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Recent advances in electronics and microelectronics have aided the development of low-cost devices that are widely used as well-
being or preventive monitoring devices by many people. Remote health monitoring, which includes wearable sensors, actuators,
and modern communication and information systems, offers effective programs that allow people to live peacefully in their own
homes while also being protected in some way. High-frequency noise, power-line interface, and baseline drift are prevalent during
the data-acquisition system of an ECG signal, and they can limit signal understanding. *ey (noises) must be isolated in order to
provide an appropriate diagnostic of the patient.When removing high-frequency components (noise) from an ECG signal with an
FIR filter, the critical path delay increases considerably as the filter’s duration increases. To reduce high-frequency noise, simple
moving average filters with pipelining and look-ahead transformation techniques are extensively used in this study. With the use
of pipelining and look-ahead techniques, the only objective is to increase the clock speed of the designs.*emoving average filters
(conventional and proposed) were created on an Altera Cyclone IV FPGA EP4CE115F29C7 chip using the Quartus II software
v13.1 tool. Finally, performance metrics such logic elements, clock speed, and power consumption were compared and studied
thoroughly. *e recursive pipelined 8-tap MA filter with look-ahead approach outperforms the other designs (685.48MHz) in
this investigation.

1. Introduction

Physiological factors are crucial indications of one’s health.
Electronic gadgets have long been used by doctors to aid in
medical diagnosis by monitoring patients’ biosignals and
other bodily data. Issues such as global population aging, the
frequency of chronic diseases, and the rapid expansion in
healthcare needs have made remote patient surveillance a
must to ensure that everyone receives high-quality care. As a
result, there is a growing interest in home-based medical
equipment that is both portable and reliable [1].

In the latest days, advances in wireless communication
protocols have allowed these technologies to be integrated

into a broad variety of medical devices. *e data is delivered
through communications infrastructure to monitoring lo-
cations, where a medical specialist or an intelligent system
takes or processes the data acquired from various sensors or
systems installed on/inside patients. Based on the applica-
tion, the physician-patient contact will be developed im-
mediately or soon using this data. Some of these techniques
include cardiac hemodynamic monitoring. Some cardiac
parameters, such as right ventricular pressure, right ventricle
preejection time, and systolic time interval, are sensed in/on
the body of individuals, such as the heart, arteries, and veins,
and relayed to a monitoring station via wireless systems
[2, 3].
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Because of the requirement for regular inspection, their
connection to hospital communication standards, and the
usage of mobile phones and PDAs as clinical data terminals,
personal sensor networks are becoming more widely used in
clinical applications. Tiny size, power efficiency, lightweight,
and interoperability with various mobile devices and com-
munication networks are all requirements for a wearable
device. *e ability to perform real-time signal processing is
also a significant aspect. Mobile communication has been
increasingly popular in recent years. It can be a crucial
component of the healthcare infrastructure. Heart diseases
are on the rise as a result of industrialization. *e difficulty of
transportation, as well as the scarcity of cardiologists in
several areas, has increased the demand for telehealth and
computerized ECG analysis [4]. Few applications in wearable
technology healthcare are shown in Figure 1.

Multiple aspects of the information technology profes-
sion and allied industry are being affected by technological
advancements. *e industry is currently being driven by
performance level enhancement, computational time sav-
ings, ease of production, and end product portability.
Wireless physiological signal monitoring is becoming more
popular in personal medicine and home-based e-health
systems [5]. *e importance of physical well-being
throughout treatment is becoming increasingly apparent. As
a result, home care services are becoming increasingly
popular. *ese technologies are designed to make it easier
for doctors to keep track of their patients. *e most critical
information that doctors require is observed at the patient’s
home and transmitted to his doctor via the Internet. *e
main goal of this approach is to improve the person’s health
well-being by shortening his hospital stay. *is might cut his
treatment time in half [6, 7].

Many efforts have been made on biomedical projects
today due to the medical complication and advancement in
the field of medicine. It can provide the ideal environment
for students who want to conduct cutting-edge research.
Because of advances in medical image processing and its
combination with modern technologies such as cloud
computing, the medical industry has reached its pinnacle
[8]. Figure 2 pinpoints a few applications of signal and image
processing in the medical engineering field.

