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Abstract
1.	 Despite	conservation	efforts,	 large	mammals	such	as	tigers	 (Panthera tigris)	and	
their	main	prey,	gaur	(Bos gaurus),	banteng	(Bos javanicus),	and	sambar	(Rusa uni‐
color),	are	highly	threatened	and	declining	across	their	entire	range.	The	only	large	
viable	source	population	of	tigers	in	mainland	Southeast	Asia	occurs	in	Thailand’s	
Western	Forest	Complex	(WEFCOM),	an	approximately	19,000	km2	landscape	of	
17	contiguous	protected	areas.

2.	 We	used	an	occupancy	modeling	framework,	which	accounts	for	imperfect	detec-
tion,	to	identify	the	factors	that	affect	tiger	distribution	at	the	approximate	scale	
of	a	female	tiger’s	home	range,	64	km2,	and	site	use	at	a	scale	of	1‐km2.	At	the	
larger	scale,	we	estimated	the	proportion	of	sites	at	WEFCOM	that	were	occupied	
by	tigers;	at	the	finer	scale,	we	identified	the	key	variables	that	influence	site‐use	
and	developed	 a	predictive	distribution	map.	At	 both	 scales,	we	examined	key	
anthropogenic	and	ecological	factors	that	help	explain	tiger	distribution	and	habi-
tat	use,	 including	probabilities	of	gaur,	banteng,	and	sambar	occurrence	 from	a	
companion	study.

3.	 Occupancy	estimated	at	the	64‐km2	scale	was	primarily	influenced	by	the	com-
bined	presence	of	all	three	large	prey	species,	and	37%	or	5,858	km2 of	the	land-
scape	was	predicted	to	be	occupied	by	tigers.	In	contrast,	site	use	estimated	at	the	
scale	of	1	km2	was	most	strongly	influenced	by	the	presence	of	sambar.

4.	 By	modeling	occupancy	while	accounting	for	imperfect	probability	of	detection,	
we	established	reliable	benchmark	data	on	the	distribution	of	tigers	in	WEFCOM.	
This	study	also	identified	factors	that	limit	tiger	distributions;	which	managers	can	
then	target	to	expand	tiger	distribution	and	guide	recovery	elsewhere	in	Southeast	
Asia.
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1  | INTRODUCTION

Tigers	 (Panthera tigris)	 are	 highly	 threatened	 and	 declining	 across	
their	entire	range.	In	Thailand,	the	subspecies,	P.t. corbetti,	has	de-
clined	 from	approximately	500	 individuals	distributed	 in	13	 forest	
complexes	 (landscapes)	 in	 1994–1995	 (Smith,	 Tunhikorn,	 Tanhan,	
&	 Simcharoen,	 and	 Kanchanasaka,	 1999)	 to	 an	 estimated	 190–
250	 in	 10	 forest	 complexes	 in	 2004	 (Kanchanasaka,	 Tunhikorn,	
Vinitpornsawan,	Prayoon,	&	Faengbubpha,	2010).	By	2015,	a	single	
large	 viable	 population	 remained	 in	 the	Western	 Forest	 Complex	
(WEFCOM),	 an	 approximately	 19,000	km2	 landscape	 of	 17	 con-
tiguous	 protected	 areas.	 Three	 protected	 areas,	 Thung	 Yai	 East	
(TYE),	Thung	Yai	West	(TYW),	and	Huai	Kha	Khaeng	(HKK),	which	
together	 form	 a	 World	 Heritage	 Site	 (6,400	km2),	 represent	 the	
core	of	WEFCOM.	This	 core	 area	 supports	 the	highest	density	of	
tigers	on	the	landscape	(Duangchantrasiri	et	al.,	2016;	Simcharoen,	
Pattanavibool,	Karanth,	Nichols,	&	Kumar,	2007)	and	contains	one	
of	only	four	remaining	source	populations	of	tigers	worldwide	that	
have,	 under	 current	management,	 a	 high	 probability	 of	 being	 via-
ble	for	the	next	100	years	(Kenney,	Allendorf,	McDougal,	&	Smith,	
2014).	 Elsewhere	 in	 Southeast	 Asia	 tiger	 populations	 are	 on	 the	
verge	of	extirpation.

WEFCOM	 is	 part	 of	 an	 even	 larger	 conservation	 landscape	 in	
the	Tenasserim	Range,	which	forms	Thailand's	western	border	with	
Myanmar	(WEFCOM,	2004).	Because	of	its	size	and	geographic	ex-
tent,	WEFCOM	provides	critical	habitat	for	tigers	in	the	region.	The	
landscape	also	supports	numerous	other	threatened	wildlife	species	
including	 the	 tiger's	main	 prey:	 gaur	 (Bos gaurus),	 banteng	 (Bos ja‐
vanicus),	wild	water	 buffalo	 (Bubalus arnee),	 and	 sambar	 (Rusa uni‐
color)	(Simcharoen,	Simcharoen,	Duangchantrasiria,	Bump,	&	Smith,	
2018).	Data	from	camera‐trapping	and	radio	telemetry	suggest	that	
HKK	 alone	 supports	 an	 estimated	 35	 to	 58	 tigers	 (Simcharoen	 et	
al.,	2007;	Duangchantrasiri	et	al.,	2016).	Female	home	ranges	there	
vary	from	35	to	105	km2	 (Simcharoen,	Savini,	Gale,	Simcharoen,	et	
al.,	2014).	Elsewhere	in	WEFCOM,	tiger	distribution	and	abundance	
and	the	quality	of	habitat	are	less	well	known.	However,	ranger	pa-
trols	suggest	tigers	are	likely	absent	from	large	parts	of	WEFCOM,	
and	their	major	prey	is	similarly	reduced	(Jornburom,	2016).	This	lack	
of	knowledge	restricts	planning	efforts	to	monitor	and	manage	other	
protected	areas	 in	this	 landscape.	To	prioritize	and	strengthen	the	
future	protection	of	tigers	throughout	WEFCOM,	it	is	important	to	
determine	where	tigers	occur.

