar Stream Domestic animal

(Sambar + stream +  
domestic)

0.99 9 3,701.16 −2.24 (0.23) 1.61 (0.05) −0.54 (0.15) −3.33 (0.10)

aThe model specification for the parameters at 64-km2 scale (ψ64) θ
0, θ1, θπ, and pt  was: θ

0(.), θ1(.), pt (flat3km)[<10% slope within 3‐km buffers along 
streams], θπ(.) and at 1-km2 scale (ψ1) θ0, θ1, θπ, and pt was: θ

0(.), θ1(.), pt (flat1km)[<10% slope within 1‐km buffers along streams], θ
π(.). bThe AICc model 

weight. cNumber of parameters. dTwice the negative log likelihood. eEffect sizes (beta estimates) are based on standardized data. See Appendix 1 for a 
complete list of occupancy models. 
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Exploratory analysis revealed substantial correlation between 
distance from villages and all variables estimating prey site use: vil-
lage and gaur (Pearson's r = 0.81), village and sambar (r = 0.79), village 
and Bovidae (r = 0.77), and village and all prey (r = 0.81). Therefore, 
we dropped distance from villages from further analysis, but empha-
size that the high positive correlation with prey demonstrates that 
distance from villages was an important driver of prey occupancy 
(Supporting Information Tables S1–S13).

3.1 | Influence of covariates on tiger occupancy and 
site use

The global model at the 64-km2 scale included the variables: all prey, 
proportion of forest, elevation, distance from streams, and relative 
abundance of domestic animals. At the 64-km2 scale of site use, the 
same ecological variables were chosen, except “all prey” was replaced 
by “sambar.” At both scales, we found that the model incorporating 
low slope areas along streams was the best model for detection.

At the home‐range scale (64‐km2), all prey together (i.e., gaur, ban-
teng, and sambar) was the most important predictor of occupancy 
based on the size of standardized regression coefficients (β) (Table 1). 
Other important factors for predicting occupancy were proportion of 
forest, elevation, relative abundance of domestic animals, and distance 
from streams. The AIC‐best model with 58% of the model weight re-
vealed that prey availability, proportion of forest, and elevation were 
positively correlated with tiger occupancy, and relative abundance 
of domestic animals was negatively correlated with tiger occupancy 
(Table 1). The probability of tiger occupancy increased from 20% to 
80% as the probability of “all prey” site use increased from approx-
imately 30% to 80% when holding other variables at their mean 
(Figure 2). A complete set of 32 models and model‐specific regression 
coefficients are presented in Supporting Information Tables S1–S13.

For site use (1 km2), the most important predictor was sambar 
presence. In addition to sambar, the best‐supported model included 
a negative effect of distance from streams and negative effect of 
domestic livestock. This model garnered 99% of the model weights 
(Table 1). The probability of tiger site use increased from 20% to 
80% as the probability of sambar occupancy increased from approx-
imately 40% to 75% when holding other predictors at their mean 
values (Figure 3). Model selection results and coefficient estimates 
are presented in Supporting Information Tables S1–S13.

We generated a predicted distribution map using model‐based 
probabilities of tiger site use ≥0.60 (ranging from 0 to 1) from the 
best‐supported model for site use. Areas of predicted tiger site use 
(≥0.60) were restricted to the east‐central and northeastern regions 
of WEFCOM (Huai Kha Khaeng, east and west Thung Yai, Umpang, 
and Mae Wong) (Figure 4). Site use throughout much of the remain-
der of the landscape was less contiguous, consisting largely of scat-
tered ‘“islands”’ of predicted (site use) ≥0.60.

3.2 | Estimate of tiger occupancy

We estimated tiger occupancy 𝜓̂64 to be 0.37 (SE 0.06) for the 309 
surveyed cells or 5,858 km2 (SE 1,758 km2) of the 15,600 km2 of po-
tential habitat. This estimate was 21% larger than the naïve estimate 
of 0.27.