Signal and image processing is currently themost rapidly
evolving domain in academia, research, and industry. In
today’s world of the medical engineering field, the analysis
and processing of biosignals (pictures), as well as their
clinical assessment (diagnosis), are critical. Since the ad-
vancement of computer technology, a plethora of tools have
been made available for novices to investigate, study, and
leverage any discipline of science and engineering [9, 10].
Digital signal processing (DSP) is a fast-evolving paradigm
of estimation and filtering algorithms that are broadly
employed in signal analysis and processing. Wireless
communication systems design, advanced radar (sonar)
systems, audio and speech signal processing, vibrations,
imaging, biomedicine, and nondestructive control are just a
few of the fields where DSP is often used [11, 12].

Different methods such as digital signal processing and
image processing, wavelet transform, empirical mode

decomposition, neural networks, and Markov models would
help clinicians to secure a better clinical diagnosis. Rapid
advancements in computational biology, biomechanics,
biomedical, biological, diagnostic imaging, and numerical
techniques have created a unique opportunity to leverage
traditional computer models for a variety of biological
systems to build modern diagnostic tools [13].

Because of the rise of artificial intelligence automation,
biomedical engineering and technology are currently un-
dergoing significant changes. Many obstacles in the field of
biomedicine are being overcome thanks to modern ma-
chines and deep learning techniques. Biomedical engi-
neering strikes a balance between engineering and medicine
by combining engineering design and problem-solving
methodologies with biological sciences to continue medical
care, such as diagnosis, monitoring, and therapy [14]. Au-
tomated diagnosis approaches for a variety of medical
problems would aid in the improvement of patient care.
Biomedical data is frequently confronted with challenges
such as the lack of elegant large database sizes, high-di-
mensional data, and class imbalance, to name a few [15]. In
the fields of signals and systems, signal and image pro-
cessing, digital signal processing, biomedical signal pro-
cessing and control, and so on, simulation-based objects are
widely applied.

Electronic health (E-health) and mobile health (M-
health) have become more important in healthcare/tele-
medicine management systems, allowing clinicians and
patients to research at their fingertips. In E-health appli-
cations, the advancement of wireless technology, notably
smart devices, is critical [16]. New concepts such as “wireless
hospital,” “mobile healthcare,” and “wearable remote
monitoring” necessitate the creation of biosignal acquisition
devices that can be successfully incorporated into medical
practice [17].

*e electrocardiogram (ECG) is a vital biological signal
that is frequently utilized to make clinical diagnoses of
cardiac conditions. Traditional ECG recorders send ECG
data via wires, making them impractical for real-time
monitoring in mobile scenarios or twenty-four-hour
healthcare [18]. In recent years, wireless home care services
have been widely discussed and are of interest in scientific
and corporate researches.Wireless ECG recorders, like other
wireless mobile systems, require power conservation for
long-term use. As a result [19], a data compression technique
can be utilized to save transmission energy while simply
providing the RF module to communicate the most data
with restricted bandwidth.

Figure 1: Wearable technology in healthcare.
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1.1. Related Previous Works. In this study [20], an ECG
denoising method is presented. *eir approach delivers
great accuracy in the denoising of ECG data while con-
suming minimal CPU resources. Because the ECG signal
contains high-frequency noise, often known as power-line
interference, it must be eliminated before further processing
can begin. *is work describes a moving average filter-based
technique for denoising high-frequency noise from an ECG
signal. Following the filtering step, a polynomial curve fitting
approach is used to smooth the ECG data.

Electrocardiogram (ECG) monitoring using portable
equipment is complicated by motion artifacts, which can
overlap the distinctive ECG waveforms. An adaptive filtering
strategy for artifact removal is examined in [21] this paper.*e
method used makes use of motion-related data from an ac-
celerometer linked to the ECG electrode. *e experimental
results show that using adaptive filtering to remove motion
artifacts reduces the number of beat recognition errors, making
our method an effective preprocessing scheme for ECG
analysis. *e created system, which was built on a commercial
microcontroller, validated real-time requirements, resulting in
a device that is suitable for portable monitoring [22].

*e harder component of the filter design is that many
real-time applications require the input data to be processed
quickly. When using an FIR filter to remove high-frequency
components (noise) from an ECG signal, the critical path
delay grows dramatically as the filter’s duration increases. In
contrast to ordinary moving average filters, this study
proved how to suppress noise using exponential averager
approaches [23].