Recent	studies	using	occupancy	modeling	have	greatly	increased	
understanding	of	how	habitat	connectivity,	human	disturbance,	and	
prey	availability	affect	tiger	occurrence.	Important	factors	impacting	
tigers	 include	forest	type	and	extent	of	vegetation	cover	(Sunarto,	
Kelly,	 Parakkasi,	 &	Hutajulu,	 2015),	 connectivity	 of	 habitat	 (Joshi,	
Vaidyanathan,	Mondol,	Edgaonkar,	&	Ramakrishnan,	2013;	Yumnam	
et	al.,	2014),	and	anthropogenic	impacts	such	as	livestock	and	human	
settlements	 (Harihar	 &	 Pandav,	 2012;	 Karanth,	 Gopalaswamy,	
Kumar,	Nichol,	&	MacKenzie,	 2011;	 Sunarto	 et	 al.,	 2015).	 In	most	
of	 WEFCOM	 and	 elsewhere	 in	 Thailand,	 a	 significant	 knowledge	

gap	 remains	 about	 the	 tiger's	 distribution.	 Previous	 tiger–habitat	
relationship	 studies	 throughout	WEFCOM	were	 limited	 and	 used	
inconsistent	spatial	and	temporal	scales	(Kanchanasaka	et	al.,	2010;	
Rabinowitz,	 1993;	 Smith,	 Ahern,	 &	 McDougal,	 1998;	 WEFCOM,	
2004).	They	also	neglected	to	account	for	imperfect	detection,	which	
can	obscure	the	underlying	ecological	processes	that	determine	dis-
tribution	and	habitat	relationships,	especially	when	surveys	are	con-
ducted	over	a	large	landscape	(Pollock	et	al.,	2002).	Therefore,	it	is	
difficult	to	reliably	compare	results	across	these	studies.	To	establish	
reliable	benchmark	data	on	tiger	distribution	patterns,	we	conducted	
spatially	replicated	occupancy	surveys	throughout	WEFCOM,	simi-
lar	to	those	being	applied	across	other	tiger	 landscapes	(Harihar	&	
Pandav,	2012;	Hines	et	al.,	2010;	Karanth	et	al.,	2011).

Occupancy	models	applied	to	multiple	spatial	scales,	with	both	
landscape	 and	 fine‐scale	 predictors,	 have	 been	 demonstrated	 to	
be	effective	in	addressing	wildlife	conservation	needs	(Scott	et	al.,	
2002)	and	have	been	used	specifically	to	help	inform	conservation	
strategies	of	multiple	species,	including	tigers	(Wikramanayake	et	al.,	
2011).	At	a	 regional	 level,	 landscape‐wide	assessment	of	 tiger	dis-
tribution	facilitated	the	 identification	of	source	populations,	meta‐
population	structure,	and	functional	corridors	that	allow	individuals	
to	move	through	habitat	impacted	by	human	disturbances	(Karanth	
et	al.,	2011;	Ranganathan,	Chan,	Karanth,	&	Smith,	2008;	Smith	et	
al.,	1998).	At	a	finer	scale,	space‐use	patterns	in	source	areas	provide	
insights	into	local	factors	driving	habitat	use,	which	can	help	inform	
local	 management	 options	 (Sunarto	 et	 al.,	 2015;	 Vinitpornsawan,	
2013).	 In	 summary,	 analyses	 that	 include	 multiple	 spatial	 scales	
can	improve	understanding	of	tiger–habitat	relationships	(Johnson,	
1980;	McDonald,	Erickson,	Boyce,	&	Alldredge,	2012).

In	 this	 study,	we	 seek	 to:	 (a)	 identify	how	anthropogenic	pres-
sures,	landscape	features,	and	prey	occupancy	determine	tiger	distri-
bution	and	habitat	use,	(b)	estimate	the	proportion	of	area	occupied	
(true	occupancy)	by	tigers	at	a	landscape	scale	using	a	64	km2	grid,	
(c)	model	habitat	relationships	of	tigers	at	a	1‐km2	scale	to	determine	
drivers	of	habitat	use,	and	(d)	develop	a	predictive	distribution	map	
for	 tigers	based	on	spatially	explicit	 site	use	models.	We	conclude	
by	providing	guidance	on	possible	alternative	management	options.

2  | MATERIALS AND METHODS

2.1 | Study area

From	November	2010	to	December	2012,	Thailand's	Department	of	
National	Parks,	Plants,	and	Wildlife	Conservation	(DNP),	the	Wildlife	
Conservation	Society	(WCS,	Thailand),	and	the	World	Wildlife	Fund	
(WWF,	Thailand)	conducted	an	occupancy	survey	that	included	el-
ephants	(Elephus maximus),	tigers	and	the	main	prey	of	tigers:	ban-
teng	(Bos javanicus),	gaur	(Bos gaurus),	and	sambar	(Rusa unicolor) in 
the	 Western	 Forest	 Complex	 (WEFCOM)	 (Figure	 1).	 Collectively,	
these	three	large	ungulates	comprise	88%–95%	of	the	tiger's	prey	in	
WEFCOM	(Pakpien	et	al.,	2017;	Simcharoen	et	al.,	2018).	This	land-
scape	 covers	 19,600	km2 and	 consists	 of	 17	 contiguous	 protected	
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areas	making	it	the	largest	intact	protected	area	in	Thailand	and	all	
of	southern	Asia	(Figure	1).

