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6 Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America, 7 CESPU, Instituto de Investigação e Formação
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Abstract

IgA is the predominant immunoglobulin isotype in mucosal tissues and external secretions, playing important roles both in
defense against pathogens and in maintenance of commensal microbiota. Considering the complexity of its interactions
with the surrounding environment, IgA is a likely target for diversifying or positive selection. To investigate this possibility,
the action of natural selection on IgA was examined in depth with six different methods: CODEML from the PAML package
and the SLAC, FEL, REL, MEME and FUBAR methods implemented in the Datamonkey webserver. In considering just primate
IgA, these analyses show that diversifying selection targeted five positions of the Ca1 and Ca2 domains of IgA. Extending
the analysis to include other mammals identified 18 positively selected sites: ten in Ca1, five in Ca2 and three in Ca3. All but
one of these positions display variation in polarity and charge. Their structural locations suggest they indirectly influence
the conformation of sites on IgA that are critical for interaction with host IgA receptors and also with proteins produced by
mucosal pathogens that prevent their elimination by IgA-mediated effector mechanisms. Demonstrating the plasticity of
IgA in the evolution of different groups of mammals, only two of the eighteen selected positions in all mammals are
included in the five selected positions in primates. That IgA residues subject to positive selection impact sites targeted both
by host receptors and subversive pathogen ligands highlights the evolutionary arms race playing out between mammals
and pathogens, and further emphasizes the importance of IgA in protection against mucosal pathogens.
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Introduction

Immunoglobulin A (IgA), in the form of dimers or higher

polymers (pIgA) particularly tetramers, is the predominant

immunoglobulin isotype in mucosal tissues and external secretions,

where it provides a major line of defense against pathogens. In

addition, it plays a major role in the maintenance of the

commensal microbiota in the intestinal tract, where interplay

between commensal microorganisms and IgA promotes a mutu-

ally beneficial co-existence [1]. Monomeric IgA is present in

serum, being the second most prevalent immunoglobulin after IgG

and a critical factor for eliminating pathogens that breach external

surfaces [2]. Much energy is expended in producing these serum

and mucosal forms of IgA. In humans, for example, more IgA is

produced than all the other antibody isotypes combined. Such

high investment in IgA is presumably indicative of the key

contribution this antibody isotype makes to immune protection.

Like all immunoglobulins, IgA displays a basic monomeric

structure of two light and two heavy chains, each having a

variable and a constant region, linked together by disulphide

bridges. Each chain is organized in globular domains consisting of

approximately 110–130 amino acids. The light chains (VL and CL

domains) and the variable (VH) and first constant domain of the

heavy chain (Ca1) constitute the two Fab regions, which bind

antigens. The remaining constant domains of the heavy chain

(Ca2 and Ca3) constitute the Fc region, responsible for the

recruitment of mechanisms that lead to pathogen elimination.

Linking the Fab and Fc regions is a flexible hinge region. This

basic IgA unit can exist as monomers or be arranged into dimers

(dIgA) and higher order multimers in which the monomers are

linked by a J (joining) chain. In secretions, IgA is present as

secretory IgA (S-IgA), a complex of dIgA or pIgA with another
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polypeptide chain, the secretory component (SC) [3], which

confers some protection from proteolytic cleavage.

IgA has been identified in all mammals and birds studied [3]. In

mammals, differences in gene number and molecular forms have

been noted, defining different IgA systems. Most mammals have

one IGHA gene, coding for one IgA isotype, which adopts a

dimeric form in serum IgA. Humans, chimpanzees, gorillas and

gibbons have, however, two IGHA genes, which arose by gene

duplication in a common hominoid primate ancestor and code for

the IgA1 and IgA2 [4] subclasses. In hominoids serum IgA is

mainly monomeric. Rabbit has the most complex IgA system

observed, with 13 IGHA genes encoding 13 IgA subclasses [5]: of

these 13 subclasses, 11 are expressed and are differentially

distributed among the mucosal tissues [6]. Mammalian IgA

subclasses mainly differ in the length and amino acid sequence of

the hinge, which affects their susceptibility to cleavage by bacterial

proteases [5], [7].