Power-line interference, baseline wandering, electro-
myogram noises, motion artifacts, and channel noises are
some of the disturbances that can be contained in an ECG
signal during acquisition and transmission. As a result, noise-

free ECG readings are required for appropriate heart diag-
nosis. *e main goal of this [22] study is to denoise the ECG
signal, and the approach employed for this is empirical mode
decomposition (EMD), which is ideal for any nonstationary
signal because of its adaptive and data-driven character.
Electromyogram noises (MA), motion artifacts (EM), and
White Gaussian noises are among the high-frequency noises
that have been studied for elimination. When the new al-
gorithm is compared to current methods, encouraging results
are produced, indicating that the proposed method is valid.

Due to the rapid growth of automation and artificial in-
telligence, biomedical engineering and technology are cur-
rently undergoing significant changes. While physiological
recordings are made, the results are frequently contaminated
by background noise or intrinsic interference in the recordings.
*e power-line interface and baseline wandering noise are
common in electrocardiogram (ECG) data and can reduce the
signal’s intelligence. Although it is not possible to misinterpret
the essential details more than indicated in standard guidance,
the primary goal of this study is to use various filtering al-
gorithms to reduce unwanted noise (baseline wandering). To
eliminate the baseline wandering effect from an ECG signal, a
DC bias elimination filter with various design structures [23]
such as conventional, pipelined, look-ahead, and clustered
look-ahead is used (clock speed).

*e use of the first derivative of the filtered ECG with or
without a moving average filter is advised for the QRS
enhancement phase, but this approach [24] is vulnerable to
noise and arrhythmia, necessitating the use of adaptive
thresholding or integration-based approach for the detec-
tion phase. Both of the proposed approaches for detecting
QRS complexes in mobile phone applications are simple and
computationally efficient. Implementation of the original
Pan-Tompkins method [25] is also a viable option if greater

Figure 2: Applications of signal and image processing in healthcare.
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processing power is available, as it is on modern tablet
computers and smartphones. Overall, building QRS detec-
tion algorithms for processing long-term recordings and big
databases, as well as enhancing our telemedicine capabilities
in the near future, requires simplicity and speed.

*is article is organized as follows. *e materials and
methods are detailed in Section 2, which consists of the
practical digital filtering experiments such as high-frequency
noise removal from an ECG signal using simple moving
average filters with various techniques. Simulation results
and discussion with different performance measures are
detailed in Section 3. Finally, the conclusions and future
work are added in Section 4.

2. Materials and Methods

2.1. Framework of the Wireless Biosignal (ECG) Processing
System. Rapid innovations in wireless communications and
integrated circuits can enhance healthcare costs and man-
agement. *e use of smart wearable electrocardiogram
(ECG) equipment, for instance, can considerably improve
the welfare of patients with cardiovascular disorders. Al-
though enormous work has gone into the creation of such
wearable devices, their incorporation into medical care is
still limited, owing to difficulties of dependability and fea-
sibility [26, 27].

Because of advancements in compactness and conve-
nience, wearable sensors are becoming more common in
health surveillance and human-machine interface technol-
ogies [28]. Latest innovations in flexible electronics have
allowed the creation of wearable sensors that can dynami-
cally bend and adapt to nonplanar and dynamic surfaces of
the patient’s psyche, enabling the measurement of physio-
logical data with low bandwidth. Integrated systems have
also been created, which combine movable sensors with
inflexible computational components on a distinct substrate.
*ese systems are ideal for applications requiring local signal
processing and small form factors [29].

To create reliable and viable wearable ECG equipment,
certain factors (in terms of power consumption, physical size,
and cost) must be considered. Decreased power consump-
tion, for example, would provide a longer battery life. *e
device’s weight, dimensions, and affordability are all affected
by its computational overhead. A wearable ECG device, as
shown in Figure 3, is made up of numerous components in
addition to the ECG electrodes (such as an analog interface
and signal conditioning, and an A/D converter). *e power
usage, size, and expense of the device would all be affected by
the hardware complexity of each of these building parts. *e
filtering block is one of the most important parts of wearable
ECG equipment. Various types of noise and artifacts con-
taminate ECG signals, which must be eliminated and/or
subdued using hardware efficient filters [30].