The	 study	 area	 ranges	 in	 elevation	 from	 200	 to	 2,180	m	 but	
the	dominant	elevation	varies	from	600–1,000	m,	and	slopes	were	
generally	moderate	(15%–30%).	The	major	vegetation	types	include	
mixed	deciduous	+	bamboo	(MD	48.3%),	dry	evergreen	(DE	27.5%),	
tropical	 hill	 evergreen	 forest	 (HE	 9.6%),	 savannah	 grassland	 (GR	
7.3%),	agriculture	(AG	4.0%),	and	dry	dipterocarp	forest	(DD	2.2%)	
(WEFCOM,	2004).	Additionally,	activities	from	139	human	commu-
nities	inside	and	<3	km	from	WEFCOM	borders	greatly	affect	the	
complex	 (WEFCOM,	 2004).	 Evidence	 indicates	 these	 human	 set-
tlements	reduce	abundance	or	led	to	shifts	in	distribution	of	large	
mammals	 (Duengkae,	Maneerat,	 Pattanavibool,	 &	Marod,	 2004).	
Despite	establishment	of	149	ranger	stations	in	WEFCOM,	poach-
ing,	 illegal	 logging,	 and	harvesting	of	 non‐timber	 forest	 products	
continue	 to	 negatively	 impact	 the	 distribution	 and	 abundance	 of	
tigers	and	other	large	mammals	(Duangchantrasiri	et	al.,	2016).

2.2 | Tiger occupancy survey

Our	data	were	collected	as	part	of	a	multispecies	large	mammal	sur-
vey	that	 included	elephants,	 tigers	and	gaur,	banteng,	and	sambar,	
the	main	prey	of	tigers.	We	used	a	64	km2	grid,	the	approximate	size	
of	a	female	tiger	home	range,	to	determine	tiger	occupancy.	Within	
each	grid	cell,	linear	survey	routes,	composed	of	1‐km	spatial	repli-
cates,	were	delineated	with	the	number	of	replicates	proportional	to	
the	amount	of	forest	habitat	within	the	grid	cell.	A	maximum	route	
length	of	15	km	per	64‐km2	grid	cell	was	used	if	the	entire	cell	was	
forested	and	contained	no	villages	or	agricultural	land.	Grid	cells	with	
<10%	 forest	 cover	were	 not	 surveyed	 under	 the	 assumption	 that	
they	were	unlikely	 to	be	occupied	by	 tigers.	 To	determine	habitat	
use	in	addition	to	occupancy,	each	1‐km	survey	unit	was	divided	into	
100‐m	spatial	replicates.	Thus,	to	estimate	occupancy	there	were	a	
maximum	of	15	1‐km	replicates	and	to	estimate	habitat	use	within	
1‐km2	grid	cells	 there	were	 ten	100‐m	replicates.	Detections	 (e.g.,	

F I G U R E  1  Study	area	and	designed	
sample	units	of	tiger	in	Western	
Forest	Complex	(WEFCOM),	Thailand	
(2010–2012).	The	map	shows	the	spatial	
distribution	of	surveyed	grid	cells	(those	
with	>10%	forest	cover).	Inset:	location	of	
the	study	area	in	Thailand	is	outlined	by	a	
red	box.	NP:	National	Park;	WS:	Wildlife	
Sanctuary.



2452  |     DUANGCHATRASIRI eT Al.

direct	sightings,	scats,	pugmarks/tracks,	carcasses,	scent	marks,	and	
vocalizations)	were	recorded	in	each	100‐m	subsegment	on	typical	
tiger	 travel	 routes	 that	 included	wildlife	 trails,	mineral	 licks,	 forest	
roads,	 and	 river	 banks.	 Additionally,	 in	 each	 100‐m	 subsegment,	
substrate	condition,	habitat	type,	human	activities,	and	evidence	of	
domestic	animals	were	recorded.	Because	of	the	high	logistic	cost	of	
traveling	to	random	transects,	we	adopted	the	widely	used	modifi-
cation	that	reduced	travel	time	by	surveying	linked	replicates	along	
a	linear	route	(Aing,	Halls,	Oken,	Dobrow,	&	Fieberg,	2011;	Hines	et	
al.,	2010).	Surveys	were	conducted	in	the	dry	season	(January–May,	
October–December)	to	ensure	that	scat	persistence	was	consistent.	
Surveying	during	the	dry	season	also	helps	reduce	heterogeneity	in	
detection	probability	induced	by	rainfall	variation	(Royle	&	Nichols,	
2003).

This	 sampling	 design	 allowed	 us	 to	 analyze	 occupancy	 at	 two	
spatial	scales	or	second‐order	habitat	selection	and	site	use	or	third‐
order	 habitat	 selection	 (Johnson,	 1980).	 For	 occupancy,	 we	 used	
64‐km2 grid	cells	as	“sites”	and	1‐km	segments	as	spatial	replicates.	
For	site	use,	1‐km2 grid	cells	were	used	as	sites	and	100‐m	segments	
were	used	as	spatial	replicates.

2.3 | Selection of ecological and 
anthropogenic variables

We	extracted	Geographic	Information	System	(GIS)‐based	ecologi-
cal	covariates	from	GIS	public	domain	data	and	DNP's	WEFCOM	da-
tabase.	To	predict	occupancy	and	site	use	of	tigers,	we	considered	
five	groups	of	factors:	(a)	availability	of	prey,	(b)	human	disturbance,	
(c)	forest	covers	(d)	distance	to	streams,	and	(e)	terrain	(for	sources	
and	further	details	see	Supporting	Information	Tables	S1–S13).