Elimination and destruction of pathogens is facilitated by the

binding of Ig-antigen complexes to Ig receptors (FcRs) on effector

cells and soluble effector molecules such as complement. In most

mammals, IgA effector functions appear to be reliant on FcaRI

(CD89), the Fc receptor specific for IgA: binding of the IgA-

antigen complex to FcaRI can lead to phagocytosis, antibody

dependent cell-mediated cytotoxicity (ADCC) and release of

cytokines and inflammatory mediators. FcaRI binds to IgA at

the Ca2–Ca3 interface [8], [9] an interaction that has been

suggested to evolve under pressure from pathogen decoy IgA-

binding proteins [10]. FcaRI appears to be functional in the

majority of mammals, but it is notably absent from mice, rabbits

and dogs due either to loss of the gene or to its degeneration into a

pseudogene.

Other IgA-Fc receptors important for IgA function include the

polymeric Ig receptor (pIgR) and the IgA/IgM Fc receptor (Fca/

mR) [11]. The pIgR is responsible for delivery of the large

quantities of pIgA produced in the mucosae across the epithelial

cell layer into mucosal secretions. In the process, pIgR is cleaved to

yield the SC, which remains covalently complexed with pIgA to

form S-IgA. The binding involves interaction of pIgR with J chain

and IgA-Fc residues, particularly within the Ca3 domain of IgA.

Some of these residues are located in the Ca2–Ca3 interface [12]

and overlap with residues critical for binding to FcaRI and Fca/

mR [3]. In addition to transport of free pIgA, pIgR can also

transport polymeric IgA immune complexes, including pIgA

complexed with viruses, out across the epithelium [2]. Moreover,

pIgA transported via pIgR may intercept and neutralize certain

viruses inside epithelial cells [2]. In humans, Fca/mR is present on

macrophages and plasma cells, and also on follicular dendritic cells

in tonsil and in intestinal tissues [11], likely reflecting a role in

coordination of the immune response in mucosal tissues. The N-

terminal Ig-binding domain of Fca/mR shares similarity with

domain 1 of pIgR, and the modes of interaction with dIgA are

presumed to have similar features. Consistent with this possibility,

the results of mutagenesis mapping analysis indicate a critical role

for the Ca2–Ca3 domain interface of the IgA heavy chain in the

interaction [13].

To evade elimination by the immune system, numerous

pathogens have evolved proteins targeting IgA. These include

IgA-binding proteins, which by binding to IgA block its access to

host IgA-receptors, as well as proteases that by cleaving the IgA

hinge, uncouple the recognition of foreign antigens from the

effector functions that eliminate them. Examples of microbial IgA-

binding proteins include the Sir22 and Arp4 proteins of

Streptococcus pyogenes, the b protein of Streptococcus agalactiae, and

the SSL7 toxin of Staphylococcus aureus, all of which bind to residues

lying in the Ca2–Ca3 interface of IgA and prevent IgA interacting

with FcaRI [14], [15]. Examples of the microbial proteases

include IgA1 proteases secreted by clinically important bacterial

pathogens, such as Neisseria meningitidis and Haemophilus influenzae,

which cleave specifically in the hinge region of IgA1 of humans

and great apes. IgA1 proteases are postproline endopeptidases that

cleave at either Pro-Ser (type 1 enzymes) or Pro-Thr (type 2

enzymes) peptide bonds within the IgA1 hinge region. To achieve

such specific cleavage, these enzymes recognize structural elements

within the hinge [16], [17] and some of them also have to contact

the Fc region before cleavage can occur [18], [19]. Notably, the

type 2 IgA1 protease of Neisseria meningitidis, a causative agent of

bacterial meningitis, interacts with the Ca3 residues of the Ca2–

Ca3 interface also bound by FcaRI, pIgR and Fca/mR, whereas

the type 2 IgA1 protease of Haemophilus influenzae contacts a

different set of Ca3 residues that are implicated in binding to pIgR

[19].

Over recent years it has become increasingly apparent that S-

IgA contributes to mucosal homeostasis through various mecha-

nisms [20]. For example, coating of commensal bacteria by S-IgA

may promote gut colonization and survival through biofilm

formation. The role of S-IgA in maintaining the commensal

microbiota may depend, at least in part, on interactions between

IgA glycans and commensal bacteria [20].