4  | DISCUSSION

Our study is the first modeling effort to incorporate occupancy 
of prey species as a covariate in tiger occupancy models. Despite 
widespread use of occupancy modeling, very little research has 
been published on how prey occupancy influences the distribution 

F I G U R E  2  Relationship between the highly influential covariates (based on regression coefficient (β) and 95% CI from best‐supported 
model) and the probability of tiger occupancy in WEFCOM, Thailand (2010–2012). Effect sizes (beta estimates) are based on standardized 
data while holding the other covariates at their mean values. Tick marks on the X‐axis show density of data values in 64 km2 grid cell. See 
Supporting Information Tables 1 and 2 for description of covariates
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of large carnivores (Andresen, Everatt, & Somers, 2014; Everatt, 
Andresen, & Somers, 2015). Incorporation of prey variables into 
models has often been done using indices such as overall prey bio-
mass or density (Robinson, Bustos, & Roemer, 2014), general pres-
ence or absence of prey (Alexander, Gopalaswamy, Shi, Hughes, & 
Riordan, 2016; Vinitpornsawan, 2013), relative abundance indices 
(Chanchani, Noon, Bailey, & Warrier, 2016), or photo‐trap rates 
(Sunarto et al., 2015). Our study considered only the probability 
of large prey occupancy because large prey comprises 89% of tiger 
prey biomass (Simcharoen et al., 2018). We also examined other 
natural and anthropogenic features to determine the relative influ-
ence of these correlates in shaping tiger distribution in WEFCOM. 
Identification of environmental and anthropogenic factors affect-
ing the distribution of tigers not only increases our understand-
ing of tiger occupancy, but also helps target those correlates that 
can be managed to increase tiger distribution (Fieberg & Johnson, 
2015).

Our study analyzed occupancy at two spatial scales and yielded 
an important difference. At the 64‐km2 scale, the model with all 
large prey was the highest ranked model. Total large prey biomass 
was also highly inversely correlated to the size of a female tiger's 
home range (Simcharoen, Savini, Gale, Simcharoen, et al., 2014). 
However, within a tiger's home range, tigers preferred localized 
areas dominated by sambar. This result is consistent with the fact 
that across the tiger's range, sambar is both a preferred prey and the 
dominant prey biomass in the diet of tigers (Hayward, Jędrzejewski, 
& Jedrzejewska, 2012). These differences show the importance of 
analyzing data at multiple scales.

While tiger occupancy is largely influenced by prey availability, 
we also found that tiger occupancy decreased with greater distance 
from streams (Figure 3). We suspect these areas are crucial for tiger 
site use because low slope forests near streams are also preferred 
habitat of sambar and banteng (Jornburom, 2016; Simcharoen, Savini, 
Gale, Roche, et al., 2014). Tigers also occupied areas of higher altitude 

F I G U R E  3  Relationship between the highly influential 
covariates (based on regression coefficient (β) and 95% CI from 
best‐supported model) and the probability of tiger site use in 
WEFCOM, Thailand, 2010–2012. Effect sizes (beta estimates) are 
based on standardized data. Tick marks on the X‐axis show density 
of data values in 1 km2 grid cell. See Appendix 1 for description of 
covariates

F I G U R E  4  Spatially explicit predictions map of tiger site use 
constructed from the best‐supported occupancy model developed 
at 1‐km2 scale based on the analysis of occupancy surveys (2010–
2012) in WEFCOM, Thailand
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in the core of WEFCOM; this finding might be attributed to avoiding 
human activities near villages, especially in the west and the south of 
WEFCOM. Thus low elevation areas per se may not limit tigers, but, 
instead, livestock grazing at low elevation may degrade the habitat of 
the tiger's primary prey. Also, poaching sign is more common at lower 
elevations (Jornburom, 2016; Vinitpornsawan, 2013).