The	covariates	chosen	for	modeling	were	selected	based	on	a	pri-
ori	knowledge	of	prey	and	habitat	preferences	of	tigers	(Smith	et	al.,	
1998;	Wegge,	Odden,	Pokharel,	&	Storaas,	2009;	Harihar	&	Pandav,	
2012).	 Previous	 studies	 in	 Thailand	 found	 that	 banteng,	 gaur,	 and	
sambar	were	principal	components	of	tiger	diets	(Simcharoen	et	al.,	
2018).	We	considered	three	prey	predictors	(a)	bovidae:	gaur	+	ban-
teng,	(b)	sambar,	and	(c)	all prey	species	combined	(Jornburom,	2016).	
Prey	covariates	were	obtained	from	a	companion	analysis	 that	es-
timated	probabilities	of	habitat	use	 (ψ)	 at	 the	site	scale	of	 (1‐km2),	
while	estimating	detection	(p)	at	the	scale	of	0.1	km.	All	prey	was	the	
probability	of	use	by	at	least	1	of	the	3	large	prey	species.	Further,	
we	hypothesized	 that	 tigers	would	 be	 less	 likely	 to	occur	 in	 parts	
of	WEFCOM	that	experience	high	human	disturbance.	We	also	ex-
pected	human	activity	would	have	a	greater	 impact	on	occupancy	
than	correlates	 related	to	habitat	heterogeneity.	To	assess	 the	 im-
pact	of	human	activities,	we	 included	a	measure	of	 relative	abun-
dance	of	domestic	animals	(domestic),	distance	from	villages	(village),	
and	 distance	 from	 roads	 (road).	 Forest	 areas	 that	 have	 been	 con-
verted	to	shifting	cultivation	(agri)	inside	WEFCOM	were	considered	
as	a	measure	of	habitat	degradation.

For	 habitat‐related	 covariates,	 we	 used	 Thematic	 Mapper™	
data	to	calculate	the	proportion	of	forest	(forest),	and	four	separate	
continuous	variables:	percentage	of	hill	 evergreen	 forest	 (HE),	 dry	

evergreen	 forest	 (DE),	 mixed	 deciduous	 forest	 (MD),	 and	 dry	 dip-
terocarp	 forest	 (DD)	 (WEFCOM,	2004).	 For	 geophysical	 variables,	
we	used	a	digital	elevation	model	to	obtain	elevation,	slope,	and	ter-
rain	ruggedness.	In	addition,	distance	to	rivers	and	streams	(stream) 
and	low	slope	areas	(<10%	slope)	within	1‐km	or	3‐km	buffers	along	
streams	(flat1km or flat3km)	were	also	included	as	covariates	that	re-
flect	habitat	quality	near	streams	(Linkie,	Chapron,	Martyr,	Holden,	
&	Leader‐Williams,	2006).	These	spatial	covariates	were	calculated	
using	ArcMap	10.3	(ESRI)	and	ERDAS	IMAGINE	2013	software.

Field‐based	 covariates	 were	 collected	 by	 surveyors	 as	 they	
walked	 transects	 searching	 for	 signs	 of	 humans	 and	 domestic	 an-
imals	 including	 tracks,	 tree	 cutting,	 gun	 shells,	 and	 campfires.	
Substrate	condition	(SUB),	which	was	hypothesized	to	impact	detec-
tion,	was	recorded	as	soft	soil,	hard	soil,	or	leaf	litter.	The	presence	
of	domestic	animals	(domestic animal)	was	a	binary	variable	coded	as	
“1”	for	presence	or	“0”	for	absence.

2.4 | Data analyses

We	 applied	 a	 first‐order	 Markovian	 model	 (Hines	 et	 al.,	 2010;	
Karanth	 et	 al.,	 2011)	 to	 account	 for	 spatial	 dependence	 between	
adjacent	replicates.	This	model	compensates	for	the	lack	of	spatial	
independence	 of	 replicate	 surveys	 by	 including	 segment‐level	 oc-
cupancy	(parameterized	by	θ0,	θ0	and	θπ)	and	detection	probability	
(p)	conditional	on	neighboring	segment‐level	occupancy.	The	spatial	
dependence	in	segment‐level	occupancy	(θ)	is	captured	by	θ0	if	the	
species	is	present	locally	but	was	not	present	in	the	previous	spatial	
replicate,	θ1	if	the	species	is	present	locally	and	was	present	in	the	
previous	spatial	replicate,	and	θπ	for	the	first	replicate	where	there	is	
no	prior	information	to	inform	segment‐level	occupancy.

We	developed	models	depicting	habitat	relationships	at	two	spa-
tial	scales	to	better	understand	tiger	ecology	and	to	address	conser-
vation	needs	(Johnson,	1980).	We	used	different	subscripts	on	�̂�	to	
differentiate	estimates	at	these	two	scales;	�̂�64	refers	to	occupancy	
probability	at	the	home‐range	(64‐km2)	scale,	whereas	�̂�1	refers	to	
probability	of	site	use	at	the	1‐km2	scale.	We	modeled	probabilities	
of	occupancy	(ψ)and	detection	(p)	of	tigers	at	both	scales	as	 linear	
functions	of	the	above‐mentioned	covariates	using	a	logit	link	func-
tion	(MacKenzie	et	al.,	2002).