Considering the complex interactions of IgA with other

components of the immune system, with commensal microorgan-

isms and the evasion proteins of diverse pathogens, IgA is a likely

target for natural selection. Few studies have examined Ig

sequences for the impact of natural selection and they have

focused on IgA or IgG isotype in a limited number of vertebrate

taxa [10], [21], [22]: for example, Abi-Rached et al [10]

investigated the pattern of diversification of IgA-Fc using

maximum likelihood [23], [24] and pairwise methods, with a

focus on primates. To develop deeper understanding of the issue,

in this study we took a broader approach that encompasses a wider

range of methods and mammalian species. In total, 64 sequences

from 28 species representing monotremes, marsupials and eight

orders of placental mammals were included in the analyses.

Methods

Primate and Mammalian IgA Sequences
The complete sequences for primate IgAs used in a previous

study [10] were obtained from GenBank (http://www.ncbi.nlm.

nih.gov/genbank/); accession numbers are: Human IgA1 and

IgA2 - J00220, J00221, M60192 and AJ012264; Chimpanzee

IgA1 and IgA2 - X53702 and X53706; Gorilla IgA1 and IgA2 -

X53703 and X53707; Gibbon IgA1 and IgA2 - X53708 and

X53709; Orangutan IgA -X53704; Rhesus macaque IgA -

AY039245 to AY039252, AY294614 and AY294615; Crab-eating

macaque IgA - X53705 and Sooty mangabey IgA - AY544580

and AY544581.

Complete sequences for non-primate mammalian IgAs were

obtained from IMGT (http://www.imgt.org/IMGTrepertoire/),

GenBank (http://www.ncbi.nlm.nih.gov/genbank/) and Ensembl

(http://www.ensembl.org/index.htm). In total 64 sequences from

28 species were included in the analyses, representing marsupials,

monotremes, and eight orders of placental mammals: primates,

artiodactyls, perissodactyls, rodents, carnivores, lagomorphs,

chiropters and cetaceans. Accession numbers for the non-primate

sequences used are: Cattle IgA - AF109167; Sheep IgA -

AF024645; Pig IgA - U12594; Horse IgA - AY247966; Alpaca

IgA - AM773729; Mouse IgA - J00475, AF175973 to AF175975,

AH011154 to AH011156, and AY045750 to AY045752; Rat -

Patterns of Positive Selection in Mammalian IgA
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ENSRNOT00000006888 and AY158661; Dog IgA - L36871;

Panda IgA - AY818387; Rabbit IgA1 to 13 - X51647, X82108 to

X82119; Big brown bat IgA - HM134938; Little brown bat IgA -

HM134924; Short-nosed fruit bat IgA - HM134948; Black flying

fox IgA - GQ427150; Dolphin IgA - AY621035; Possum IgA -

AF091139 and AF027382; Opossum IgA - AF108225 and

AF012110; Tasmanian devil - AFEY01402156; Platypus IgA1

and IgA2 - AY055778 and AY055779; Echidna IgA - AF416951.

Excluded from the analysis was the recombinant human IgA2(n)

allele [25] and the mouse IgA*3 allele for which the sequence has a

nucleotide deletion in Ca1 that is presumably a sequencing or

typographical error. The monotreme and marsupial Ca1

sequences were not included because of uncertainty in their

alignment with the Ca1 domain sequences of placental mammals

and also to avoid the risk of saturation that could result from

including these highly divergent sequences; likewise, sequences of

the rapidly-evolving IgA hinge region were excluded from the

analysis.

For the analysis of the primate datasets and of the placental

mammal Ca1 dataset, sequences were aligned using CLUSTAL

W [27] as implemented in BioEdit [28], and corrected manually;

notably, adjustments were made to follow the rigorous IMGT

numbering system. For the mammalian Ca2 and Ca3 datasets,

amino acid alignments were first generated using MUSCLE [29]

and manual corrections, and these alignments were then used as a

guide to prepare codon alignments for the same set of sequences.

