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Abstract

Background: Wearable technologies play an important role in measuring physical activity (PA) and promoting
health. Standardized validation indices (i.e., accuracy, bias, and precision) compare performance of step counting
wearable technologies in young people.

Purpose: To produce a catalog of validity indices for step counting wearable technologies assessed during
different treadmill speeds (slow [0.8–3.2 km/h], normal [4.0–6.4 km/h], fast [7.2–8.0 km/h]), wear locations (waist,
wrist/arm, thigh, and ankle), and age groups (children, 6–12 years; adolescents, 13–17 years; young adults, 18–20
years).

Methods: One hundred seventeen individuals (13.1 ± 4.2 years, 50.4% female) participated in this cross-sectional
study and completed 5-min treadmill bouts (0.8 km/h to 8.0 km/h) while wearing eight devices (Waist: Actical,
ActiGraph GT3X+, NL-1000, SW-200; Wrist: ActiGraph GT3X+; Arm: SenseWear; Thigh: activPAL; Ankle: StepWatch).
Directly observed steps served as the criterion measure. Accuracy (mean absolute percentage error, MAPE), bias
(mean percentage error, MPE), and precision (correlation coefficient, r; standard deviation, SD; coefficient of
variation, CoV) were computed.

Results: Five of the eight tested wearable technologies (i.e., Actical, waist-worn ActiGraph GT3X+, activPAL,
StepWatch, and SW-200) performed at < 5% MAPE over the range of normal speeds. More generally, waist (MAPE =
4%), thigh (4%) and ankle (5%) locations displayed higher accuracy than the wrist location (23%) at normal speeds.
On average, all wearable technologies displayed the lowest accuracy across slow speeds (MAPE = 50.1 ± 35.5%), and
the highest accuracy across normal speeds (MAPE = 15.9 ± 21.7%). Speed and wear location had a significant effect
on accuracy and bias (P < 0.001), but not on precision (P > 0.05). Age did not have any effect (P > 0.05).

Conclusions: Standardized validation indices focused on accuracy, bias, and precision were cataloged by speed,
wear location, and age group to serve as important reference points when selecting and/or evaluating device
performance in young people moving forward. Reduced performance can be expected at very slow walking speeds
(0.8 to 3.2 km/h) for all devices. Ankle-worn and thigh-worn devices demonstrated the highest accuracy. Speed and
wear location had a significant effect on accuracy and bias, but not precision.
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Introduction
Physical activity (PA) is a powerful marker of health
throughout the lifespan, including during the develop-
mental transition from childhood to adolescence and on
to young adulthood [1–3]. The surge in contemporary
wearable technologies that produce step counting out-
puts offers an important opportunity to promote the
health-related benefits associated with PA in young
people [4–6]. To this end, the 2018 U.S. Physical Activity
Guidelines Advisory Committee Scientific Report [7] ad-
vocated for conducting more research in order to trans-
late public health PA guidelines using step-based metrics
(e.g., steps/day, steps/min) that can be widely used and
easily interpreted by researchers, clinicians, and con-
sumers [8]. Available wearable technologies vary greatly
in terms of their step-counting mechanism/algorithms,
resulting in differential sensitivity and specificity to step
measurement [9, 10]. In addition, there are important
external factors, or threats to validity, that may also in-
fluence device (wearable) performance, such as speed or
wear location [11]. An additional potential threat to val-
idity is age, since children do not necessarily walk in a
manner that is identical to adults’ gait patterns [12–14].
For example, 7-year-old children lack neuromuscular
maturity, especially at the ankle (i.e., diminished peak
plantar flexor moment and reduced peak power absorp-
tion and generation), to produce an adult-like gait [15].
Also, children (5–9 years of age) walked with signifi-
cantly different step time, cycle time, cycle frequency
and cadence than their adult peers (19–32 years of age)
in walking and running tests [16]. It is therefore critical
to consider such threats to validity when comparing per-
formance of step counting wearable technologies using
standardized methods and validation metrics among a
cohort of children [17].
The Consumer Technology Association (CTA) re-

leased guidance in 2016 for treadmill-based validation
assessment of step counting wearable technologies [18].
The CTA suggested that, under controlled laboratory
conditions, direct observation and video backup should
be the criterion measures. The performance of step
counting wearable technologies should then be com-
pared to this criterion standard [18]. Standardized and
harmonized validation indices, specifically accuracy, bias,
and precision are also necessary to facilitate comparabil-
ity of different types of wearable technologies [17, 19,
20]. The CTA [18], Welk et al. [20], Walther et al. [19],
and a previous scoping review from our research group
[17], recommended that accuracy (defined as the overall

distance between estimated or observed values and the
true value [19]) be determined using mean absolute per-
centage error (MAPE,), calculated as follows:

E j ¼ W j−C j

MAPE ¼ 100%
n

Xn

j¼1

E j

�� ��
C j

Where Wj is the number of steps recorded by the
wearable technology being tested in the jth person-bout
(j = 1, 2, …, n), Cj is the criterion standard of observed
steps in that same person-bout, and Ej is the corre-
sponding step count error that is expressed in absolute
terms. We are aware of the different uses of this ter-
minology before. For example, like root mean squared
error (RMSE), it can be demonstrated that MAPE is
also a measure of both bias (the inverse of accuracy)
and variance (the inverse of precision). Herein we fol-
low the work of Welk et al. [20] who advocated for
measuring accuracy using MAPE and the CTA guide-
lines [18] which also used MAPE in this capacity. Bias
refers to magnitude and direction (i.e., over or underes-
timations) of systematic errors [19]. It can be visually
presented in Bland-Altman plots, but this graphical for-
mat makes it difficult to compare across studies. Alter-
natively, bias can be represented and compared
numerically using mean percentage error (MPE). MPE
is calculated as follows [21]:

MPE ¼ 100%
n

Xn

j¼1

E j

C j

By dividing the difference of the steps derived from
wearable technology and the directly observed steps
(Ej) by the observed steps (Cj), the result is a scaled
index that explains the difference, regardless of the
total number of steps taken. Also, it can discriminate
between estimation methods that, on average, over-
estimate or under-estimate the criterion. Precision is
defined as the assessment of random error (i.e., that
due to chance, or just naturally occurring), and is
commonly referred to as variance or variability [19].
It represents variability in the difference between dir-
ectly observed steps and steps derived from wearable
technology, and is generally reported as standard de-
viation (SD) of error values (E) [19]:

Gould et al. International Journal of Behavioral Nutrition and Physical Activity           (2021) 18:97 Page 2 of 14

http://clinicaltrials.gov
https://clinicaltrials.gov/ct2/show/NCT01989104?term=NCT01989104&draw=2&rank=1


SD ¼
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Another precision index is coefficient of variation
(CoV), calculated as:

CoV ¼ SD

E

� �
� 100%

Where SD is the variance of the steps derived from
wearable technology, and E represents the average of er-
rors. Also, precision can be reported as a correlation co-
efficient (r) that indicates the strength of the relationship
between directly observed steps and steps derived from
wearable technology:

r ¼
Pn

j¼1 W j−W
� �

C j−C
� �
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Where Wj is the number of steps recorded by the
wearable technology being tested in the jth person-bout
(j = 1, 2, …, n), and Cj is the criterion standard of ob-
served steps in that same person-bout.
There are only a few youth-specific studies that used

direct observation of steps as a criterion standard in
treadmill-based studies [21–27] (see Additional file 1 for
a summary of these studies). Those that exist used small
sample sizes (ranging from 17 to 45 participants) and
limited age ranges within the broader childhood to
young adulthood age span. Testing protocols varied in
the number of treadmill bouts (3 to 5 bouts) and their
durations (2-min to 5-min). Tested speeds varied and
ranged from 0.8 km/h (0.5 mph) to 9.7 km/h (6.0 mph).
Also, none of these studies included all three measures
of validity (i.e., accuracy, bias, and precision) or assessed
the effect of age on wearable technology step counting
performance [17].
The purpose of this secondary analysis of the CADE

NCE-Kids’ data set [28] was to compute and compare
speed, wear location, and age-specific validity indices of
accuracy, bias, and precision across eight different wear-
able technologies evaluated in a broadly-aged (6–20
years of age) sample of children, adolescents and young
adults. A valuable product of this effort is a catalog
(digital source of reference material and values) intended
to better facilitate evaluation and comparison of step
counting wearable technologies.

Methods
Study design and regulatory information
CADENCE-Kids was a laboratory-based, cross-sectional
study designed to establish cadence (steps/min) thresholds
associated with absolutely-defined PA intensity across the
developmental lifespan of 6–20 years of age [28]. Full

descriptions of the primary aim, protocol details, measure-
ments, and inclusion/exclusion criteria can be found in
the original study [28]. The protocol was registered at
ClinicalTrials.gov (NCT01989104) and conducted at the
Pennington Biomedical Research Center in Baton Rouge,
Louisiana, United States from January 2014 to April 2015.
All original study procedures were reviewed and approved
by the Pennington Biomedical Institutional Review Board.
Description of the purpose and characteristics of the
study was provided to the parents and participants, and
child assent and parental permission were obtained
from children and adolescents 6–17 years of age. Partic-
ipants between 18 and 20 years of age provided in-
formed consent. Approval for these secondary analyses
was granted by the University of Massachusetts Am-
herst Institutional Review Board.

Participants
To minimize important sources of bias, improve the
generalizability of findings and ensure a relatively equal
distribution of participants across the evaluated age
range of this study (6–20 years of age), a balanced sex-
and-age distribution of at least 4 boys and 4 girls for
each age-year between 6 and 20 years were recruited for
a total of 123 children, adolescents and young adults.
Briefly, exclusion criteria were: use of wheelchairs or
having other impairments for normal ambulation, hospi-
talized for mental illness within the past 5 years, and
medical condition or medication that might affect heart
rate or metabolic response to exercise testing or be ag-
gravated by exercise.

Treadmill testing procedure
Fasted participants (at least 4 h) completed a series of up
to ten 5-min walking/running bouts on a level treadmill
(0% grade), which started at 0.8 km/h (0.5 mph) and sub-
sequently increased in 0.8 km/h increments up to a max-
imum of 8.0 km/h (5.0 mph). A complete list of bouts
and speed conversions in m/min, km/h, and mph is pub-
lished elsewhere [28]. Each bout was separated by at
least 2-min of standing rest to facilitate collection of
bout-specific step counts from the various wearable
technologies. The protocol was terminated following the
bout when participants naturally chose to jog or run, or
if they or the researcher decided not to continue at any
time point.

Measures
Participant characteristics and anthropometric measures
Participant’s biological sex, race/ethnicity, and age were
self-reported. A series of anthropometric measurements
that included weight, standing height, leg length, and
body mass index (BMI) calculations were then obtained.
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Details for these measurements are presented in the ori-
ginal CADENCE-Kids’ reports [28, 29].

Step counting
Directly observed steps were obtained using a hand-tally
counter for a criterion measure of step counts. A video
camera was also directed at the participants’ feet and re-
corded movements for step verification purposes. Video
recordings were referred to in cases that staff-disclosed
miscounting or when ambiguous data were identified
during data processing.
During the treadmill protocol, participants wore eight

step counting wearable technologies across five different
wear locations (for tabular and visual presentations of
device settings and initialization procedures, see Supple-
mentary Table 1 and Supplementary Figure 1 respect-
ively, Additional file 2). Specifically, they wore an Actical
(Philips Respironics, Murrysville, PA, USA) and a New
Lifestyles SW-200 (Yamax Corporation, Tokyo, Japan)
on the left waist, and an ActiGraph GT3X+ (ActiGraph,
Pensacola, FL, USA) and a New Lifestyles NL-1000
(New Lifestyles Inc., Lee’s Summit, MO, USA) on the
right hip; an ActiGraph GT3X+ on the non-dominant
wrist and a SenseWear Armband (BodyMedia, Inc.,
Pittsburgh, PA, USA) on the right arm; an activPAL
(PAL Technologies Ltd., Glasgow, UK) on the right
thigh; and a StepWatch (OrthoCare Innovations, Seattle,
WA, USA) on the right ankle.