2.4.1 | Model development

To	 analyze	 occupancy	 and	 site	 use,	 we	 used	 a	 sequence	 of	 four	
steps	described	in	more	detail	below.	First,	we	examined	all	poten-
tial	covariates	and	eliminated	highly	correlated	variables.	Next,	we	
grouped	ecological	correlates	into	five	categories	and	selected	one	
covariate	in	each	category	for	subsequent	analysis.	These	variables	
were	additive	with	no	interaction	terms.	These	five	variables	served	
as	a	global	occupancy	model	 (Burnham	&	Anderson,	2002;	Duren,	
Buler,	 Jones,	 &	Williams,	 2011).	 Third,	 we	 held	 the	 global	 model	
constant	to	select	the	most	important	detection	covariate	for	each	
scale.	Finally,	we	used	the	best	detection	model	from	step	3	to	ex-
amine	our	candidate	set	of	models	 to	 identify	 the	most	 important	
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predictors	for	occupancy	and	site	use	(Karanth	et	al.,	2011;	Royle	&	
Nichols,	2003).

To	select	the	appropriate	covariates	to	develop	occupancy	mod-
els,	we	first	explored	the	correlations	among	ecological	variables	to	
avoid	collinearity.	We	considered	correlation	coefficients	<0.7	as	ac-
ceptable	to	include	two	ecological	variables	(Dormann	et	al.,	2013).	
For	correlated	variables	≥0.7,	we	selected	the	covariate	considered	
most	representative	based	on	its	ecological	relevance	and	availabil-
ity	across	a	wider	area	(Fieberg	&	Johnson,	2015;	Giudice,	Fieberg,	
&	Lenarz,	2012).

We	 grouped	 variables	 into	 five	 categories:	 availability	 of	 prey,	
human	 disturbance,	 forest	 cover,	 proximity	 to	 stream,	 and	 terrain	
(Table	1).	 To	 select	 the	 factors	 included	 in	 our	 “global	model,”	we	
modeled	 covariates	 in	 each	 category	 in	 a	 univariate	 fashion	 and	
chose	the	factor	with	the	lowest	AIC	value	in	each	category	to	incor-
porate	into	our	global	model.

We	then	used	the	global	model	for	occupancy	to	evaluate	vari-
ables	that	influenced	detection.	Detection	probability	(p)	was	mod-
eled	as	a	function	of	substrate	type,	presence	of	domestic	animals,	
and	area	of	low	slope	(<10%	slope)	within	1	km	or	3	km	from	streams.	
In	 this	 step,	we	held	occupancy	constant	using	 the	 “global	model”	
(MacKenzie	et	al.,	2006).

The	final	step	was	to	use	the	best	model	for	detection	to	eval-
uate	a	set	of	models	to	predict	occupancy	at	the	64	km2	scale	and	
site	use	at	1	km2	scale	(Karanth	et	al.,	2011).	For	these	models,	we	
kept	 θ0,	 θ1,	 and	 θπ	 constant	 (Karanth	 et	 al.,	 2011;	 Thapa	 &	 Kelly,	
2017).	Estimates	of	coefficients	and	standard	errors	(β,	SE(β)) were 
used	to	determine	effect	sizes	and	direction	of	influence	of	covari-
ates	on	the	probabilities	of	occupancy,	site	use,	and	detection.	Prior	
to	modelling,	 all	 continuous	 covariates	were	 centered	 and	 scaled,	
(xi− x̄i)∕SD(xi),	to	facilitate	estimation	of	parameters	using	numerical	
optimization	techniques	(Donovan	&	Hines,	2007)	and	to	facilitate	
comparisons	among	competing	variables.

Estimates	of	regression	parameters	and	the	associated	variance–
covariance	 matrix	 derived	 from	 program	 PRESENCE	 version	 12.7	
(Hines,	2006)	were	used	to	explore	the	effect	of	individual	covariates	

while	holding	all	other	covariates	constant.	We	calculated	variances	
of	predicted	values	using	the	delta	method	as	 implemented	 in	 the	
CAR	package	in	R	(Fox,	2016).

2.4.2 | Estimation of overall tiger occupancy

To	estimate	overall	 tiger	habitat	occupancy	 (�̂�64)	within	WEFCOM	
(total	proportion	of	the	landscape	occupied	by	tigers	taking	into	ac-
count	imperfect	detection),	we	used	the	top	ranked	model	(Burnham	
&	Anderson,	2002)	and	averaged	predictions	from	all	309	grid	cells.	
Because	our	sampling	was	a	near‐complete	survey	of	the	WEFCOM	
landscape	 with	 309	 grids	 of	 64	km2,	 we	 were	 able	 to	 estimate	
overall	 tiger	occupancy	 in	 the	WEFCOM	as	 �̄Ψ=

∑309

i=1
ai�̂�i

15,672
 where ai	 is	

the	 forested	 area	 in	 cell	 i	 (i.e.,	 total	 area	of	 potential	 tiger	 habitat	
is	 15,672	km2)	 (Karanth	 et	 al.,	 2011;	 Srivathsa,	Karanth,	 Jathanna,	
Kumar,	&	Karanth,	2014).	We	used	a	parametric	bootstrap	(Efron	&	
Tibshirani,	1994)	to	compute	covariance	and	the	standard	error	of	
overall	tiger	occupancy	(�̂�64).

To	map	tiger	distribution,	we	employed	our	best‐supported	model	
for	 tiger	 site	use	 (1	km2)	 to	help	managers	 identify	 the	key	 factors	
impacting	spatial	distribution	of	tigers	 (Lakshminarayanan,	Karanth,	
Goswami,	Vaidyanathan,	&	Karanth,	2015).	Mapping	at	the	scale	of	
occupancy	 (64	km2)	or	use	 (1	km2)	produced	very	similar	maps,	but	
the	finer‐scale	map	provides	better	visualization	of	habitat	use	that	
managers	need	in	making	decisions.	We	used	a	probability	of	use	>0.6	
as	a	convenient	metric	to	indicate	high‐quality	tiger	habitat.