Our study demonstrated that large parts (63%) of the WEFCOM 
landscape were devoid of tigers and that tiger habitat use was con-
centrated in core protected areas in the north (Figure 4), whereas 
there were only a few scattered patches that were identified as 
potential habitat in southern areas where tigers were historically 
widely distributed (Smith et al., 1999). These current patterns of 
tiger distribution show a positive response to the presence of large 
ungulates and a negative response to domestic cattle grazing. 
Previous research has shown the relationship of tiger density to prey 
density (Karanth, Nichols, Kumar, Link, & Hines, 2004; Simcharoen, 
Savini, Gale, Simcharoen, et al., 2014). Given that distribution and 
abundance of large ungulates are critical to the distribution and 
abundance of tigers, additional research is needed to identify the 
key ecological correlates that drive ungulate distribution and abun-
dance in western Thailand.

5  | CONCLUSIONS

Our results suggest that low tiger occurrence in WEFCOM is pri-
marily due to low abundance of large prey and Jornburom (2016) 
attributed their low abundance to human activities near villages. 
Several other occupancy studies note that scarcity of natural prey 
near villages is a consequence of degradation of habitat by livestock 
grazing (Harihar & Pandav, 2012; Karanth et al., 2011). However, 
relocating villagers, who have long historical residence, may not 
be an accepted management strategy. Furthermore, globally there 
can be strong opposition to forced resettlement (Clements, Suon, 
Wilkie, & Milner‐Gulland, 2014, 2007). The well‐established Smart 
Patrolling system has had an overall strong protection impact in 
WEFCOM, but has not increased prey abundance or eliminated 
domestic livestock grazing or subsistence poaching near villages 
(Duangchantrasiri et al., 2016). Thus increasing tiger population size 
may depend on reducing certain activities in the vicinity of villages.

Jornburom (2016) modeled the potential significant increase in 
tiger prey distribution if such a scenario applied to just nine strategi-
cally located villages in Thung Yai East and West. Her model exam-
ined the impact on tigers if sufficient incentives and co‐management 
reduced livestock grazing and subsistence hunting near villages. 
Currently, a grant from United Nations Development Program's 
Global Environmental Facility has funded two Thai Non‐govern-
mental Organizations to establish pilot programs that are targeting 
nine Karen villages embedded in Thung Yai East (seven villages) and 
Thung Yai West (two villages) with the goal of establishing co‐man-
agement (United Nations Development Program, 2015). Specific 
objectives of co‐management in these and future studies could 
be beneficial to tiger conservation. In a similar situation in Nepal, 

co‐management has been effective in reducing poaching and habitat 
degradation in forests in close proximity to villages (Carter, Shrestha, 
Karki, Pradhan, & Liu, 2012).

Our research shows that the low occupancy of tigers (37%) was 
largely a consequence of the absence of large prey. Managers need 
to identify the factors that limit the distribution of large mammals 
and test new options to increase large ungulate distribution so that 
WEFCOM remains source population able to support tiger resto-
ration efforts elsewhere in Thailand and Southeast Asia.

ACKNOWLEDGMENTS

We sincerely thank Government of Thailand; DNP, WCS, and 
WWF for support in conducting this survey. The Rhino and Tiger 
Conservation Fund of the U.S. Fish and Wildlife Service and the 
Liz Claiborne and Art Ortenberg Foundation (LCAOF) provided fi-
nancial support. The second author is the recipient of the WCS 
graduate scholarship for study at the University of Minnesota and 
Conservation Biology summer grant while this manuscript was pre-
pared, USA. J. Fieberg, T.W. Arnold, J.L.D. Smith's contribution to 
the research was supported by the USDA National Institute of Food 
and Agriculture. We thank K. Ulas Karanth and WCS India team for 
training and designed occupancy field methodology. Any use of 
trade, product of firm names is for descriptive purposes and does 
not imply endorsement by the U.S. Government.

CONFLICT OF INTEREST

None declared.

AUTHORS’  CONTRIBUTIONS

SD, SJ, PJ, AP conceived the ideas and designed field methodology; 
SD, PJ, SJ collected the data; PJ, JH, TA, JF, JS analyzed the data; PJ, 
JF, TA, JS contributed critically to the drafts and all authors gave final 
approval for publication.