Data processing and aggregation
The NL-1000 and SW-200 provided real-time step count
data that were recorded at the end of each bout. Not-
ably, only the research staff running the trials examined
the displayed step outputs. The other wearable technolo-
gies (i.e., Actical, ActiGraph GT3X+, activPAL, Sense-
Wear, and StepWatch) did not display real-time step
count feedback, however, data were automatically time-
stamped according to internal mechanisms and subse-
quently downloaded following manufacturers’ protocols
(see Supplementary Table 1, Additional file 2). Specific-
ally, the time-stamped step count data were synchro-
nized to the protocol’s digital timing record to inform
post-processing of bout-specific step counts. The vari-
ables consisted of step counts for each wearable technol-
ogy at each respective bout. For every participant and
for each completed protocol stage, we then merged all
step count data from the hand-tally criterion, SW-200,
NL-1000, and timestamped wearable devices into a
single comma-delimited flat file for further analysis.

Analytic sample
Of the 123 originally recruited participants, there were 2
who failed screening procedures due to medications, that
were revealed after enrollment, which could have

adversely affected heart rate and/or metabolism during
treadmill testing. Additionally, data were not available
for 4 participants due to wearable technologies malfunc-
tioning and data collection errors. Thus, the final ana-
lytic data set included 117 participants providing a total
of 1008 bouts. Of these, 89 were running bouts distrib-
uted across different speeds as follows: 4.8 km/h (n = 3),
5.6 km/h (n = 6), 6.4 km/h (n = 20), 7.2 km/h (n = 41),
and 8.0 km/h (n = 19). Running bouts were subsequently
excluded from the present analysis due to the overall
lack of a robust sample size in terms of running bouts at
each standardized speed and also to the known differ-
ences in gait and biomechanical patterns between run-
ning and walking [7]. The final analytic dataset and
corresponding data dictionary can be accessed in
Additional file 3.

Statistical analysis
Descriptive statistics
Sample characteristics are presented as means and SD
or percentages (%), as appropriate. A catalog of wearable
technologies’ performance (i.e., indices of accuracy, bias,
and precision) was calculated and collated. The accuracy
(MAPE) and bias (MPE) values with their associated pre-
cision indices (SD and CoV) averaged across the sample
were determined for each wearable technology and rela-
tive to each walking speed bout, each speed level (slow =
0.8, 1.6, 2.4, and 3.2 km/h; normal = 4.0, 4.8, 5.6, and 6.4
km/h; and fast = 7.2 and 8.0 km/h), wear location (waist,
wrist/arm, thigh, and ankle), and age group (children, 6–
12 years; adolescents, 13–17 years; and young adults, 18–
20 years). The classification of speed levels in slow, nor-
mal and fast was performed based on the CTA guidance
and its definition of the normal speed range [18]. Lower
MAPE values are indicative of higher accuracy and MPE
values closer to 0% are indicative of improved bias. Cor-
relation coefficients (r; another precision index for the
strength of the linear relationship between directly ob-
served steps and steps derived from each wearable tech-
nology, where r closer to 1 is indicative of a stronger,
more linear relationship) were computed for the whole
sample and reported across all walking bouts. Import-
antly, this index requires a wide range of step counts to
provide meaningful results.

Inferential analysis
Inferential analyses were performed to test for the effect
of speed, wear location and age on the overall accuracy,
bias, and precision. First, we fit a set of eight mixed ef-
fects models to examine the effect of speed on MAPE
(i.e., accuracy) for each of the eight wearable technolo-
gies. Specifically, for each device, the MAPE for partici-
pant i = 1, 2, …, N at speed j = 1, 2, …, q (included as a
categorical variable), conditional on their participant-
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specific deviation, was estimated using the following
model:

E Y ijbi½ � ¼ Xiβþ bi

Where Yi was a q × 1 vector of absolute percentage
error values, Xi was a q × q diagonal matrix of dummy
variables (equal to 0 or 1) indexing the corresponding
speed, β was a q × 1 vector of regression coefficients for
the fixed effect (categorical speed), and bi was the ran-
dom intercept for participant i. Likelihood ratio tests
(α = 0.05) were then used to test for the effect of speed
(β) on MAPE for the wearable technology-specific
model. Additionally, we estimated 95% CIs for MAPEs
at each speed, and 95% CIs that did not overlap were
interpreted as significantly different, while 95% CIs that
overlapped with another point estimate were interpreted
as not significantly different [30]. This analysis was then
repeated to examine the effect of wear location (i.e.,
waist, wrist/arm, thigh, and ankle) as well age group (i.e.,
children, adolescents, and young adults) by substituting
for Xi and refitting the model separately for each of the
three speed levels (i.e., slow, normal, and fast). For ex-
ample, for the effect of wear location on MAPE at each
of the speed levels, Xi was a diagonal matrix of dummy
variables (equal to 0 or 1) corresponding to location-
speed combinations. Given that accuracy (MAPE) ac-
counts for the overall performance of a step-counting
device and thus reflects both bias and precision [19],

main analyses of the present study were performed for
accuracy (MAPE) of wearable technologies, but analyses
were also performed for bias (MPE) and precision (r)
separately. Thus, all these models were fit again to
examine the effects of speed, wear location and age on
bias (MPE) and correlation (r) (substituting for Yi), and
they can all be found in supplementary material (see Re-
sults for specific references to these supplementary ma-
terials). All descriptive and inferential statistical analyses
were conducted using R-Studio (version 3.0.2, R Founda-
tion for Statistical Computing, Vienna, Austria).

Results
Descriptive statistics
Sample characteristics
Descriptive characteristics of the analytical sample (N =
117) are reported in Table 1. The total number of partic-
ipants who completed each walking bout and the aver-
age number of steps derived from direct observation and
from any of the wearable technologies at each speed are
detailed for the whole sample and by age group in Add-
itional file 4. Of note, no children of 6–12 years of age
completed the final possible bout (8.0 km/h).