3  | RESULTS

We	 surveyed	 a	 total	 of	 3,517	 1‐km	 segments	 distributed	 in	 309	
(64	km2)	 grid	 cells	 across	 WEFCOM	 to	 determine	 occupancy.	
Further,	 each	 segment	was	 subsampled	 to	produce	35,170	100‐m	
subsegments	 to	 evaluate	habitat	 use	 at	 a	 fine	 scale.	We	detected	
tiger	sign	in	82	of	309	grid	cells,	which	yielded	naïve	occupancy	of	
0.27.

TA B L E  1  Model	selection	results	and	estimated	coefficients	(β(SE))	for	best‐supported	models	of	tiger	occupancy	estimates	at	64‐
km2scale	(ψ64)	and	1‐km

2	scale	(ψ1)

Modela 
Tiger ψ64 ωib Kc Dev.d β0 (SE)e

Estimated  β (SE)e

Prey Forest Elevation
Domestic 
animal Stream

(All	prey	+	forest	+	elev	+	 
domestic	+	stream)

0.58 11 1,318.84 −2.08	(0.49) 1.20	(0.37) 1.19	(0.51) 0.72	(0.30) −0.85	(0.17) −1.59	(0.32)

Modela 
Tiger ψ1 ωib Kc Dev.d β0 (SE)e

Estimated β (SE)e

Sambar Stream Domestic animal

(Sambar	+	stream	+	 
domestic)

0.99 9 3,701.16 −2.24	(0.23) 1.61	(0.05) −0.54	(0.15) −3.33	(0.10)

aThe	model	specification	for	the	parameters	at	64‐	km2	scale	(ψ64) θ
0,	θ1,	θπ,	and	pt		was:	θ

0(.),	θ1(.),	pt	(flat3km)[<10%	slope	within	3‐km	buffers	along	
streams],	θπ(.)	and	at	1‐	km2	scale	(ψ1) θ0,	θ1,	θπ,	and	pt	was:	θ

0(.),	θ1(.),	pt	(flat1km)[<10%	slope	within	1‐km	buffers	along	streams],	θ
π(.).	bThe	AICc	model	

weight.	cNumber	of	parameters.	dTwice	the	negative	log	likelihood.	eEffect	sizes	(beta	estimates)	are	based	on	standardized	data.	See	Appendix	1	for	a	
complete	list	of	occupancy	models.	



2454  |     DUANGCHATRASIRI eT Al.

Exploratory	 analysis	 revealed	 substantial	 correlation	 between	
distance	from	villages	and	all	variables	estimating	prey	site	use:	vil-
lage	and	gaur	(Pearson's	r	=	0.81),	village	and	sambar	(r	=	0.79),	village	
and	Bovidae	(r	=	0.77),	and	village	and	all	prey	(r	=	0.81).	Therefore,	
we	dropped	distance	from	villages	from	further	analysis,	but	empha-
size	that	the	high	positive	correlation	with	prey	demonstrates	that	
distance	 from	villages	was	 an	 important	driver	of	 prey	occupancy	
(Supporting	Information	Tables	S1–S13).

3.1 | Influence of covariates on tiger occupancy and 
site use

The	global	model	at	the	64‐	km2	scale	included	the	variables:	all	prey,	
proportion	of	 forest,	 elevation,	 distance	 from	 streams,	 and	 relative	
abundance	of	domestic	animals.	At	the	64‐	km2	scale	of	site	use,	the	
same	ecological	variables	were	chosen,	except	“all	prey”	was	replaced	
by	“sambar.”	At	both	scales,	we	found	that	the	model	 incorporating	
low	slope	areas	along	streams	was	the	best	model	for	detection.

At	the	home‐range	scale	(64‐km2),	all	prey	together	(i.e.,	gaur,	ban-
teng,	 and	 sambar)	 was	 the	 most	 important	 predictor	 of	 occupancy	
based	on	the	size	of	standardized	regression	coefficients	(β)	(Table	1).	
Other	important	factors	for	predicting	occupancy	were	proportion	of	
forest,	elevation,	relative	abundance	of	domestic	animals,	and	distance	
from	streams.	The	AIC‐best	model	with	58%	of	the	model	weight	re-
vealed	that	prey	availability,	proportion	of	forest,	and	elevation	were	
positively	 correlated	 with	 tiger	 occupancy,	 and	 relative	 abundance	
of	domestic	animals	was	negatively	 correlated	with	 tiger	occupancy	
(Table	1).	The	probability	of	 tiger	occupancy	 increased	 from	20%	to	
80%	as	 the	probability	of	 “all	 prey”	 site	use	 increased	 from	approx-
imately	 30%	 to	 80%	 when	 holding	 other	 variables	 at	 their	 mean	
(Figure	2).	A	complete	set	of	32	models	and	model‐specific	regression	
coefficients	are	presented	in	Supporting	Information	Tables	S1–S13.

For	 site	use	 (1	km2),	 the	most	 important	predictor	was	 sambar	
presence.	In	addition	to	sambar,	the	best‐supported	model	included	
a	negative	effect	of	distance	 from	streams	and	negative	effect	of	
domestic	livestock.	This	model	garnered	99%	of	the	model	weights	
(Table	 1).	 The	 probability	 of	 tiger	 site	 use	 increased	 from	 20%	 to	
80%	as	the	probability	of	sambar	occupancy	increased	from	approx-
imately	 40%	 to	75%	when	holding	 other	 predictors	 at	 their	mean	
values	(Figure	3).	Model	selection	results	and	coefficient	estimates	
are	presented	in	Supporting	Information	Tables	S1–S13.