DATA ACCESSIBILITY

Presence/Absence of tiger in WEFCOM Thailand: Dryad https://doi.
org/10.5061/dryad.7h8f15s

ORCID

Pornkamol Jornburom   https://orcid.org/0000-0003-1831-2902 

Todd W. Arnold   https://orcid.org/0000-0002-7920-772X 

REFERENCES

Aing, C., Halls, S., Oken, K., Dobrow, R., & Fieberg, J. (2011). A Bayesian 
hierarchical occupancy model for track surveys conducted in a se-
ries of linear, spatially correlated sites. Journal of Applied Ecology, 48, 
1058–1517. https://doi.org/10.1111/j.1365-2664.2011.02037.x

https://doi.org/10.5061/dryad.7h8f15s
https://doi.org/10.5061/dryad.7h8f15s
https://orcid.org/0000-0003-1831-2902
https://orcid.org/0000-0003-1831-2902
https://orcid.org/0000-0002-7920-772X
https://orcid.org/0000-0002-7920-772X
https://doi.org/10.1111/j.1365-2664.2011.02037.x


     |  2457DUANGCHATRASIRI et al.

Alexander, J. S., Gopalaswamy, A. M., Shi, K., Hughes, J., & Riordan, P. 
(2016). Patterns of Snow Leopard site use in an increasingly human‐
dominated landscape. PLoS ONE, 11(5), e0155309. https://doi.
org/10.1371/journal.pone.0155309

Andresen, L., Everatt, K. T., & Somers, M. J. (2014). Use of site occupancy 
models for targeted monitoring of the cheetah. Journal of Zoology, 
292(3), 212–220. https://doi.org/10.1111/jzo.12098

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel 
inference: A practical information‐theoretic approach. Berlin, Germany: 
Springer Science & Business Media.

Carter, N. H., Shrestha, B. K., Karki, J. B., Pradhan, N. M. B., & Liu, J. 
(2012). Coexistence between wildlife and humans at fine spatial 
scales. Proceedings of the National Academy of Sciences of the United 
States of America, 109(38), 15360–15365. https://doi.org/10.1073/
pnas.1210490109

Chanchani, P., Noon, B. R., Bailey, L. L., & Warrier, R. A. (2016). Conserving 
tigers in working landscapes. Conservation Biology, 30(6), 649–660. 
https://doi.org/10.1111/cobi.12633

Clements, T., Suon, S., Wilkie, D. S., & Milner‐Gulland, E. J. (2014). 
Impacts of protected areas on local livelihoods in Cambodia. 
World Development, 64, S125–S134. https://doi.org/10.1016/j.
worlddev.2014.03.008

Donovan, T. M., & Hines, J. (2007). Exercises in occupancy modeling and 
estimation. http://www.uvm.edu/rsenr/vtcfwru/spreadsheets/
occupancy/

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., … 
Lautenbach, S. (2013). Collinearity: A review of methods to deal with 
it and a simulation study evaluating their performance. Ecography, 36, 
27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

Duangchantrasiri, S., Umponjan, M., Simcharoen, S., Pattanavibool, A., 
Chaiwattana, S., Maneerat, S., … Karanth, K. U. (2016). Dynamics of 
a low‐density tiger population in Southeast Asia in the context of 
improved law enforcement. Conservation Biology, 30(6), 639–648. 
https://doi.org/10.1111/cobi.12655

Duengkae, P., Maneerat, S., Pattanavibool, A., & Marod, D. (2004). 
Response of bird assemblages to the abandoned settlement areas in 
Thung Yai Naresuan. Kasetsart Journal (Natural Science), 41, 371–376.

Duren, K. R., Buler, J. J., Jones, W., & Williams, C. K. (2011). An improved 
multi‐scale approach to modeling habitat occupancy of northern 
bobwhite. The Journal of Wildlife Management, 75(8), 1700–1709. 
https://doi.org/10.1002/jwmg.248

Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. Boca 
Raton, FL: CRC Press.