Codon numbering is according to the Bur IgA1 numbering.

IMGT unique numbering for C-DOMAIN [26] is also shown in

parenthesis.

Codon-based Analyses of Positive Diversifying Selection
To investigate positive selection on IgA, we studied the three

constant domains (Ca1, Ca2 and Ca3) separately: for each

domain we compared the rate per-site of nonsynonymous

substitution (dN) to the rate per-site of synonymous substitutions

(dS) in a maximum likelihood (ML) framework, using six different

methods. Since each method has strengths and weaknesses, we

used the approach of Wlasiuk and Nachman [30] to identify the

codons for which the signal of positive selection was strongest: only

codons identified by at least two of the ML methods were

considered to be positively selected codons (PSC). Unlike pairwise

dN/dS analyses, the methods used here rely on phylogenetic

approaches and are thus not as sensitive as the pairwise dN/dS

methods to differences in the number of sequences present in the

taxonomic groups investigated: to increase the resolution of the

analysis, we included all available sequences.

We first compared two alternative models implemented in

CODEML (PAML 4.4) [23], [24]: M8, which allows for codons to

evolve under positive selection (dN/dS.1) and M7, which does

not (dN/dS#1). These two nested models were compared using a

likelihood ratio test (LRT) with 2 degrees of freedom [31], [32].

The analysis was run twice, and conducted with the F364 model

of codon frequencies. Codons under positive selection for model

M8 were identified using a Bayes Empirical Bayes approach (BEB)

[33] and considering a posterior probability of .90%. For each

analysis, a Neighbour-Joining phylogenetic tree was used as the

‘working topology’, and generated using Mega 5 [34] with the p-

distance substitution model and the complete deletion option to

handle gaps and missing data. Overall, the tree topologies used

reflected the accepted topology for mammals.

We also used the five methods for detecting positive selection

available from the DATAMONKEY web server [35]: the Single

Likelihood Ancestor Counting model (SLAC), the Fixed Effect

Likelihood model (FEL), the Random Effect Likelihood model

(REL), the Mixed Effects Model of Evolution (MEME) and the

Fast Unbiased Bayesian Approximation (FUBAR). For these

analyses, the best fitting nucleotide substitution model was

determined through the automatic model selection tool available

on the server.

Because recombination can contribute to false inference of

positive selection, causing a high rate of false positive detection

[36], [37], [38], all datasets were screened for recombination using

the GARD [39] method from the DATAMONKEY web server

[35]. No evidence of recombination was found.

Location of the PSC in Structural Models of IgA
A molecular model of human IgA1 (MMDB ID: 10546, PDB

ID:1iga [40]) and the three-dimensional X-ray crystal structure of

human IgA1-Fc (PDB ID :1OW0 [9]) were used to map the amino

acids encoded by PSC onto 3D structures of the protein. To

investigate their relation to putative sites of interest, the sites of

interaction with host receptors (FcaRI, pIgR and Fca/mR [3], [8],

[9], [12], [13]) and bacterial proteins (S. aureus SSL7 protein,

streptococcal IgA binding proteins, N. meningiditis and H. influenzae

type 2 IgA1 proteases [3], [14], [19], [41]) were also mapped onto

the 3D structure. For this purpose the NCBI application Cn3D 4.1

(http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml

[42]) and iMol software [43] were used. Although the molecular

model of human IgA1 has the drawbacks of being based on low

resolution X-ray and neutron scattering data and of using the X-

ray crystal structure of IgG to model the Fc part of Iga (the IgA Fc

structure was unavailable at the time), it offered the best means to

visualize all PSC in one intact structure. The solved X-ray crystal

structure of human IgA1-Fc offers a higher resolution view, and

aids understanding of the putative impact of these PSCs on the

IgA-Fc ligand interaction.

Results

Natural Selection Diversified the Ca1 and Ca2 Domains
of Primate IgA Sequences

Using the ML approach of PAML [23], [24], evidence for

positive diversifying selection was obtained in primates for two of

the three IgA constant domains, Ca1 and Ca2, with the model

allowing sites to evolve under positive selection (M8) showing a

significantly better fit than the model that did not (M7) (a= 0.01–

0.05; Table 1). The other five ML methods also identified

positively selected sites for IgA Ca1 and Ca2 but not for IgA Ca3.