Accuracy, bias, and precision by speed
A catalog of validity indices of accuracy (MAPE), bias
(MPE), and precision (SD and CoV) for step counting
wearable technologies at different speeds, wear locations,
and age groups is provided in Additional file 5.

Table 1 Descriptive characteristics of the analytical sample

Variables All (N = 117) Children, 6–12 years (n = 53) Adolescents, 13–17 years (n = 40) Young Adults, 18–20 years (n = 24)

Mean SD Mean SD Mean SD Mean SD

Age (years) 13.17 4.22 9.21 1.95 14.93 1.40 19.00 0.83

Weight (kg) 55.94 21.85 41.19 14.67 67.97 21.60 68.43 14.60

Height (cm) 155.66 16.47 141.89 12.44 165.29 8.60 170.01 8.92

Leg length (cm) 73.94 9.42 67.12 8.16 79.10 6.46 80.40 5.41

BMI (kg/m2) 22.41 6.25 20.04 5.17 24.78 7.15 23.66 5.06

n % n % n % n %

Sex (female) 59 50.4 26 49.1 21 52.5 12 50.0

BMI classificationsa

Underweight 6 5.1 3 5.7 1 2.5 2 8.3

Normal weight 67 57.3 27 50.9 22 55.0 18 75.0

Overweight 18 15.4 9 17.0 7 17.5 2 8.3

Obese 26 22.2 14 26.4 10 25.0 2 8.3

Race/ethnicity

African-American 41 35.0 21 39.6 13 32.5 7 29.2

Caucasian 73 62.4 30 56.6 26 65.0 17 70.8

Other 3 2.6 2 3.8 1 2.5 0 0.0

BMI body mass index. aBMI classifications defined as BMI < 5th percentile (underweight), 5th ≤ BMI < 85th percentile (normal weight), 85th ≤ BMI < 95th percentile
(overweight), and BMI ≥ 95th percentile (obese)
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Additionally, MAPE, MPE, and their corresponding SD
values across the full range of speeds are visually pre-
sented in Additional file 6 for the whole sample and by
age groups. According to the catalog and over the range
of normal speeds (4.0–6.4 km/h), the Actical displayed the
highest accuracy (MAPE = 1%), followed by the NL-1000
(3%), the activPAL, SW-200 and StepWatch (4%), and the
waist-worn ActiGraph GT3X+ (7%). On the other hand,
the SenseWear reported the lowest accuracy across nor-
mal speeds (MAPE = 62%), followed by the wrist-worn
ActiGraph GT3X+ (41%). When considering the whole
range of slow, normal and fast speeds, the StepWatch dis-
played the highest accuracy (MAPE = 9%), followed by the
activPAL (12%) and the Actical (19%). In contrast, the
SenseWear reported the lowest accuracy (MAPE = 73%),
followed by the wrist- and waist-worn ActiGraph GT3X+
(51 and 34% respectively), the NL-1000 (23%), and the
SW-200 (22%). On average, all wearable technologies dis-
played the lowest accuracy across slow walking speeds
(MAPE = 50.1 ± 35.5%), and the highest accuracy across
normal speeds (MAPE = 15.9 ± 21.7%). Only the Step-
Watch reported the lowest accuracy across fast speeds
(22%). The correlation coefficients representing the
strength of the relationship between directly observed
steps and steps derived from each wearable technology are
reported in Additional file 7.

Accuracy, bias, and precision by wear location
Validity indices averaged across wear locations for each
speed bout are presented in Table 2. Across normal
speeds, the waist (MAPE = 4%), thigh (4%) and ankle
(5%) locations displayed higher accuracy than the wrist

location (23%). Across the whole range of speeds, the
ankle and the thigh locations showed the highest accur-
acy (MAPE = 9 and 11%, respectively), while the wrist
and waist locations showed the lowest accuracy
(MAPE = 30 and 24%, respectively). Mean precision
(correlation) values (and 95% CIs) are presented in
Supplementary Figure 2, Additional file 8 for the
relationship between directly observed steps and steps
averaged across each specific wear location-based
devices.

Accuracy, bias, and precision by age group
Validity indices averaged across age groups for each
speed bout are presented in Table 3. Accuracy ranged
from MAPE = 81.2% (adolescents at 0.8 km/h) to 14.4%
(young adults at 5.6 km/h). The wearable devices’ accur-
acy across normal speed bouts was similar among age
groups (children’s MAPE = 17%, adolescents = 16%,
young adults = 15%). Across all speed levels, MAPE
values were also similar among age groups (children =
32.1%, adolescents = 30.4%, young adults = 29.6%). Mean
precision (correlation) values (and 95% CIs) are repre-
sented in Supplementary Figure 3, Additional file 8 for
the relationship between steps averaged across each age
group and directly observed steps.

Inferential analyses
Effect of speed on accuracy, bias, and precision
The regression models built for each of the eight tested
wearable technologies in comparison with the directly
observed steps indicated that there was an overall signifi-
cant effect of speed (P < 0.001) on accuracy (Fig. 1), and

Table 2 Validity indices (accuracy, bias, and precision) averaged across wear location for each speed bout
Treadmill speed, km/h (mph)

Slow Normal Fast

0.8 (0.5) 1.6 (1.0) 2.4 (1.5) 3.2 (2.0) 4.0 (2.5) 4.8 (3.0) 5.6 (3.5) 6.4 (4.0) 7.2 (4.5) 8.0 (5.0)

Waist

MAPE ± SD 92.4 ± 11.2 74.1 ± 25.2 40.7 ± 26.8 16.6 ± 18.3 5.9 ± 12.1 4.1 ± 11.6 2.7 ± 8.9 3.1 ± 9.1 2.6 ± 8.6 2.6 ± 6.1

MPE ± SD − 92.4 ± 11.2 −74.1 ± 25.3 − 39.7 ± 28.2 − 15.3 ± 19.4 −5.0 ± 12.5 −2.6 ± 12.0 −1.7 ± 9.2 −1.7 ± 9.4 −0.9 ± 8.9 1.2 ± 6.6