Everatt, K. T., Andresen, L., & Somers, M. J. (2015). The influence of prey, 
pastoralism and poaching on the hierarchical use of habitat by an 
apex predator. African Journal of Wildlife Research, 45(2), 187–196. 
https://doi.org/10.3957/056.045.0187

Fieberg, J., & Johnson, D. H. (2015). MMI: Multimodel inference or mod-
els with management implications? Journal of Wildlife Management, 
79(5), 708–718. https://doi.org/10.1002/jwmg.894

Fox, J. (2016). Applied regression analysis and generalized linear models (3rd 
ed.). Sage deltaMethod function in the car: Companion to Applied 
Regression. R package version 3.0‐0.

Giudice, J., Fieberg, J., & Lenarz, M. (2012). Spending degrees of freedom 
in a poor economy: A case study of building a sightability model for 
Moose in northeastern Minnesota. Journal of Wildlife Management, 
76, 75–87. https://doi.org/10.1002/jwmg.213

Harihar, A., & Pandav, B. (2012). Influence of connectivity, wild prey 
and disturbance on occupancy of tigers in the human‐dominated 
Western Terai Arc Landscape. PLoS ONE, 7(7), e40105. https://doi.
org/10.1371/journal.pone.0040105

Hayward, M. W., Jędrzejewski, W., & Jedrzejewska, B. (2012). Prey pref-
erences of the tiger Panthera tigris. Journal of Zoology, 286(3), 221–
231. https://doi.org/10.1111/j.1469-7998.2011.00871.x

Hines, J. E. (2006). PRESENCE ver 11 – software to estimate patch occu-
pancy and related parameters. USGS‐PWRC. Retrieved from http://
www.mbr-pwrc.usgs.gov/software/presence.html (accessed April 
2013).

Hines, J. E., Nichols, J. D., Royle, J. A., MacKenzie, D. I., Gopalaswamy, A. 
M., Kumar, N., & Karanth, K. U. (2010). Tigers on trails: Occupancy 
modeling for cluster sampling. Ecological Applications, 20(5), 1456–
1466. https://doi.org/10.1890/09-0321.1

Johnson, D. H. (1980). The comparison of usage and availability mea-
surements for evaluating resource preference. Ecology, 61(1), 65–71. 
https://doi.org/10.2307/1937156

Jornburom, P. (2016). The distribution of elephants, tigers and tiger prey in 
Thailand’s Western Forest Complex. PhD thesis, U. of Minnesota.

Joshi, A., Vaidyanathan, S., Mondol, S., Edgaonkar, A., & Ramakrishnan, 
U. (2013). Connectivity of tiger (Panthera tigris) populations in the 
human‐influenced forest mosaic of central India. PLoS ONE, 8(11), 
e77980. https://doi.org/10.1371/journal.pone.0077980

Kanchanasaka, B., Tunhikorn, S., Vinitpornsawan, S., Prayoon, U., & 
Faengbubpha, K. (2010). Status of large mammals in Thailand (In 
Thai). Bangkok, Thailand: Wildlife Research Division, National Parks, 
Wildlife and Plant Conservation Department.

Karanth, K. U., Gopalaswamy, A. M., Kumar, N. S., Nichol, J. D., & 
MacKenzie, D. I. (2011). Monitoring carnivore populations at the 
landscape scale: Occupancy modelling of tigers from sign sur-
veys. Journal of Applied Ecology, 48, 1048–1056. https://doi.
org/10.1111/j.1365-2664.2011.02002.x

Karanth, K. U., Nichols, J. D., Kumar, N. S., Link, W. A., & Hines, J. E. 
(2004). Tigers and their prey: Predicting carnivore densities from 
prey abundance. Proceedings of the National Academy of Sciences 
of the United States of America, 101(14), 4854–4858. https://doi.
org/10.1073/pnas.0306210101