Comparison of the sites characterised by each method reveals five

codons supported with high confidence (p.0.9) by at least two

methods: of these five positively selected codons (PSC), two are in

the Ca1 domain, codons 133 and 166 (Ca1–10 and 45.2), and

three others are in the Ca2 domain, codons 296, 319 and 326

(Ca2–84, 100 and 107). Natural amino acid variability and

characteristics for each of these codons are given in Table 2: for

four of the five positions (133, 166, 319, and 326), changes in

amino acid characteristics such as polarity and charge were

observed, with potential to alter the protein structure or capacity

for protein–protein interaction.

Mammalian IgA Evolution was Marked by Diversifying
Selection on the Three Constant Domains

Analysis of IgAs from a much broader range and larger sample

of mammals using the ML approach implemented in PAML [23],

[24] revealed significant evidence of diversifying selection for two

of the three domains investigated (Ca1 and Ca2) (Table 3).

However, the other five ML methods clearly identified positively

selected sites for all three domains, which is consistent with the

Patterns of Positive Selection in Mammalian IgA
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three domains having been the targets of diversifying selection.

Comparison of the positively selected sites identified by each of the

methods led to the identification of eighteen well supported

positively selected codons (PSC) (Table 3). Of these eighteen PSC,

ten locate to the Ca1 domain, five to the Ca2 domain, and three

to the Ca3 domain (Figure 1). All but one of these residues show

variations in both polarity and charge, changes that could alter the

protein structure or capacity for protein–protein interaction

(Table 4); the exception, PSC 431 (Ca3–103), displays a restricted

set of residues that share the same polarity and charge, suggesting

these characteristics are of value at this position. Of note, two of

the changes at PSC in the Ca1 domain, codons 166 and 213

(Ca1–45.2 and 116 IMGT numbering) can generate putative N-

glycosylation sites, which could affect protein function: residue 166

is a known N-glycosylation site of primate IgA2, as well as sheep,

panda and alpaca IgA and rabbit IgA7, IgA8, IgA11 and IgA13.

In contrast the putative N-glycosylation site at residue 213 appears

only in rabbit IgA7, IgA8, IgA11 and IgA13.

The recently developed MEME methodology [44] can identify

both episodic and persistent positive selection, because it allows the

distribution of the dN/dS ratio to vary from site to site and also

from branch to branch at a site. The additional positively-selected

codons identified by MEME and not by the other approaches, are

likely to have been subject to episodes of positive selection.

Consistent with this interpretation, of 6 such sites detected by

MEME in the Ca3 domain residues 389 and 442 are sites targeted

by pathogenic IgA-binding proteins (Ca3– 45.2 and 115 IMGT

numbering).

Positively Selected Codons are Located Near Sites of
Interaction with Ligands and Bacterial Proteases

To understand better the possible biological significance of the

detected PSC, we mapped the residues they encode onto a

molecular model of human IgA1 and the three-dimensional X-ray

crystal structure of IgA1-Fc, along with sites of interaction for host

receptors and bacterial proteins (Figure 2). Remarkably, more

than half (13 out of 21) of the PSC encode residues located near

sites of interaction with ligands and bacterial proteases. Ca1

residues 133, 134, 135, 137 and 221 and Ca2 residues 293 and

296 (Ca1–10, 11, 12, 14 and 124 and Ca2–81 and 84, IMGT

numbering) are near the hinge region, the preferential target

region for some IgA1-specific bacterial proteases. Ca1 residues
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Table 2. Characterization of natural amino acid variation for
each residue identified under positive selection in primate
IgA.