Wrist/Arm

MAPE ± SD 93.8 ± 9.4 83.6 ± 19.0 68.5 ± 28.1 56.2 ± 34.3 52.4 ± 37.1 50.1 ± 36.8 51.2 ± 36.1 52.2 ± 33.8 54.9 ± 32.0 53.2 ± 28.7

MPE ± SD − 93.8 ± 9.4 − 83.6 ± 19.0 − 68.4 ± 28.3 − 56.1 ± 34.5 −52.3 ± 37.2 −49.7 ± 37.3 −51.1 ± 36.2 −52.0 ± 34.1 − 54.6 ± 32.5 − 51.6 ± 31.5

Thigh

MAPE ± SD 60.2 ± 28.2 10.9 ± 14.7 3.2 ± 8.7 3.5 ± 9.0 3.2 ± 8.9 3.3 ± 9.2 3.7 ± 9.9 6.0 ± 14.7 9.8 ± 23.1 11.1 ± 24.7

MPE ± SD − 59.5 ± 29.7 −8.9 ± 16.0 −1.6 ± 9.1 −1.2 ± 9.5 −1.8 ± 9.3 −1.7 ± 9.7 − 2.1 ± 10.4 −5.0 ± 15.1 −8.5 ± 23.6 −7.2 ± 26.2

Ankle

MAPE ± SD 14.9 ± 19.8 4.4 ± 13.1 3.4 ± 13.2 3.6 ± 13.8 3.1 ± 13.4 2.9 ± 10.4 4.1 ± 12.0 8.7 ± 15.7 20.7 ± 18.0 23.5 ± 7.9

MPE ± SD − 14.6 ± 20.0 −0.6 ± 13.8 −1.5 ± 13.5 −1.3 ± 14.2 −1.8 ± 13.6 −1.1 ± 10.8 −3.0 ± 12.4 −8.0 ± 16.1 −20.4 ± 18.4 −23.5 ± 7.9

All mean absolute percentage error (MAPE) and mean percentage error (MPE) values are presented as mean percentage ± standard deviation (SD). Waist
devices: Actical, ActiGraph GT3X+, NL-1000, Digi-Walker SW-200. Non-dominant wrist device: ActiGraph GT3X+; Arm device: SenseWear. Thigh device:
activPAL. Ankle device: StepWatch. MAPE and SD values closer to 0% indicate higher accuracy and precision, respectively. MPE values closer to 0%
indicate lower bias and negative values mean undercounting
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that this significance was generally driven by a reduced
accuracy (i.e., increased MAPE) at slow speeds (0.8–3.2 km/
h). For example, MAPE values were significantly greater at
0.8 km/h compared to 1.61 km/h for all devices (except for
SenseWear). Across normal and fast walking speeds (4.0–
8.0 km/h), there were overall no significant differences in
accuracy (P > 0.05), with the exception of waist-worn
ActiGraph GT3X+ (MAPE, 95% CI = 0.06, 0.04–0.19 at 4.8
km/h and 0.05, 0.03–0.08 at 5.6 km/h), and StepWatch
(MAPE, 95% CI = 0.22, 0.19–0.25 at 7.2 km/h and 0.10,
0.07–0.13 at 6.4 km/h). We observed similar findings for
bias since speed had an overall significant effect (P < 0.001)
on MPE values across all wearable technologies (see
Supplementary Figure 1, Additional file 9), mainly during
slower walking speeds.
The regression modeling indicated that speed did

not have an effect (P = 0.235) on the correlation be-
tween irectly observed steps and steps derived from
wearable technology (see Supplementary Figure 1,
Additional file 8).

Effect of wear location on accuracy, bias, and precision
The regression models indicated that wear location had a
significant effect on accuracy associated with measuring
steps (P < 0.001) across slow, normal, and fast walking
speeds (Fig. 2). Across slow and fast walking speeds,
all locations showed significantly different MAPE
(95% CI) among them with highest MAPE values
(lowest accuracy) being 0.76 (0.74–0.78) and 0.55
(0.51–0.58) reported from wrist/arm for slow and fast
speeds, respectively, and lowest MAPE values (highest
accuracy) being 0.07 (0.04–0.10) and 0.03 (0.00–0.05)
reported from ankle and waist locations for slow and
fast speeds, respectively. Across normal walking
speeds, waist, thigh, and ankle accuracy was not

significantly different from each other (overlapping
95% CIs ranging from 0.02 to 0.07), with wrist/arm
showing a significantly different accuracy (averaged
MAPE = 0.52, 95% CIs: 0.50–0.53) with respect to
the other locations. Similarly, the regression model-
ing also indicated that there was a significant effect
of wear location on bias (MPE) during slow, normal,
and fast walking speeds (P < 0.001) (see Supplemen-
tary Figure 2, Additional file 9).
Wear location did not have an overall significant effect

on the correlation between directly observed steps and
those derived from wearable technologies (P > 0.05) (see
Supplementary Figure 2, Additional file 8). The only sig-
nificant difference observed was between waist and
wrist/arm, as the 95% CIs did not overlap (0.74–1.00 for
waist, and 0.34–0.72 for wrist/arm).

Effect of age on accuracy, bias, and precision
The regression models indicated that age did not have a
significant effect on the step counting accuracy (Fig. 3),
bias (see Supplementary Figure 3, Additional file 9) and
precision (see Supplementary Figure 3, Additional file 8)
of wearable technologies at slow, normal, or fast walking
speeds or across speed levels (all P ≥ 0.05).