Kenney, J., Allendorf, F. W., McDougal, C., & Smith, J. L. (2014). How 
much gene flow is needed to avoid inbreeding depression in wild tiger 
populations? Proceedings of the Royal Society B: Biological Sciences, 
281(1789), 20133337. https://doi.org/10.1098/rspb.2013.3337

Lakshminarayanan, N., Karanth, K. K., Goswami, V. R., Vaidyanathan, S., 
& Karanth, K. U. (2015). Determinants of dry season habitat use by 
Asian elephants in the Western Ghats of India. Journal of Zoology, 
298(3), 169–177. https://doi.org/10.1111/jzo.12298

Linkie, M., Chapron, G., Martyr, D. J., Holden, J., & Leader‐Williams, 
N. (2006). Assessing the viability of tiger subpopulations in a frag-
mented landscape. Journal of Applied Ecology, 43(3), 576–586. https://
doi.org/10.1111/j.1365-2664.2006.01153.x

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Andrew Royle, J., 
& Langtimm, C. A. (2002). Estimating site occupancy rates when detec-
tion probabilities are less than one. Ecology, 83(8), 2248–2255. https://
doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2

MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Hines, J. E., 
& Bailey, L. L. (2006). Occupancy estimation and modeling: Inferring 
patterns and dynamics of species occurrence. New York, NY: Academic 
Press.

McDonald, L. L., Erickson, W. P., Boyce, M. S., & Alldredge, J. R. (2012). 
Modeling vertebrate use of terrestrial resources. In N. J. Silvy (Ed.), 
The wildlife techniques manual: research (7th ed.) (pp. 410–428). 
Baltimore, MD: University Press.

Pakpien, S., Simcharoen, A., Duangchantrasiri, S., Chimchome, V., 
Pongpattannurak, N., & Smith, J. L. D. (2017). Ecological covariates at 
kill sites influence tiger (Panthera tigris) hunting success in Huai Kha 
Khaeng wildlife sanctuary. Thailand Tropical Conservation Science, 10, 
1–7. https://doi.org/10.1177/1940082917719000.

Pollock, K. H., Nichols, J. D., Simons, T. R., Farnsworth, G. L., Bailey, 
L. L., & Sauer, J. R. (2002). Large scale wildlife monitoring studies: 
Statistical methods for design and analysis. Environmetrics, 13(2), 
105–119. https://doi.org/10.1002/env.514

https://doi.org/10.1371/journal.pone.0155309
https://doi.org/10.1371/journal.pone.0155309
https://doi.org/10.1111/jzo.12098
https://doi.org/10.1073/pnas.1210490109
https://doi.org/10.1073/pnas.1210490109
https://doi.org/10.1111/cobi.12633
https://doi.org/10.1016/j.worlddev.2014.03.008
https://doi.org/10.1016/j.worlddev.2014.03.008
http://www.uvm.edu/rsenr/vtcfwru/spreadsheets/occupancy/
http://www.uvm.edu/rsenr/vtcfwru/spreadsheets/occupancy/
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.1111/cobi.12655
https://doi.org/10.1002/jwmg.248
https://doi.org/10.3957/056.045.0187
https://doi.org/10.1002/jwmg.894
https://doi.org/10.1002/jwmg.213
https://doi.org/10.1371/journal.pone.0040105
https://doi.org/10.1371/journal.pone.0040105
https://doi.org/10.1111/j.1469-7998.2011.00871.x
http://www.mbr-pwrc.usgs.gov/software/presence.html
http://www.mbr-pwrc.usgs.gov/software/presence.html
https://doi.org/10.1890/09-0321.1
https://doi.org/10.2307/1937156
https://doi.org/10.1371/journal.pone.0077980
https://doi.org/10.1111/j.1365-2664.2011.02002.x
https://doi.org/10.1111/j.1365-2664.2011.02002.x
https://doi.org/10.1073/pnas.0306210101
https://doi.org/10.1073/pnas.0306210101
https://doi.org/10.1098/rspb.2013.3337
https://doi.org/10.1111/jzo.12298
https://doi.org/10.1111/j.1365-2664.2006.01153.x
https://doi.org/10.1111/j.1365-2664.2006.01153.x
https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
https://doi.org/10.1177/1940082917719000
https://doi.org/10.1002/env.514


2458  |     DUANGCHATRASIRI et al.