Natural amino acid variation

Residuea Functional information H, +b H, - b H, n b HY, n b

Primates Ca1

133 Close to hinge K D, E – C

166 Exposed R, K, H – S, Q, T P, I, L

Primates Ca2

296 Exposed R, H – – –

319 Exposed; close to SSL7
binding site

K E Q V

326 Exposed – E N A

aIgA1 Bur numbering.
bamino acid characteristics: H- Hydrophilic, HY- Hydrophobic, +- positive, –
negative, n-neutral.
doi:10.1371/journal.pone.0073934.t002
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212 and 213 (Ca1–115 and 116) have a general orientation

towards the variable domains involved in antigen recognition. Ca2

residues 341 and 341a (Ca2–124 and 125) and Ca3 residue 343

(Ca3–1.3) are part of the exposed strand linking the Ca2 and Ca3

domains of IgA1, in the vicinity of the Ca2 NH motif that

participates in the binding of S. aureus SSL7 molecules to human

IgA [25]. Residue 343 also lies close to the putative interaction site

for pIgR [12] and a region important for interaction with the type

2 IgA1 protease of H. influenzae [19]. Residue 408 (Ca3–85.5) is

one of several Ca3 domain residues of human IgA1 that directly

influence binding to pIgR; it also lies adjacent to the site where the

H. influenzae IgA1 protease is believed to bind. Although position

431 (Ca3–103) in the Ca3 domain is positively selected, its

location in the IgA molecule is not close to any known interaction

sites of IgA-Fc region. Substitutions at this position could exert a

functional effect by indirectly influencing the conformation of one

or more of the interaction sites.

Discussion

Genes involved in host-pathogen interactions are prone to

diversifying selection [45], [46]. As pathogens continuously evolve

mechanisms to evade host defenses and cause infectious diseases,

so must host species evolve counter defense mechanisms if they are

to survive. This never-ending arms race subjects those components

of the mammalian immune system that recognize pathogens and

their products to strong varying selection. IgA, the main Ig isotype

present in external secretions and at mucosal surfaces, is uniquely

exposed to a wide variety of bacteria, viruses, fungi and other

infectious microorganisms, which together exert strong selective

pressures on this immunoglobulin isotype. The results obtained in

this study demonstrate the considerable impact that positive

selection has played in the evolution of IgA in mammals and in the

diversity and divergence of IgA among extant mammalian species.

Figure 1. Residues encoded by PSC in human IgA1 Ca1, Ca2 and Ca3 domains. Residues encoded by PSC are highlighted in red (selected in
mammals), black (selected in primates and mammals) or blue (selected in primates). Sites of interaction with studied ligands are indicated below the
sequence according to the colour panel on the figure. Bur numbering is shown above.
doi:10.1371/journal.pone.0073934.g001
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Natural Selection Diversified IgA in Mammals
Consistent with the study of Abi-Rached and coworkers [10],

our analysis shows that the Ca2 domain of primate IgA-Fc exhibits

evidence of positive diversifying selection, and the Ca3 domain

does not. Making use of six different and complementary

methodologies to identify positively selected residues, three Ca2

codons were identified by at least two of the methods used

(positions 296, 319 and 326). These three positions also correspond

to three of the seven codons identified previously [10] as being

positively selected (Table 1). In contrast, the other four positions

found previously as positively selected did not reach the cutoffs for

detection used here, even though two of them appeared in

individual analyses (positions 245 and 317, Table 1). Because the

goals of the two studies were different (sensitive detection in the

earlier study versus detection of positions with the strongest signals

for selection here), different cutoffs were applied. To reconcile the

apparent discrepancies will require analysis of a much larger

dataset of IgA sequences.

To develop deeper understanding of IgA evolution, we

compared IgA in a broad range of mammalian species. Of

eighteen positions selected during mammalian evolution, only two

are included in the five positions selected during primate

evolution. This difference vividly illustrates the evolutionary

plasticity of IgA.

We find that diversifying selection has mainly targeted the Ca1

and Ca2 domains of IgA, and to lesser extent the Ca3 domain.

Thus only three of the eighteen selected positions are in the Ca3

domain. One of these, position 431, exhibits relatively conservative

variation, having only three alternative amino acids, with similar

polarity and charge. The Ca3 domain, along with the J chain,

plays a key role in binding of pIgA to pIgR. Ca3 is also the main

domain of IgA involved in binding to the major IgA-Fc receptors

FcaRI and Fca/mR. These crucial roles, along with contributions

to the assembly and polymerization of IgA, can explain why Ca3 is

the most conserved of the constant region of the IgA heavy chain.