Discussion
The highly detailed and standardized digital catalog assem-
bled herein clearly demonstrates the effect that speed and
wear location have on step counting performance of wear-
able technologies with regards to accuracy and bias, with no
apparent effect on precision. In contrast, age had no effect
on any validity index evaluated in this sample ranging from
children to young adults. Users can search the catalog (Add-
itional file 5) for any validity index (i.e., MAPE, MPE, SD,
CoV) as well as tailor the search as needed using a filter for

Table 3 Validity indices (accuracy, bias, and precision) averaged across all wearable technologies and presented by age group

Treadmill speed, km/h (mph)

Slow Normal Fast

0.8 (0.5) 1.6 (1.0) 2.4 (1.5) 3.2 (2.0) 4.0 (2.5) 4.8 (3.0) 5.6 (3.5) 6.4 (4.0) 7.2 (4.5) 8.0 (5.0)

Children (6–12 years)

MAPE ± SD 76.7 ± 30.0 58.2 ± 36.2 38.0 ± 32.6 24.1 ± 30.1 17.3 ± 29.3 16.0 ± 28.3 16.3 ± 28.9 18.5 ± 28.1 24.1 ± 30.2 –

MPE ± SD −76.7 ± 30.0 − 57.6 ± 37.1 −37.6 ± 33.1 −22.8 ± 31.0 − 16.7 ± 29.6 − 14.3 ± 29.2 −15.3 ± 29.4 −17.5 ± 28.8 −22.4 ± 31.5 –

Adolescents (13–17 years)

MAPE ± SD 81.2 ± 30.0 61.7 ± 37.7 39.4 ± 33.6 23.6 ± 29.9 17.0 ± 30.0 14.9 ± 29.1 14.6 ± 28.7 16.0 ± 28.8 18.6 ± 29.3 16.5 ± 25.1

MPE ± SD −80.9 ± 31.2 − 60.8 ± 39.1 −38.2 ± 35.0 −22.3 ± 30.9 −16.0 ± 30.5 −14.0 ± 29.6 −13.5 ± 29.2 −15.1 ± 29.3 −17.6 ± 29.9 −15.4 ± 25.8

Young adults (18–20 years)

MAPE ± SD 80.6 ± 31.9 60.6 ± 38.7 36.9 ± 35.5 21.0 ± 28.8 15.8 ± 29.4 14.9 ± 29.5 14.4 ± 28.7 14.9 ± 28.4 16.2 ± 28.9 20.4 ± 28.4

MPE ± SD − 80.6 ± 32.1 − 59.7 ± 40.0 −35.4 ± 37.1 −19.6 ± 29.8 −14.8 ± 29.9 −14.8 ± 29.9 −13.8 ± 29.1 −13.9 ± 28.9 −15.3 ± 29.4 −16.6 ± 30.9

All mean absolute percentage error (MAPE) and mean percentage error (MPE) values are presented as mean percentage ± standard deviation (SD). MAPE
and MPE values were calculated for all wearable technologies (Actical, ActiGraph GT3X+ [waist], ActiGraph GT3X+ [non-dominant wrist], activPAL, Digi-
Walker SW-200, NL-1000, SenseWear, and StepWatch) when compared to the directly observed steps. MAPE and SD values closer to 0% indicate higher
accuracy and precision, respectively. MPE values closer to 0% indicate lower bias and negative values mean undercounting
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any of the factors provided (i.e., speed, location, age, or spe-
cific devices). The catalog also includes additional worksheets
that display the validity indices for each tested device separ-
ately and can be used by researchers to inform wearable
technology selection and to compare data collected by differ-
ent devices. This catalog of validity indices extends the scop-
ing review recently published that called for a harmonization
of wearable technologies validation [15]. Wearable technolo-
gies manufacturers also now have a set of evidence-based
validity parameters that can be referenced to support devel-
opment of new devices in an effort to assure standardized
performance.

Descriptive findings for accuracy, bias, and precision
Five of the eight tested wearable technologies (i.e.,
Actical, waist-worn ActiGraph GT3X+, activPAL,

StepWatch, and SW-200) performed at < 5% MAPE over
the range of normal walking speeds. Although the CTA
previously suggested that wearable technologies can be
expected to perform at an accuracy level of < 10% MAPE
[18], the empirical basis for this assertion was not clear.
In contrast, the reference values produced herein can ac-
tually provide such data to inform more evidence-based
thresholds as suggested in previous review [15].
When selecting appropriate wearable technologies, re-

searchers should first consider the population of interest.
For example, if the population of interest typically walks
at slow walking speeds, the best technology for this
speed appears to be different than what it would be for
those more capable of normal or fast walking. Specific-
ally, at slow walking, the best devices based on accuracy
were: StepWatch (MAPE = 6.6%), activPAL (19.4%),

Fig. 1 Effect of speed on overall accuracy (mean absolute percentage error, MAPE) of wearable technology’s step counting ability. Participants
walked on a treadmill for 5-min bouts beginning at 0.8 km/h (0.5 mph) and increasing in 0.8 km/h (0.5 mph). MAPE and corresponding 95%
confidence intervals (CIs) respective to each technology are plotted across speed bouts. Each point represents grouped averages of MAPE values,
with 95% CIs estimated using mixed effect models and extending above and below that point estimate. MAPE values closer to 0 are indicative of
greater accuracy. Further, where 95% CIs do not overlap, there are significant differences between speed bouts. Likelihood ratio test P value is
reported for the effect of all speeds on MAPE for each specific device
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Actical (46.0%), SW-200 (49.0%), NL-1000 (55.0%),
wrist-worn ActiGraph GT3X+ (61.8%), waist-worn Acti-
Graph GT3X+ (73.8%), and SenseWear (89.2%). While
the CTA [18] recommended threshold of MAPE < 10%
is intended for normal walking speeds (4.0–6.4 km/h),
the StepWatch’s MAPE fell below this threshold also
during slow walking speeds. Of note, this rank order for
slow walking speeds was the same for MPE. Under nor-
mal walking speeds, best devices based on accuracy
were: Actical (MAPE = 1.4%), NL-1000 (2.9%), SW-200
(4.0%), activPAL (4.1%), StepWatch (4.7%), waist-worn
ActiGraph GT3X+ (7.4%), wrist-worn ActiGraph
GT3X+ (40.6%), and the SenseWear (62.3%). Actical,
waist-worn ActiGraph GT3X+, activPAL, StepWatch,
and SW-200 actually performed at a more rigorous level
of < 5% MAPE across this normal speed range. Again,
this order at normal walking speeds did not change with
respect to MPE. In regards to fast walking, the best de-
vices based on accuracy were: SW-200 (MAPE = 1.6%),
NL-1000 (1.7%), Actical (2.2%), waist-worn ActiGraph
GT3X+ (5.0%), ActivPAL (10.5%), StepWatch (22.1%),
wrist-worn ActiGraph GT3X+ (47.9%), and Sensewear

(60.2%). The rank order did change slightly with respect
to MPE, where the NL-1000 displayed the least amount
of error (0.5%) followed by the SW-200 (1.0%). Guided
by these findings we can affirm that the cost of the wear-
able technology does not necessarily guarantee a degree
of accuracy, bias and precision, as demonstrated here by
a ~ $20 pedometer (e.g., SW-200) outperforming several
~$200+ devices (e.g., Actigraph GT3X+).