2.2. Related Works. *e most common noninvasive diag-
nostic tool for identifying numerous cardiac illnesses is an
electrocardiogram (ECG), which is a record of the heart’s
electrical activity over a while. It is a crucial component of a

common e-health system, as ECG signals must frequently be
compacted for lengthy data storage and distant delivery.
High-speed parallel computes units, especially the field-
programmable gate array (FPGA), and flexible software
features are available with reconfigurable architecture
[31, 32].

*e FPGA is a reconfigurable computing device that is
simply an integrated circuit (IC) that can bemodified for any
task. It is commonly used for prototyping and functional
verification of ASICs (application-specific integrated cir-
cuits). FPGAs are significantly faster in applications where
simultaneous computing is required for various processes
due to their unique parallel computing capability [13, 33].

An e-health system is considered an integrated appli-
cation of information technology and electronic commu-
nication in the health sector. It is a technology platform
made up of diagnostic tools and microcomputers. e-health is
a particularly important resource for persons in distant areas
and impoverished countries, as it allows patients to consult
with specialists via telecommunications. Electronic medical
records are retained even in industrialized nations for fol-
low-up therapy. As a result, the main system components of
an e-health network are electronic communication and data
recording [34].

ECG signals must be delivered to a remote site for
telediagnosis and stored for future therapeutic reference as
part of an e-health system. As a result, ECG signal reduction
and a low-power acquisition method become necessary.
Compression reduces the amount of bandwidth necessary
for wireless communication, while low-power wireless
technology helps to save money. It also reduces the amount
of space required to store ECG data [35–37].

In the diagnosis of heart disorders, the electrocardio-
gram (ECG) is crucial. Cardiac illness and disorders are
among the major causes of death around the world. Im-
plantable and wearable ECG devices are becoming prom-
inent instruments in real-time continuous disease diagnosis.
Various sounds and artifacts, such as high-frequency noise,
60 Hz hum noise, baseline wandering, and radio frequency
interference, commonly disrupt ECG signals during data
acquisition. Significant characteristics of ECG signals are
altered by these artifacts (noises). As a result, physicians seek
noise-free ECG readings for effective diagnosis. As a result,
multidisciplinary areas such as ECG signal processing are
becoming more prominent in the physiological instru-
mentation industry and are receiving more special attention.
Energy consumption, limited device size, speed, and price
become significant challenges that must be carefully ex-
amined for such a critical (implantable ECG) usage.

EMD (empirical mode decomposition) is a relatively
new algorithm. *e EMD approach is fully based on data
decomposition and is useful for nonstationary and nonlinear
analysis [38, 39]. *e EMD approach is also used to improve
signal quality by reducing noise [40, 41]. Noises such as
baseline drift and high-frequency components were re-
moved from an ECG signal using an EMD-based method
[42]. To remove noise from an ECG signal, some researchers
used empirical mode decomposition and a moving average
filter [43]; here, the existing EMD-based noise reduction was
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improved to improve performance. *e EMD algorithms’
primary flaw is the mode-mixing effect.

In recent years, there has been a significant increase in
demand for digital signal processing optimized solutions,
particularly in the fields of communication and current
signal processing circuits. In the design of any sophisticated
signal processing system, the finite impulse response (FIR)
and infinite impulse response (IIR) filters are essential. *e
conventional moving average (MA) FIR filters, fast MA FIR
filters using look-ahead arithmetic, conventional IIR filters
utilizing a combination of integrator and comb sections
(CIC) approach, and fast IIR filters using look-ahead
arithmetic are all discussed in depth in this [44] work. *ese
filters were created using an Altera EP4CE115F29C7 field-
programmable gate array (FPGA) device and the Quartus II
13.1 synthesis tool. *e conventional and fast MA FIR and
IIR filters are compared in terms of performance measures
such as the number of logic elements (LEs), performance,
and power dissipation.

Pipelining IIR filters, on the other hand, is more complex
and certainly not free. Simply adding pipeline registers to all
adders will very certainly modify the pole locations and, as a
result, the IIR filter’s transfer function, especially in the
feedback path. However, there have been reports in the
literature of techniques that do not affect the transfer
function while still allowing for better throughput. *e
following strategies have been described as promising for
increasing IIR filter throughput [11]:

(i) Time-domain look-ahead interleaving
(ii) Clustered look-ahead pipelining
(iii) IIR decimation filter design
(iv) Parallel processing
(v) Residue number system (RNS) implementation

Figure 4 depicts a typical ECG wave. *e following are
some key aspects of a typical clinical ECG:

(i) *e peak voltage is usually around 1mV
(ii) *e recommended sampling rate is 500Hz

(iii) Filtered bandwidth is around 0.05–100Hz (for
clinical)

(iv) Filtered bandwidth is roughly 0.05–500Hz (for high
resolution)

Because the ECG signal contains high-frequency noise,
also known as power-line interference, it must be filtered out
for further processing during data collecting (better diag-
nosis). A simple moving average filter (low-pass filter) is
employed to remove the high-frequency noise. Because of
their huge benefits, such as linear phase reaction, assured
stability, easier implementation, and reduced sensitivity to
finite word-length problems, moving average (MA) filters
are considered in this study. Figure 5 shows the significant
role of the MA filter for the removal of high-frequency
contamination from an ECG signal.

In the literature, several approaches for reducing ECG
signal noise have been investigated. For the reduction of
noise in an ECG signal, few suggested an adaptive filtering
method based on the discrete wavelet transform (DWT)
and artificial neural networks (ANNs) [45]. *e output
signal-to-noise ratio was used to gain a large degree of
signal amplification. Others introduced a noise reduction
approach based on empirical mode decomposition (EMD)
and discrete wavelet transform (DWT), which could re-
cover all QRS complex wave properties from noisy ECG
data [46].

When averaging, all data points have equal weight in a
moving average, but, in a weightedmoving average, the most
recent (oldest) data point has the most higher (lower)
weight. Exponential averaging is a type of average that re-
duces the delay caused by the moving average by giving the
current data point a higher weight [47].

Figure 4: A typical ECG wave.
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2.3. Proposed Low-Power Wireless Biosignal (ECG) Acquisi-
tion System. FIR (filters with a finite duration impulse re-
sponse) and IIR (filters with an infinite duration impulse
response) are the two types of digital filters. *e existence of
feedback in the IIR filter is the main distinction between the
two filters. *ese two types of filters are fundamentally
different, necessitating the employment of wholly separate
design methodologies. *e major focus of this paper is to
construct and test an efficient 8-tap moving average (MA)
filter on an FPGA device.*eMA filters are the kind of finite
impulse response (FIR).

2.3.1. %e Pipelined 8-Tap Moving Average Filter. Here, the
pipelining technique is incorporated into the conventional
8-tap MA filter. *e fundamental goal of implementing a
pipelined system is to boost throughput. Figure 6 shows the
pipelined 8-tap MA filter. Figure 7 depicts the RTL sche-
matic view. *e pipelined design achieves superior perfor-
mance than the standard filter for obvious reasons. Various
structures could, of course, be utilized in this case.

2.3.2. %e Pipelined 8-Tap Recursive MA Filter. Moving
average filters are FIR filters, which are not recursive. FIR
filters can also be implemented in a recursive style to save
time on computation. *e N-point MA filter, for instance,
can be represented and shortened as [23, 48]

H(z) �
1 + z

− 1
+ z

− 2
+ z

− 3
+ · · · + z

− (N− 1)

N

�
1
N

􏽘

N− 1

n�0
z

− 1
􏼐 􏼑

n

�
1
N

1 − z
− N

1 − z
− 1􏼢 􏼣.

(1)

Similarly, a recursive form of an 8-tap moving average
filter is as follows:

H(z) �
1
8

1 − z
− 8

1 − z
− 1􏼢 􏼣. (2)

*e (1–z− 8) section acts as a comb filter, while the
component 1/1 − z− 1 acts as an integrator in this case.
Cascade integrator comb (CIC) is the name given to this type
of recursive moving average filter. *e utility of an infinite
impulse response (IIR) filter is also incorporated in the
recursive kind of MA filter. *at is, the FIR (comb) and IIR
(integrator) parts are both present in the recursion. As a
result, the pipelining may be readily applied to the FIR
section, as can be seen in Figure 8.

2.3.3. Look-Ahead Method on Pipelined Recursive MA Filter.
*e pipelining registers can be plugged into the FIR filter
right away. However, to implement the pipelining notion
in an IIR filter, another technique such as look-ahead
transformation is required. As a result, the IIR portion of
the recursive MA filter, as explained below, must be
applied to this look-ahead transformation. In the time
domain, the integrator portion (1/z − 1) is given as
[23, 33]

y(n) � x(n) + y(n − 1),

or

y(n + 1) � x(n + 1) + y(n).