We	generated	a	predicted	distribution	map	using	model‐based	
probabilities	of	 tiger	site	use	≥0.60	 (ranging	from	0	to	1)	 from	the	
best‐supported	model	for	site	use.	Areas	of	predicted	tiger	site	use	
(≥0.60)	were	restricted	to	the	east‐central	and	northeastern	regions	
of	WEFCOM	(Huai	Kha	Khaeng,	east	and	west	Thung	Yai,	Umpang,	
and	Mae	Wong)	(Figure	4).	Site	use	throughout	much	of	the	remain-
der	of	the	landscape	was	less	contiguous,	consisting	largely	of	scat-
tered	‘“islands”’	of	predicted	(site	use)	≥0.60.

3.2 | Estimate of tiger occupancy

We	estimated	tiger	occupancy	�̂�64	to	be	0.37	(SE	0.06)	for	the	309	
surveyed	cells	or	5,858	km2	(SE	1,758	km2)	of	the	15,600	km2	of	po-
tential	habitat.	This	estimate	was	21%	larger	than	the	naïve	estimate	
of	0.27.

4  | DISCUSSION

Our	 study	 is	 the	 first	 modeling	 effort	 to	 incorporate	 occupancy	
of	prey	species	as	a	covariate	 in	tiger	occupancy	models.	Despite	
widespread	 use	 of	 occupancy	 modeling,	 very	 little	 research	 has	
been	published	on	how	prey	occupancy	influences	the	distribution	

F I G U R E  2  Relationship	between	the	highly	influential	covariates	(based	on	regression	coefficient	(β)	and	95%	CI	from	best‐supported	
model)	and	the	probability	of	tiger	occupancy	in	WEFCOM,	Thailand	(2010–2012).	Effect	sizes	(beta	estimates)	are	based	on	standardized	
data	while	holding	the	other	covariates	at	their	mean	values.	Tick	marks	on	the	X‐axis	show	density	of	data	values	in	64	km2	grid	cell.	See	
Supporting	Information	Tables	1	and	2	for	description	of	covariates
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of	 large	 carnivores	 (Andresen,	 Everatt,	 &	 Somers,	 2014;	 Everatt,	
Andresen,	 &	 Somers,	 2015).	 Incorporation	 of	 prey	 variables	 into	
models	has	often	been	done	using	indices	such	as	overall	prey	bio-
mass	or	density	(Robinson,	Bustos,	&	Roemer,	2014),	general	pres-
ence	or	absence	of	prey	(Alexander,	Gopalaswamy,	Shi,	Hughes,	&	
Riordan,	2016;	Vinitpornsawan,	2013),	relative	abundance	indices	
(Chanchani,	 Noon,	 Bailey,	 &	 Warrier,	 2016),	 or	 photo‐trap	 rates	
(Sunarto	 et	 al.,	 2015).	Our	 study	 considered	 only	 the	 probability	
of	large	prey	occupancy	because	large	prey	comprises	89%	of	tiger	
prey	 biomass	 (Simcharoen	 et	 al.,	 2018).	We	 also	 examined	 other	
natural	and	anthropogenic	features	to	determine	the	relative	influ-
ence	of	these	correlates	in	shaping	tiger	distribution	in	WEFCOM.	
Identification	of	environmental	and	anthropogenic	factors	affect-
ing	 the	 distribution	 of	 tigers	 not	 only	 increases	 our	 understand-
ing	of	tiger	occupancy,	but	also	helps	target	those	correlates	that	
can	be	managed	to	increase	tiger	distribution	(Fieberg	&	Johnson,	
2015).

Our	study	analyzed	occupancy	at	two	spatial	scales	and	yielded	
an	 important	 difference.	 At	 the	 64‐km2	 scale,	 the	 model	 with	 all	
large	prey	was	the	highest	ranked	model.	Total	 large	prey	biomass	
was	 also	highly	 inversely	 correlated	 to	 the	 size	of	 a	 female	 tiger's	
home	 range	 (Simcharoen,	 Savini,	 Gale,	 Simcharoen,	 et	 al.,	 2014).	
However,	 within	 a	 tiger's	 home	 range,	 tigers	 preferred	 localized	
areas	dominated	by	 sambar.	This	 result	 is	 consistent	with	 the	 fact	
that	across	the	tiger's	range,	sambar	is	both	a	preferred	prey	and	the	
dominant	prey	biomass	in	the	diet	of	tigers	(Hayward,	Jędrzejewski,	
&	Jedrzejewska,	2012).	These	differences	show	the	 importance	of	
analyzing	data	at	multiple	scales.