In contrast, the ten PSCs detected in Ca1 show more variety in

amino acid substitutions, including changes in polarity and charge.

Such variation modulates the Ca1 structure, with potential impact

on Fab conformation, the antigen-binding site and the hinge

region. Substitution at residues 166 and 213 could introduce an

additional N-glycosylation site since this putative site of glycosyl-

ation is also present in primate IgA2, sheep, panda and alpaca

IgA, and some rabbit IgA subclasses. N-linked glycans in the Fab

region are known to influence antigen binding, either by

increasing affinity for antigen or blocking antigen binding [47].

Since IgA-Fc N-linked glycans could protect IgA from cleavage by

bacterial and other proteases [18], we speculate that Fab N-linked

glycans can also contribute to such protection from proteases.

Furthermore, glycans could impact on interactions of S-IgA with

commensal microorganisms, thereby influencing the make-up of

the microbiota and homeostasis of the gut [1], [20].

IgA Diversification in Mammals Targets Sites Involved in
the Interaction with Ligands and Bacterial Proteases

Mapping positively selected sites onto the structures of IgA and

IgA-Fc revealed their likely impact on IgA function. Seven such

sites, residues 133, 134, 135, 137 and 221 and Ca2 residues 293

and 296, are near the hinge, which links the antigen-recognition

function of the Fab arms to the effector-recognition function of the

Fc region. Because it is accessible, flexible and essential for

antibody function, the hinge is a preferred target for bacterial

proteases [3], [48]. Hinge structure varies considerably across

mammalian species and between different subclasses and allotypes.

For example, the hinge of hominoid IgA1 is 16 amino-acids longer
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than that of IgA2 and much more susceptible to proteolytic

cleavage. The possible advantage of the longer hinge in IgA1 is its

greater flexibility and potential for cross-linking antigens on the

surface of bacteria and other pathogens [2]. Longer hinges are also

a feature of most rabbit IgA subclasses. Thus, any variation that

confers protection of the IgA hinge from proteolysis is a likely

candidate for positive selection. For IgA1 proteases that cleave

specifically in the hinge of hominoid IgA1 the distance of the

susceptible peptide bond in the hinge from the ‘‘top’’ of the Fc

(where the heavy chain enters the globular Ca2 domain) is critical

for efficient cleavage [17]. Indeed, the crystal structure of a

bacterial IgA1 protease from H. influenzae suggests that an intricate

and coordinated association of protease with IgA is essential for

optimal orientation of the hinge into the enzyme’s active site [49].

Substitutions at residues in and around the hinge could therefore

increase resistance to proteolytic attack and become targets for

positive selection.

Three positively-selected residues are found near sites of human

IgA1 that interact with Fc receptors and bacterial proteins.

Residues 341, 341a and 343 are in the strand linking the Ca2 and

Ca3 domains, in the vicinity of the Ca2 asparagine-histidine motif

that participates in the binding of S. aureus SSL7 molecule to

human IgA [25]. The CH2–CH3 interface is central to the

binding of IgA to several classes of Fc receptor including FcaRI,

Fca/mR and pIgR [8], [9], [12], [13], and is also the target of

pathogenic mechanisms to obstruct IgA function [14], [15], [19].

Variation at the CH2–CH3 interface could prove adaptive, either

by improving the binding of IgA to its Fc receptors or hampering

the binding of pathogen decoy molecules, or by achieving both of

these effects. Such adaptations could be accomplished by changes

in the residues that contact Fc receptors or decoy proteins and also

in nearby residues that have conformational impact. Residues

under positive selection have been described in the Cc2–Cc3

interface of IgG in leporids [21]. Residue 408, is one of the

positively selected Ca3 residues implicated in the binding of

human IgA1 to pIgR [12] and the type 2 IgA1 protease of H.

influenzae. Substitution at position 408 could therefore provide

protection from cleavage by this IgA protease. The results of

mutagenesis experiments are consistent with this possibility [19].