Rabinowitz, A. (1993). Estimating the Indochinese tiger. Panthera ti‐
gris carbetti population in Thailand. Biological Conservation, 65(3), 
213–217.

Ranganathan, J., Chan, K. M., Karanth, K. U., & Smith, J. L. D. (2008). 
Where can tigers persist in the future? A landscape‐scale, den-
sity‐based population model for the Indian subcontinent. 
Biological Conservation, 141(1), 67–77. https://doi.org/10.1016/j.
biocon.2007.09.003

Robinson, Q. H., Bustos, D., & Roemer, G. W. (2014). The applica-
tion of occupancy modeling to evaluate intraguild predation in a 
model carnivore system. Ecology, 95(11), 3112–3123. https://doi.
org/10.1890/13-1546.1

Royle, J. A., & Nichols, J. D. (2003). Estimating abundance from re-
peated presence‐absence data or point counts. Ecology, 84(3), 
777–790. https://doi.org/10.1890/0012-9658(2003)084[077
7:EAFRPA]2.0.CO;2

Scott, J. M., Heglund, P. J., Morrison, M. L., Haufler, J. B., Raphael, M. G., 
Wall, W. A., & Samson, F. B. (2002). Predicting species occurrences: 
issues of scale and accuracy. Washington, DC: Island Press.

Simcharoen, A., Savini, T., Gale, G. A., Roche, E., Chimchome, V., & Smith, 
J. L. (2014). Ecological factors that influence sambar (Rusa unicolor) 
distribution and abundance in western Thailand: Implications for 
tiger conservation. Raffles Bulletin of Zoology, 62, 100–106.

Simcharoen, A., Savini, T., Gale, G. A., Simcharoen, S., Duangchantrasiri, 
S., Pakpien, S., & Smith, J. L. (2014). Female tiger Panthera tigris home 
range size and prey abundance: Important metrics for management. 
Oryx, 48(3), 370.

Simcharoen, A., Simcharoen, S., Duangchantrasiria, S., Bump, J., & Smith, 
J. L. D. (2018). Tiger and leopard diets in western Thailand: Evidence 
for overlap and potential consequences. Food Webs, 15, e00085. 
https://doi.org/10.1016/j.fooweb.2018.e00085

Simcharoen, S., Pattanavibool, A., Karanth, K. U., Nichols, J. D., & Kumar, 
N. S. (2007). How many tigers Panthera tigris are there in Huai Kha 
Khaeng Wildlife Sanctuary, Thailand? An estimate using photo-
graphic capture‐recapture sampling. Oryx, 41(04), 447–453. https://
doi.org/10.1017/S0030605307414107

Smith, J. L. D., Ahern, S. C., & McDougal, C. (1998). Landscape analysis of tiger 
distribution and habitat quality in Nepal. Conservation Biology, 12(6), 
1338–1346. https://doi.org/10.1046/j.1523-1739.1998.97068.x

Smith, J. L. D., Tunhikorn, S., Tanhan, S., Simcharoen, S., & Kanchanasaka, 
B. (1999). Metapopulation structure of tigers in Thailand. In J. 
Seidensticker, S. Christie, & P. Jackson (Eds.), Riding the tiger: 
Tiger conservation in human‐dominated landscapes (pp. 166–175). 
Cambridge, UK: University Press.