While	 tiger	 occupancy	 is	 largely	 influenced	by	prey	 availability,	
we	also	found	that	tiger	occupancy	decreased	with	greater	distance	
from	streams	(Figure	3).	We	suspect	these	areas	are	crucial	for	tiger	
site	use	because	 low	slope	 forests	near	 streams	are	also	preferred	
habitat	of	sambar	and	banteng	(Jornburom,	2016;	Simcharoen,	Savini,	
Gale,	Roche,	et	al.,	2014).	Tigers	also	occupied	areas	of	higher	altitude	

F I G U R E  3  Relationship	between	the	highly	influential	
covariates	(based	on	regression	coefficient	(β)	and	95%	CI	from	
best‐supported	model)	and	the	probability	of	tiger	site	use	in	
WEFCOM,	Thailand,	2010–2012.	Effect	sizes	(beta	estimates)	are	
based	on	standardized	data.	Tick	marks	on	the	X‐axis	show	density	
of	data	values	in	1	km2	grid	cell.	See	Appendix	1	for	description	of	
covariates

F I G U R E  4  Spatially	explicit	predictions	map	of	tiger	site	use	
constructed	from	the	best‐supported	occupancy	model	developed	
at	1‐km2	scale	based	on	the	analysis	of	occupancy	surveys	(2010–
2012)	in	WEFCOM,	Thailand
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in	the	core	of	WEFCOM;	this	finding	might	be	attributed	to	avoiding	
human	activities	near	villages,	especially	in	the	west	and	the	south	of	
WEFCOM.	Thus	low	elevation	areas	per	se	may	not	limit	tigers,	but,	
instead,	livestock	grazing	at	low	elevation	may	degrade	the	habitat	of	
the	tiger's	primary	prey.	Also,	poaching	sign	is	more	common	at	lower	
elevations	(Jornburom,	2016;	Vinitpornsawan,	2013).

Our	study	demonstrated	that	large	parts	(63%)	of	the	WEFCOM	
landscape	were	devoid	of	tigers	and	that	tiger	habitat	use	was	con-
centrated	 in	core	protected	areas	 in	 the	north	 (Figure	4),	whereas	
there	 were	 only	 a	 few	 scattered	 patches	 that	 were	 identified	 as	
potential	 habitat	 in	 southern	 areas	 where	 tigers	 were	 historically	
widely	 distributed	 (Smith	 et	 al.,	 1999).	 These	 current	 patterns	 of	
tiger	distribution	show	a	positive	response	to	the	presence	of	large	
ungulates	 and	 a	 negative	 response	 to	 domestic	 cattle	 grazing.	
Previous	research	has	shown	the	relationship	of	tiger	density	to	prey	
density	(Karanth,	Nichols,	Kumar,	Link,	&	Hines,	2004;	Simcharoen,	
Savini,	Gale,	 Simcharoen,	et	 al.,	 2014).	Given	 that	distribution	and	
abundance	 of	 large	 ungulates	 are	 critical	 to	 the	 distribution	 and	
abundance	of	 tigers,	 additional	 research	 is	 needed	 to	 identify	 the	
key	ecological	correlates	that	drive	ungulate	distribution	and	abun-
dance	in	western	Thailand.

5  | CONCLUSIONS

Our	results	suggest	that	 low	tiger	occurrence	 in	WEFCOM	is	pri-
marily	due	to	 low	abundance	of	 large	prey	and	Jornburom	(2016)	
attributed	 their	 low	 abundance	 to	 human	 activities	 near	 villages.	
Several	other	occupancy	studies	note	that	scarcity	of	natural	prey	
near	villages	is	a	consequence	of	degradation	of	habitat	by	livestock	
grazing	 (Harihar	&	Pandav,	2012;	Karanth	et	al.,	2011).	However,	
relocating	 villagers,	 who	 have	 long	 historical	 residence,	 may	 not	
be	an	accepted	management	strategy.	Furthermore,	globally	there	
can	be	strong	opposition	to	forced	resettlement	(Clements,	Suon,	
Wilkie,	&	Milner‐Gulland,	2014,	2007).	The	well‐established	Smart	
Patrolling	 system	 has	 had	 an	 overall	 strong	 protection	 impact	 in	
WEFCOM,	 but	 has	 not	 increased	 prey	 abundance	 or	 eliminated	
domestic	 livestock	 grazing	 or	 subsistence	 poaching	 near	 villages	
(Duangchantrasiri	et	al.,	2016).	Thus	increasing	tiger	population	size	
may	depend	on	reducing	certain	activities	in	the	vicinity	of	villages.

Jornburom	(2016)	modeled	the	potential	significant	 increase	 in	
tiger	prey	distribution	if	such	a	scenario	applied	to	just	nine	strategi-
cally	located	villages	in	Thung	Yai	East	and	West.	Her	model	exam-
ined	the	impact	on	tigers	if	sufficient	incentives	and	co‐management	
reduced	 livestock	 grazing	 and	 subsistence	 hunting	 near	 villages.	
Currently,	 a	 grant	 from	 United	 Nations	 Development	 Program's	
Global	 Environmental	 Facility	 has	 funded	 two	 Thai	 Non‐govern-
mental	Organizations	to	establish	pilot	programs	that	are	targeting	
nine	Karen	villages	embedded	in	Thung	Yai	East	(seven	villages)	and	
Thung	Yai	West	(two	villages)	with	the	goal	of	establishing	co‐man-
agement	 (United	 Nations	 Development	 Program,	 2015).	 Specific	
objectives	 of	 co‐management	 in	 these	 and	 future	 studies	 could	
be	 beneficial	 to	 tiger	 conservation.	 In	 a	 similar	 situation	 in	Nepal,	

co‐management	has	been	effective	in	reducing	poaching	and	habitat	
degradation	in	forests	in	close	proximity	to	villages	(Carter,	Shrestha,	
Karki,	Pradhan,	&	Liu,	2012).

Our	research	shows	that	the	low	occupancy	of	tigers	(37%)	was	
largely	a	consequence	of	the	absence	of	large	prey.	Managers	need	
to	 identify	the	factors	that	 limit	 the	distribution	of	 large	mammals	
and	test	new	options	to	increase	large	ungulate	distribution	so	that	
WEFCOM	 remains	 source	 population	 able	 to	 support	 tiger	 resto-
ration	efforts	elsewhere	in	Thailand	and	Southeast	Asia.
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