Effect of speed on accuracy, bias, and precision
In the present study, speed had a significant effect on ac-
curacy and bias. This effect was primarily driven by
greater error evident at slower speeds, with better accur-
acy during normal walking speeds. Although not re-
stricted to youth samples, Bassett et al. [8] suggested
that wearable technologies only record 50–75% of the
actual number of steps taken at walking speeds ≤1.6 km/
h (1.0 mph), i.e., 50–25% MAPE. The findings herein
agree with this assertion, apparent from the finding that
grouped mean values across wearable technologies at
speeds ≤1.6 km/h missed 30.5% of actual steps taken
(within that 50–25% MAPE range). Given these findings,

Fig. 2 Effect of wear location on overall accuracy (mean absolute percentage error, MAPE) of wearable technologies’ step counting ability. MAPE
and corresponding 95% confidence intervals (CIs; estimated using mixed effect models) of each wear location are presented at slow, normal, and
fast walking speed levels. Slow speed bouts: 0.8, 1.6, 2.4, 3.2 km/h (0.5, 1.0, 1.5, 2.0 mph); normal speed bouts: 4.0, 4.8, 5.6, 6.4 km/h (2.5, 3.0, 3.5, 4.0
mph); fast speed bouts: 7.2, 8.0 km/h (4.5, 5.0 mph). MAPE values were averaged across devices respective to each wear location for slow, normal,
and fast walking speeds. MAPE values closer to 0 are indicative of greater accuracy. Further, where 95% CIs do not overlap, there are significant
differences between locations. Likelihood ratio test P value is reported for the effect of wear location on MAPE for each specific speed level
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manufacturers of wearable technologies should thor-
oughly consider measurement’s trade-off between sensi-
tivity and specificity to avoid miscategorization of low
force accelerations that are true steps [24].
Overall, there were no significant differences in accur-

acy or bias for any of the tested wearable technologies
across increasing speeds during normal and fast walking.
An improvement of accuracy and bias was observed
from slow to normal and fast speeds. For instance, while
MAPE averaged across waist, thigh and ankle-worn de-
vices was 42% across slow walking speed bouts, the
MAPE across normal walking speed bouts was 4%. This
trend of improved MAPE values with increased speed (≥
4.0 km/h [2.5 mph]) is consistent with previous literature
[9, 19, 25, 27, 31–33]. For example, Trapp et al. [27] re-
ported improving MAPE from 44.1 to 8.9% from slow
(2.4 km/h [1.5 mph]) to fast (5.4 km/h [3.4 mph]) walk-
ing speed for waist-worn devices.
Although accuracy and bias were significantly influ-

enced by speed, precision (as represented by correlation
coefficients) was not similarly affected. A methodological
explanation for this could be the apparent difference in
power in the regression analyses. While the regression
models for the correlation coefficients were averaged

across the eight wearable technologies for each of the
speed categories of slow, normal and fast (in order to
provide a more robust correlation for a given coeffi-
cient), the regression models for MAPE and MPE con-
sidered more data points, as values were averaged across
the total sample for each speed bout. This decrease in
power related to precision analyses also increased the
width of the associated 95% CIs, which in turn increased
the likelihood of apparent overlap between speed levels,
an indication of no significant differences. Further,
MAPE, MPE, and correlation coefficients are different
by nature. While correlation coefficients are unitless
values that indicate the strength of the linear relation-
ship between directly observed steps and steps derived
from wearable technology, MAPE and MPE are scaled
measures (%) that define the amount of error of a device
when counting steps. The strength of the linear relation-
ship is not representative of the magnitude of error in
respect to directly observed steps. To be clear, a wear-
able technology could consistently (i.e., precisely) under-
count the same number of steps respective to directly
observed steps, and therefore, display a high correlation
coefficient, despite consistent error (more apparent from
inexact MAPE and MPE values).

Fig. 3 Effect of age on overall accuracy (mean absolute percentage error, MAPE) of wearable technologies’ step counting ability. MAPE and
corresponding 95% confidence intervals (CIs; estimated using mixed effect models) of each age group are presented at slow, normal, and fast
walking speed levels. Slow speed bouts: 0.8, 1.6, 2.4, 3.2 km/h (0.5, 1.0, 1.5, 2.0 mph); normal speed bouts: 4.0, 4.8, 5.6, 6.4 km/h (2.5, 3.0, 3.5, 4.0
mph); fast speed bouts: 7.2, 8.0 km/h (4.5, 5.0 mph). MAPE values were averaged across devices respective to each age group for slow, normal,
and fast walking speeds. MAPE values closer to 0 indicate greater accuracy. Further, where 95% CIs do not overlap, there are significant
differences between locations. Likelihood ratio test P value is reported for the effect of age on MAPE for each specific speed level
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Effect of wear location on accuracy, bias, and precision
Wear location also had a significant effect on the accur-
acy and bias of wearable technologies step counting.
Consistently, wearable technologies worn at the wrist/
arm performed significantly worse than those worn on
the waist, thigh, or ankle in terms of accuracy and bias,
regardless of the speed. During normal walking speeds,
waist, thigh, and ankle-worn devices were all compar-
able, and within 5% error for both MAPE and MPE
values. The better accuracy and bias values reported by
these locations may be a consequence of a higher sensi-
tivity to accelerations and gravitational forces occurring
with each step taken during ambulation. For example,
devices worn at the thigh and ankle undergo greater dis-
placement during ambulation due to their proximity to
the foot [34]. Specifically, Sandroff et al. [34] reported a
0.03% MAPE at 1.6 km/h (1.0 mph) for the thigh-worn
StepWatch in adults with multiple sclerosis. Although
we observed slightly less accurate measures of the Step-
Watch at the same speed for the sample herein (MAPE =
4.4%), this device was still the most accurate wearable
technology tested at this speed. As reported in Tudor-
Locke et al. [33], another explanation of the differences
between wrist/arm and other wear locations is that ac-
celeration/force signals at the wrist/arm are not suffi-
cient to be effectively and consistently detected. In
Tudor-Locke et al. study in adults [33], wrist-worn de-
vices produced outputs that were significantly different
from directly observed steps at speeds ranging from 0.8
to 11.3 km/h, while waist-worn devices displayed no sig-
nificant differences at speeds > 3.2 km/h. In the present
study in children and young adults, we observed similar
findings during normal walking speeds as waist, thigh,
and ankle MAPE values were not significantly different
from each other, while wrist/arm showed a significantly
different MAPE with respect to the other locations.
At fast walking speeds, accuracy and bias appeared to