Srivathsa, A., Karanth, K. K., Jathanna, D., Kumar, N. S., & Karanth, K. 
U. (2014). On a dhole trail: Examining ecological and anthropo-
genic correlates of dhole habitat occupancy in the Western Ghats 
of India. PLoS ONE, 9(6), e98803. https://doi.org/10.1371/journal.
pone.0098803

Sunarto, S., Kelly, M. J., Parakkasi, K., & Hutajulu, M. B. (2015). Cat 
coexistence in central Sumatra: Ecological characteristics, spatial 
and temporal overlap, and implications for management. Journal of 
Zoology, 296(2), 104–115. https://doi.org/10.1111/jzo.12218

Thapa, K., & Kelly, M. J. (2017). Prey and tigers on the forgotten trail: High 
prey occupancy and tiger habitat use reveal the importance of the 
understudied Churia habitat of Nepal. Biodiversity and Conservation, 
26(3), 593–616. https://doi.org/10.1007/s10531-016-1260-1

United Nations Development Program (2015). Strengthening capacity 
and incentives for wildlife conservation in the Western Forest Complex. 
United Nations Development Program Project Document.

Vinitpornsawan, S. (2013). Population and spatial ecology of Tigers and 
Leopards relative to prey availability and human activity in Thung 
Yai Naresuan (East) Wildlife Sanctuary, Thailand. PhD thesis, U. 
Massachusetts.

WEFCOM (2004). GIS Database and its applications for ecosystem manage‐
ment. Bangkok, Thailand: Department of National Park, Wildlife, and 
Plant Conservation.

Wegge, P., Odden, M., Pokharel, C. P., & Storaas, T. (2009). Predator–prey 
relationships and responses of ungulates and their predators to the 
establishment of protected areas: A case study of tigers, leopards 
and their prey in Bardia National Park, Nepal. Biological Conservation, 
142(1), 189–202. https://doi.org/10.1016/j.biocon.2008.10.020

Wikramanayake, E., Dinerstein, E., Seidensticker, J., Lumpkin, S., Pandav, 
B., Shrestha, M., Than, U. (2011). A landscape‐based conservation 
strategy to double the wild tiger population. Conservation Letters, 
4(3), 219–227. https://doi.org/10.1111/j.1755-263X.2010.00162.x

Yumnam, B., Jhala, Y. V., Qureshi, Q., Maldonado, J. E., Gopal, R., Saini, 
S., … Fleischer, R. C. (2014). Prioritizing tiger conservation through 
landscape genetics and habitat linkages. PLoS ONE, 9(11), e111207. 
https://doi.org/10.1371/journal.pone.0111207

SUPPORTING INFORMATION

Additional supporting information may be found online in the 
Supporting Information section at the end of the article. 

How to cite this article: Duangchatrasiri S, Jornburom P, 
Jinamoy S, et al. Impact of prey occupancy and other 
ecological and anthropogenic factors on tiger distribution in 
Thailand's western forest complex. Ecol Evol. 2019;9:2449–
2458. https://doi.org/10.1002/ece3.4845

https://doi.org/10.1016/j.biocon.2007.09.003
https://doi.org/10.1016/j.biocon.2007.09.003
https://doi.org/10.1890/13-1546.1
https://doi.org/10.1890/13-1546.1
https://doi.org/10.1890/0012-9658(2003)084[0777:EAFRPA]2.0.CO;2
https://doi.org/10.1890/0012-9658(2003)084[0777:EAFRPA]2.0.CO;2
https://doi.org/10.1016/j.fooweb.2018.e00085
https://doi.org/10.1017/S0030605307414107
https://doi.org/10.1017/S0030605307414107
https://doi.org/10.1046/j.1523-1739.1998.97068.x
https://doi.org/10.1371/journal.pone.0098803
https://doi.org/10.1371/journal.pone.0098803
https://doi.org/10.1111/jzo.12218
https://doi.org/10.1007/s10531-016-1260-1
https://doi.org/10.1016/j.biocon.2008.10.020
https://doi.org/10.1111/j.1755-263X.2010.00162.x
https://doi.org/10.1371/journal.pone.0111207
https://doi.org/10.1002/ece3.4845