(3)

*is can be stated as, using look-ahead transformation,

y(n + 2) � x(n + 2) + y(n + 1). (4)

Using Equation (3)

y(n + 2) � x(n + 2) + x(n + 1) + y(n). (5)

As a result, the output is

y(n) � x(n) + x(n − 1) + y(n − 2). (6)

*e recursive moving average filter (8-tap) with CIC
style and look-ahead transformation is shown in Figure 9.

3. Results and Discussion

*e principal goal of this research is to construct and test
an affordable 8-tap moving average (MA) filter on an
Altera FPGA device. *e functionality of the MA filters
was assessed using a very high-speed integrated circuits
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Filtered ECG Signal using 8-point MA FIR filter

(b)

Figure 5: *e removal of high-frequency noise from an ECG. (a) Actual ECG signal. (b) Filtered ECG signal by the 8-tap moving average
filter.
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hardware description language (VHDL) on an Altera
DE2–115 FPGA (EP4CE115F29C7) device for FPGA
implementation (VHDL). Figure 10 shows the Altera
DE2-115 FPGA board which is used in this study [49].
*e following are the primary needs for a real-time filter
[50]:

(i) Smaller area
(ii) Less energy use
(iii) Lower delay (higher performance)

3.1. Performance Measures. For assessing (comparing) ex-
perimental results among the filters, the following three
performance metrics were used [51, 52].

3.1.1. Logic Elements. Prefabricated logic blocks, connection
resources, and input/output (IO) blocks are all common
features of FPGAs.*e utilization report for resources (LEs),
which can be triggered by synthesis tools, would aid in
determining the number of logic elements required for the
design.

3.1.2. Critical Path Delay. *e path with the longest delay is
referred to as a crucial path in the design. Computing the
reciprocal of the critical path delay determines the design’s
performance or speed. For example, if the critical path delay
is estimated to be 2.65 ns, the performance will be
377.35MHz.

A further important implication on critical path delay is
illustrated in Figure 11. *ere is a longer critical path delay

division@beginning

Pipelinning

Figure 7: RTL schematic view of a pipelined 8-tap moving average filter.
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Figure 8: *e pipelined recursive 8-tap MA filter using the CIC method.
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Figure 6: *e pipelined 8-tap moving average filter.
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(14.381 ns) and worse performance as a result of adding first
and then dividing. Hence, the performance becomes the
reciprocal of 14.381 ns (69.53MHz).

3.1.3. Registers. A register is a collection of flip-flops that keeps
track of a bit pattern. A clock, input data, output data, and enable
signal port are all included in a register on the FPGA.*e input
data is latched and saved inside every clock cycle, and the output
data is updated to reflect the internally stored data [53].

3.1.4. Power Dissipation. With the FPGA platform, power
consumption is also a major design constraint. Static and
dynamic powers are the two types of power available. *e
first is independent of the design; in other words, even
unused logic blocks would be using static power. *e second
is entirely design-dependent; i.e., it varies depending on
clock frequency, device utilization, and other resources such
as RAM, PLL, and embedded multipliers. In addition, the I/
O (input/output) power appears as a result of the design’s
number of I/O pins.

x (n) x (n-1) x (n-2) x (n-3) x (n-4) x (n-5) x (n-6) x (n-7) x (n-8)

100000001
Pipelining

(FIR portion)

1/8

Look-ahead
transformation
(Equation 3.8)

y (n)

y (n-1)

y (n-2)

Figure 9: *e pipelined recursive 8-tap MA filter using CIC and look-ahead transformation.

Figure 10: Altera DE2-115 FPGA board.

…Z–1x (n)

y (n)

Z–1 Z–1 Z–1

Sum

1/8

Figure 11: More critical path delay by sum and divide approach.
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3.2.%e Pipelined 8-TapMA Filter. *e fundamental goal of
implementing a pipelined system is to boost throughput.
Table 1 shows a considerable difference in clock speed
(highlighted in bold) between the pipelined and conven-
tional designs, indicating that the pipelined design out-
performs the conventional design. In other words, when
compared to the nonpipelined design, the pipelined archi-
tecture achieves a speed-up of around 142 percent. For
obvious reasons, the logic elements (156) and the registers
(119) in the pipelined approach are slightly higher than the
conventional design. *e total power dissipation, which
includes dynamic power, static power, and I/O power, be-
comes 137.74mW for the pipelined approach [48].