worsen for the wrist/arm, thigh, and ankle-worn devices,
while that for the waist-worn devices improved. From
normal to fast walking, all four of the wrist/arm, thigh,
and ankle-worn devices displayed increased MAPE (3.0
to 21.0% difference from normal to fast speeds), indicat-
ing decreased performance at higher speeds. These find-
ings are in line with previous studies with, for example,
the study of Aminian et al. [22] showing a steps’ under-
estimation of − 8% of a thigh device during fast walking
similar to the − 8.5% presented in our study. On the
other hand, the improvement of accuracy from normal
to fast speeds of the waist-worn devices showed in our
study does not correspond with findings from previous
studies [21, 22]. Thus, in the mentioned studies [21, 22],
the waist-worn devices displayed increasing error from
normal to fast walking speeds. These differences in ac-
curacy or bias for waist-worn devices between our study

and previous ones may be a result of the use of different
brands/models of devices.
As with speed, there was no effect of wear location on

precision as represented by correlation coefficients.
Again, this inconsistency of significance across validity
indices is due to a reduced power in the regression
models respective to each index, as described previously.
Further, there were only two devices worn at the wrist/
arm, one at the thigh, and one at the ankle which further
reduces the amount of data points included in regression
models for correlation coefficients, and in turn produces
wider 95% CIs, indicative of no significant differences.

Effect of age on accuracy, bias, and precision
Age showed no effect on any of the validity indices at
slow, normal, or fast walking and for all bouts in this
sample ranging from children as young as 6 years of age
to young adults aged 20 years of age. No previous studies
have directly analyzed the effect of age on performance
of wearable technologies which hampers direct compari-
son with our findings. MAPE and MPE values were ≤ 8%
different between age groups, and respective to correl-
ation coefficients, values were ≤ r = 0.06 different among
children, adolescents and young adults. One explanation
for the non-apparent effect of age is that beyond 6 years
of age, there are no notable differences in walking pat-
terns compared to those associated with adults [35]. Ac-
cording to our findings, PA studies and interventions
designed to capture steps in young people do not need
to consider age groups in terms of measurement with
step counting wearable technologies. However, since
postural and locomotor control may differ in very young
children [35], future studies should seek to include even
younger and older samples.

Strengths and limitations
Several strengths of the original study design underpin-
ning this secondary analysis must be acknowledged, in-
cluding the use of direct observation of step counting
and video back up as criterion measure, as recom-
mended by the CTA [18]. Additionally, the treadmill
protocol covered a broad range of walking speeds from
0.8 km/h (0.5 mph) to 8.0 km/h (5.0 mph) which extends
beyond the data collected in previous studies [21–27].
Thirdly, this is the first study in a young population to
report all three validity indices in a large sample size
(N = 117), evenly distributed by age year. There are sev-
eral limitations that must also be acknowledged. This
analysis included the evaluation of only eight step count-
ing wearable technologies. At the wrist, arm, thigh and
ankle, only a single device was evaluated, limiting
generalization to other devices that can also be worn at
these locations. For example, we used a research-grade
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ActiGraph GT3X+ as the only device at the wrist, while
we used four different devices on the waist. Regardless,
this secondary analysis from the primary CADENCE-
Kids study [28] is consistent with the evidence shown by
a recent review on the topic [17] and lays the foundation
for a catalog that future research should be able to add
to as emerging devices (and new algorithms for data
processing) are evaluated using similar protocols. While
this was a more extensive array of devices than previ-
ously evaluated [21–27], there are still many other wear-
able technologies available that were not included in this
original data set. Some of the originally tested wearable
technologies are also now obsolete (e.g., SenseWear),
however, publication of these specific validity-related
values is still important to enable robust comparisons
between different types of past, present, and future wear-
able technologies. Another limitation is that the size of
the available analytical sample diminished as speed in-
creased in the original study. Regarding classifying speed
as low, normal and fast, we followed the definition of
the normal speed range made by the CTA [18], and then
defined low as less than that range and fast as higher
than that range. While we acknowledge that this defin-
ition is most relevant to adults, there are no separate
standards for step counting accuracy set in children yet.
Lastly, it is important to note that the step-based valid-
ation of these wearable technologies on a treadmill may
not be generalizable to the free-living condition. The
sporadic, and non-uniform patterns of children’s move-
ment may further limit the generalizability of these step
count data when quantifying free-living step-based PA
behavior [36].

Conclusion
The results reported and discussed herein are an import-
ant first step to standardizing the validation of step
counting wearable technologies. This effort provides
comprehensive validity indices for a variety of step
counting wearable technologies evaluated during tread-
mill walking in young people 6–20 years of age. Catalog-
ing expected validation indices for step counting
wearable technologies in young samples is important to
inform and facilitate empirically-based reference values
needed to evaluate accuracy, bias, and precision of new
devices. Speed and wear location had a significant effect
on the accuracy and bias of wearable technologies step
counting ability, but not the precision. However, age did
not influence wearable technology performance with
regards to any of these three validity indices. Future re-
search should continue to rigorously validate new wear-
able technologies as they are developed, and also extend
this standardized laboratory-based evaluation to the
free-living environment.
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