MEME methodology, which detects both episodic and persis-

tent positive selection, identified codons in all three IgA analysed

domains that were not revealed by the methods detecting only

persistent selection. Thus these PSC are candidates for being

subject to episodic selection. Among them are residues 389 and

442 in Ca3 that are targets for pathogenic IgA-binding proteins.

Residue 442, which was previously shown to be subject to episodes

of diversifying selection [10], is a site of N-linked oligosaccharide

for IgA in mice. The glycan attached at asparagine 442 of mouse

IgA hinders interaction with the S. aureus SSL7 decoy protein, but

does not affect the binding of IgA to pIgR [50].

In conclusion, this study identified residues under positive

selection in all three IgA heavy chain constant region domains.

Table 4. Characterization of natural amino acid variation for each residue identified under positive selection in mammal IgA.

Natural amino acid variation

Residuea Functional Information H, +b H, -b H, nb HY, nb

Placental mammal Ca1

134 Close to hinge H, R, K – N, Q, S, C, Y P, L, I, G

135 Close to hinge H, R E, D T, N, Q, S, C P, V, A, L, I, G

137 Close to hinge – D Q, S, C P, L, A

162 Exposed K, H E, D Q, T, S A, P, I, V, G, L

165 Exposed K E, D Q, S A, P

166 Exposed – D N, S G, V

169 Exposed – D N, T, S A, V, I, G

212 Orientated towards variable domains, exposed K E T, S P, A, V, I

213 Orientated towards variable domains, exposed R, H D N, S V, G, I, L

221 Bordering hinge R, K, H – S, Q, T P, I, L

Mammals Ca2

293 Quite close to hinge, exposed R, K E N, T, S P, A, L

326 Exposed K E N, T, S A

330 Exposed K E,D T, S L, V, A, F

341 Positioned on strand linking Ca2 and Ca3; vicinity of SSL7
binding site

– D T, S P, V, A, L, I

341a Positioned on strand linking Ca2 and Ca3; vicinity of SSL7
binding site

K, R – T, S L

Mammals Ca3

343 Positioned on strand linking Ca2 and Ca3; vicinity of SSL7,
pIgR, and H.influenzae IgA1P binding site

– E, D N, T, S P, V, A, I

408 pIgR, and H.influenzae IgA1P binding site K – T, S I, P, A, V, G

431 Positioned in middle of b-strand, exposed – – N, T, S –

aIgA1 Bur numbering.
bamino acid characteristics: H- Hydrophilic, HY- Hydrophobic, +- positive, –negative, n-neutral.
doi:10.1371/journal.pone.0073934.t004
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The majority of the identified residues are located in parts of the

molecule that are essential for the functions of IgA in resistance to

pathogens. This correlation is consistent with the positively-

selected residues having influences on the interactions of IgA with

immune-system receptors and the microbial proteins that interfere

with these interactions. Future functional analyses should deter-

mine the mechanisms by which the positively selected residues

exert their effect. Such knowledge could assist the design of

therapeutic IgA-based monoclonal antibodies that are not

Figure 2. Residues encoded by PSC in the three-dimensional structure of human IgA1 and their relationship to sites of biological
interest. A, Model of human IgA1 (PBD ID 1iga) with residues encoded by PSC highlighted. The light chains are colored green and the heavy chains
colored yellow. Positively selected positions are represented by red dots (selected in mammals), black dots (selected in primates and mammals) or
blue dots (selected in primates). B to F, Human IgA1-Fc (PDB ID 1OW0) with residues critical for FcaRI interaction (B), pIgR interaction (C), SSL7
interaction (D), streptococci IgA binding proteins interaction (E), and H. influenzae type 2 IgA1 protease interaction (F) highlighted in cyan, orange,
pink, purple and grey respectively. Positively selected positions are represented as in panel A. Differences between the Fc structures in A and B-F
reflect the fact that the model of intact IgA1 in A is based on low resolution X-ray and neutron scattering modeled based on the X-ray crystal
structure of IgG Fc (the closest structure available at the time of modeling), while B-F show an X-ray crystal structure of human IgA1-Fc solved as part
of a complex with FcaRI (not shown).
doi:10.1371/journal.pone.0073934.g002
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susceptible to the pathogenic proteins that obstruct the defense

functions of IgA.
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