3.3. %e Pipelined 8-Tap Recursive MA Filter. Further to
improve the performance, the pipelining concept is incor-
porated an 8-tap recursive MA filter. *e simulation results
on both are compared in Table 2. It shows a significant
difference in performance (highlighted in bold) between the
pipelined and conventional designs, representing the fact
that the pipelined design obtains better performance than
the conventional design [54]. *at is, when compared to the
nonpipelined design, the pipelined architecture produces a
speed-up of around 89 percent. As seen in Table 2, as the
complexity of the problem grows, so does the requirement
for memory bits.*e total power dissipation, which includes
dynamic power, static power, and I/O power, becomes
138.67mW for the pipelined approach.

3.4. %e Pipelined Recursive MA Filter with Look-Ahead
Approach. Further to enhance the performance, the look-
ahead technique concept is embedded into an 8-tap

pipelined recursive MA filter. *e simulation results on both
are summarized in Table 3. It shows a slight improvement in
the clock speed (highlighted in bold) between the look-ahead
and conventional designs, representing the fact that the
proposed method obtains higher performance than the
conventional one. In other words, when compared to the
conventional design, the look-ahead approach produces a
speed-up of around 6.7 percent. As seen in Table 3, the
number of memory bits required increases as the problem
becomes more difficult. *e total power dissipation, which
includes dynamic power, static power, and I/O power, be-
comes 138.81mW for the look-ahead approach. *e pipe-
lined recursive MA filter with a proposed approach obtains
higher performance results at the cost of more logic elements
(83) and registers (78), as expected. *is study, too, has
significant limitations for various reasons. In the case of
moving average FIR filters, for instance, the parallel and
transposed structures were not investigated. *ere are so
many significant comparisons among the power dissipation
data because the filters were deployed in an FPGA device.
Instead, the filters can be used in application-specific inte-
grated circuits (ASIC) for better outcomes (space, speed, and
power).

3.5. Limitations. *is study, too, has significant limitations
for obvious reasons. In the case of moving average FIR
filters, for example, the parallel and transposed structures
were not investigated. *ere are so many significant com-
parisons among the power dissipation data because the
filters were deployed in an FPGA device [55]. Instead, the
filters can be used in application-specific integrated circuits
(ASIC) for better results (space, speed, and power).

Table 1: Simulation Results of an 8-tap MA filter (conventional vs. pipelined).

Measures Conventional (without pipelining) [54] With pipelining [48]
Logic elements 154 156
Registers 106 119
Power dissipation 135.57mW 137.74mW
Performance (clock speed) 87.71MHz 211.10MHz

Table 2: Simulation Results of a recursive 8-tap MA filter (conventional vs. pipelined).

Measures Conventional (without pipelining) With pipelining
Logic elements 68 66
Registers 48 48
Memory bits 75 90
Power dissipation 138.03mW 138.67mW
Performance (clock speed) 339.90MHz 642.67MHz

Table 3: Simulation Results of a recursive pipelined 8-tap MA filter (typical vs. look-ahead).

Measures Conventional (without look-ahead) With look-ahead
Logic elements 66 83
Registers 48 78
Memory bits 90 90
Power dissipation 138.67mW 138.81mW
Performance (clock speed) 642.67MHz 685.48MHz
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4. Conclusion

*e majority of real-time applications necessitate quick
input data processing, which is the most difficult element of
the filter design process. *e critical path delay in an FIR
filter, for example, grows dramatically as the filter length
increases. To improve the performance of DSP circuits,
popular high-speed techniques such as pipelining and look-
ahead transformation are used (digital filters). In the future,
powerful electronic computer automated design (ECAD)
techniques could be used to implement the proposed filter
architectures in ASIC style approaches. Also, this approach
could be expanded to eliminate other disturbances such as
power-line interference and EMG noise. *is work can be
expanded to other ideas in digital signal processing, such as
the half-band filter, digital Hilbert-transform filter, multirate
filter banks, least-mean-squares (LMS) filters, and Goertzel
algorithm, using FPGA architecture. *e major goal is to
demonstrate the benefits of FIR filter design techniques, such
as low-power consumption, lower area, and excellent per-
formance. *is research can be used to create fast digital
infinite impulse response (IIR) filters, multirate signal
processing, and filter banks, among other things.
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*e data used to support the findings of this study are
available from the corresponding author upon request.
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